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Abstract. The present developments rely on a consistent formulation of the conventional, collocation 

boundary element method with the aim to establish a computationally less intensive procedure, although not 

necessarily less accurate, for large-scale, two-dimensional and three-dimensional problems of potential and 

elasticity. One shows that both the double-layer and the single-layer potential matrices, H and G, 

respectively, whose evaluation requires dealing with singular and improper integrals, may be obtained in an 

expedite way that circumvents almost any numerical integration – except for a few regular integrals. 

Although both H and G are full populated, special solution schemes (not developed in the paper) may be 

conceived to dramatically decrease the storage allocation required in the iterative solution of the matrix 

system. The evaluation of results at internal points is also straightforward, as the fundamental solutions of 

the boundary element method may be assumed as the domain trial functions. The evaluation of results takes 

into account boundary-layer effects, although special domain functions should be required to adequately 

simulate stress gradients related to notches and cracks. The paper focuses on the mathematical fundamentals 

of the formulation. A few examples illustrate the applicability of the method and some convergence issues. 

Application to large scale problems shall be dealt with opportunely.  
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1 INTRODUCTION 

The hybrid boundary element method (HBEM ) was introduced in 1987 (Dumont, 1987, 1989) 

on the basis of the Hellinger-Reissner potential (Reissner, 1950), as a generalization of Pian's hybrid 

finite element method (Pian, 1964). The formulation requires evaluation of integrals only along the 

boundary and makes use of fundamental solutions (Green's functions) to interpolate fields in the 

domain. Accordingly, an elastic body of arbitrary shape may be treated as a single finite macro-

element with as many boundary degrees of freedom as desired. In the meantime, the formulation has 

evolved to several application possibilities, including time-dependent problems, fracture mechanics, 

some special cases of non-homogeneous materials, and gradient elasticity (Dumont and Oliveira, 

2001; Dumont, 2003; Dumont and Lopes, 2003; Dumont et al, 2004; Wagner et al, 2004; Dumont 

and Huaman, 2010). The original method makes use of a flexibility matrix *F , for which evaluation 

of integrals along the entire boundary is required. A simplified, although equally accurate, version 

of the HBEM was proposed about a decade ago (Dumont and Chaves, 2001). This simplified hybrid 

boundary element method (SHBEM) makes use of a displacement matrix *
U  that is obtained 

directly from the fundamental solution, with which the time-consuming evaluation of *F  is 

circumvented. It is shown that, with the SHBEM, the evaluation of the single-layer potential matrix 

G  of the conventional, collocation boundary element method (CBEM) is also no longer necessary. 

The double layer potential matrix H  of the CBMs is an integrant part of both the HBEM and the 

SHBEM (Dumont, 2010a). The present paper proposes a still more simplified version of the 

SHBEM, in which the coefficients of the matrix H  may also be obtained with almost no need of 

integration. For this sake, one resorts to a matrix *T  of traction forces related to the fundamental 

solution of the problem (Dumont et al, 2009; Dumont and Oliveira, 2010). The method is adequate 

for large problems in the frequency-domain, for which a repetitive evaluation of matrix coefficients 

may be carried out more economically. The method is particularly applicable to problems that 

require complicated fundamental solutions, as for axisymmetric problems and in the gradient 

elasticity. The paper presents the concepts involved in this novel method and brings some numerical 

examples to assess its efficiency.  

The formulations are presented for static problems and linear elastic isotropic materials, although 

the simplified proposition of the paper is particularly advantageous for problems involving time, 

eventual non-homogeneities and complicated fundamental solutions, in general. One introduces in 

Section 2 the basic equations of the problem. Section 3 presents the approximation possibilities of 

the numerical model in terms of displacements, traction forces and stresses. Section 4 deals with the 

consistent formulation of the conventional, collocation boundary element method (Dumont, 1998, 

2010), with the adequate outline of the spectral properties of the matrices that make part of the 

formulation. The simplified hybrid boundary element method is outlined in Section 5 as briefly and 

objectively as possible. Finally, an expedite version of the simplified hybrid boundary element 

method is proposed in Section 6, which goes toward a meshless formulation. This expedite 

formulation is in fact a simplification of both the hybrid, variationally-based and the conventional 

boundary element methods - a conceptual unification of these methods. The formulation is 

completely justified in terms of virtual work statements and of linear algebra properties of the 

resultant matrices. An example of numerical applications to two-dimensional potential problems is 

shown in Section 7. 

2 BASIC EQUATIONS OF ELASTOSTATICS 

One is concerned with the three-dimension (3D) static, small displacement analysis of an elastic 

body. Potential problems as well as two-dimension (2D) elasticity problems are particular cases. 

Degenerated problems such as in the analysis of beams and plates require special equations of the 

continuum, but end up with similar nodal equations and similar matrix spectral relations. Problems 

dealing with symmetries and anti-symmetries are not directly comprised by the present 

developments, but may be taken into account with some minimal conceptual changes (Dumont and 
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Alves, 2002; Oliveira and Dumont, 2009). The present development is intended to be representative 

of a wide class of problems, including anisotropy, non-homogeneity, strain gradient elasticity, 

multifield materials and coupled problems, provided only that the fundamental solutions are 

available (Qin, 2007). 

For notation conciseness, the arguments x, y, z  of the functions are omitted, in general. Indicial 

notation is used, with subscripts ,i j  assuming values 1, 2 or 3, as referred to global coordinates 

x, y, z , respectively. A subscript after a comma denotes derivative with respect to the corresponding 

coordinate direction. Repeated subscripts indicate summation. Arrays of constants are also referred 

to without subscripts, using bold-face, capital letters for matrices and bold-face, lower letters for 

vectors. 

Let an elastic body be submitted to body forces b
i
 in Ω , to traction forces 

i
t  on part σΓ  of the 

boundary and to displacements iu  on the complementary part uΓ .  

The exact stress solution 
ij

σ  of the elastic body satisfies the equilibrium equations 

 
, 0

in
ji j i

ji ij

bσ

σ σ

+ = 
Ω

= 
 (1) 

 on
ji j i

t σσ η = Γ  (2) 

where 
j

η  are the cosine directors, the projections of the unit normal on Γ  facing outward. 

The exact displacement solution 
i

u  satisfies the compatibility equation: 

 on
i i u

u u= Γ  (3) 

Stresses and displacements are related by means of the elastic tensor 
ijkl

C : 

 ,
ij ijkl kl ijkl k l

C C uσ = ≡ε  (4) 

In this equation, strains are defined for small displacements as ( ), , 2kl k l l ku u= +ε . The elastic 

tensor is symmetric: ijklC  = jiklC  and ijklC  = ijlkC , as a result of the symmetry of both ijσ , Eq. (1), 

and klε ; moreover, ijklC  = klijC , as obtained from the principle of superposition of effects (Betti's 

reciprocal theorem). 

3 APPROXIMATE REPRESENTATION OF DISPLACEMENTS, STRESSES AND 

TRACTION FORCES 

Several numerical models are developed in this paper with basis on different, although 

correlated, assumptions. In the following, one introduces approximation possibilities for 

displacements and traction forces along the boundary - initially without any reference to some 

specific numerical discretization method. A stress field representation in the domain is also 

proposed, which may play the role of either weighting functions or actual stress approximations, 

depending on the numerical model.  

The displacements are approximated only along the boundary, in the frame of an external 

reference system, as nodal displacements together with equivalent nodal forces shall ultimately 

build up stiffness - or stiffness-like - matrices according to which boundary restrictions are imposed 

and the problem is solved. The boundary traction forces may also be approximated in terms of 

Lagrangian multipliers - from which comes the name in this paper of an auxiliary reference system. 

The stress field is modeled by means of fundamental solutions - with no relation to the boundary 

conditions. This is the reason why such a stress representation is referred to as in an internal system.  
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3.1 Boundary displacement and geometry approximation - the external reference system 

The displacements iu  are approximated along Γ  by d

iu  given as 

 ond

i in n
u u d= Γ  (5) 

where inu  are polynomial interpolation functions with compact support and [ ]
dn

nd= ∈d ℝ  are nodal 

displacement parameters. The superscript d  denotes displacement approximation. The index i  

refers to the coordinate directions whereas the index n  refers to any of the d
n  displacement degrees 

of freedom of the problem (thus denoting both location and orientation), for nodes adequately 

distributed along the boundary Γ . 

Evaluated at nodal points, the interpolation functions 
in

u  present the property 

 
in in

u δ≡  (6) 

in terms of the generalized Kronecker delta: 

 
1 if and  refer to the same degree of freedom

0 otherwise
in

i n
δ


= 


 (7) 

Equation (5) holds along 
u

Γ , in particular, according to Eq. (3) 

 on
i in n u

u u d= Γ  (8) 

where 
n

d  are nodal values of 
i

u . 

Moreover, one introduces a matrix [ ]
d r

n n

ns
W

×= ∈W ℝ , whose columns form an orthogonal basis 

of the nodal displacements d  of Eq. (5) related to rigid body displacements of the elastic body 

comprised by the closure of the finite domain Ω . The number r
n  of rigid body displacements is 

equal to 3 or 6, for general 2D or 3D elasticity problems, respectively (or equal to 1, if particularized 

to potential problems); it depends on the specific problem under analysis and particularly on 

symmetry issues. T
W W  is the identity matrix of order r

n , and T
WW  is an idempotent matrix of 

order d
n  and rank r

n . T
WW  is invariant, i. e., it does not depend on particular choices of the 

normal basis W . Rigid-body displacement functions r

is
u  are defined in Ω  and normalized in such a 

way that the values of r

is
u  and 

ns
W  coincide at the nodal points: 

 onr

is in ns
u u W= Γ  (9) 

The boundary geometry is approximated from the nodal attributes using the same interpolation 

functions 
in

u  of Eq. (5), which consists in an isoparametric representation of the problem, exactly as 

in the displacement finite element method. 

3.2 Boundary traction-force approximation - an auxiliary reference system 

As required in the conventional boundary element method, the traction forces 
i

t  are 

approximated along Γ  by t

i
t  given as 

 
( )

on
att

i it u t
J

J
= Γ

ℓ

ℓ

ℓ
 (10) 

where 
i

u
ℓ
 are polynomial interpolation functions with compact support and [ ]

t
n

t= ∈t
ℓ
ℝ  are 

traction-force parameters. The superscript t  stands for traction-force approximation. The index i  

refers to the coordinate directions whereas the index ℓ  refers to any of the t
n  traction-force degrees 
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of freedom of the problem (thus denoting both location and orientation), for nodes adequately 

distributed along boundary segments of Γ . The interpolation functions 
i

u
ℓ
 have the same properties 

of 
in

u , as presented in Eqs. (6) and (7). Eq. (10) holds as 
i i
t u t=

ℓ ℓ
 along σΓ , in particular, according 

to Eq. (2). Equation (10) introduces a novel, slight improvement, as compared with the traditional 

boundary element implementation: 
( )at

J
ℓ

 is the value at the nodal point ℓ  of the Jacobian of the 

global-to-natural coordinate transformation and the term 
( )at

J J
ℓ

 features a term in the 

denominator that cancels with the term of the infinitesimal boundary expression d d dJ ξ ηΓ = . 

This simplifies the numerical integration of terms related to traction forces along curved boundary 

segments (Dumont, 2010b). 

The numbers of degrees of freedom for traction forces t
n  and displacements d

n  are not 

necessarily the same, since one may need a sufficient number of traction-force parameters to 

represent traction discontinuities along the boundary, generally at nodes where adjacent boundary 

segments present different outward normals (Dumont, 2010). (The use of either double nodes or of 

discontinuous elements is deemed a conceptually inferior technique~\cite{Katori94}). Then, it 

results that t d
n n≥ , in general, as t

ℓ
 in Eq. (10) are traction-force attributes on boundary segments, 

whereas 
n

d  in Eq. (5) are displacement attributes at nodal points. (The latter are always uniquely 

evaluated at a nodal point, except in the particular case, not dealt with in the present outline, of the 

discretization of a crack tip.) The fact that t d
n n≥  leads to some rectangular matrices, which may 

be nevertheless dealt with adequately in the formulations to be outlined in Sections 4 and 7 

(Oliveira, 2004}. 

3.3 Field stress approximation in terms of fundamental solutions - the internal reference 

system 

An approximate field stress solution s

ijσ  of the partial differential Eq. (1) is formulated as the 

superposition of two terms, 

 ins p p

ij ij ij ijm m ijpσ σ σ σ σ∗ ∗ ∗= + = + Ω  (11) 

The superscripts s , p  and ∗  stand for stress, particular and fundamental solutions, respectively. 

The present assumption is primarily stated for a stress field, from which a displacement field is 

subsequently derived, as shown in the following, and initially applied as weighting functions, in 

Section 4. 

In the above equation, p

ijσ  is an arbitrary particular solution of Eq. (1), 

 , 0 inp

ji j ibσ + = Ω  (12) 

and ijσ ∗  is expressed as a sum of homogeneous, fundamental solutions
1
, such that 

 , , 0 inji j jim j mpσ σ∗ ∗ ∗= = Ω  (13) 

where [ ]
d

n

m
p

∗ ∗= ∈p ℝ  are force parameters and ijmσ ∗  are fundamental solutions with global support 

and analytical in Ω , which are liable to be interpreted, depending on the context, as weighting 

functions, but also as interpolation, approximation or trial functions (the latter three adjectives are 

interchangeable). Although omitted in the paper, the arguments of the fundamental solutions are 

( , , )
M M M

x x y y z z− − − , where ( , , )
M M M

x y z  is the source point - at which the point force 
m

p
∗  is 

                                                           
1
 They are also called Green's functions, which are more precisely (usually singular) fundamental solutions chosen in 

such a way that some stress or displacement boundary conditions are satisfied as a premise. The denomination 

fundamental solution may be used in the widest sense, also applied to a non-singular solution. 
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applied - and ( , , )x y z  is the field point where the effect of 
m

p
∗  is evaluated. 

It is worth remarking that the number of force parameters, d
n , is chosen - not coincidentally - as 

precisely the number of nodal displacement parameters 
n

d  in Eq. (5). Moreover, the force 

parameters 
m

p
∗  of Eq. (11) are defined as point forces that may perform positive (virtual) work on 

the corresponding nodal displacement 
m

d  of Eq. (5). This premise, borrowed from the traditional 

boundary integral developments, is crucial to the present outline. 

Equation (13) leads to 

 , 0 injim jσ ∗ = Ω  (14) 

The fundamental solutions jimσ ∗  are analytical in the domain of interest, but singular just outside 

Ω , more precisely at points of application of 
m

p
∗  distributed along Γ : 

 0, 0 injim j im extσ ∗ +∆ = Ω = Ω ∪ Ω  (15) 

This is the usual expression found in the literature on boundary integral equations, except that, for 

clarification of concepts, one sometimes uses herein the extended domain 0ext
Ω = Ω ∪ Ω , where 0Ω  

is understood as a set of infinitesimally small, closed regions containing each point of singularity. 

im
∆  is the pulse function, which has zero value everywhere in the domain, except for the vicinity of 

the point of application of 
m

p
∗ , where it tends to infinity, although with a finite value, when 

integrated over the open domain (see Figure 1). It is convenient (but not compulsory) to normalize 

im
∆ , as defined in the following. 

For a domain 
ext

Ω  comprising a singularity, 

 
1 if and refer to the same degree of freedom

d
0 otherwiseext

im im

i m
δ

Ω


∆ Ω = = 


∫  (16) 

with 
im

δ  defined as in Eq. (7). Thus, 
m

p
∗  in Eq. (11) has the meaning of a unit point force applied at 

a nodal point on Γ , just outside Ω  but infinitely close to it, with m  characterizing both a geometric 

location and a direction. For problems of elasticity, jimσ ∗  is the stress expression of Kelvin's solution 

(Brebbia et al, 1984), on which the conventional boundary element method relies. The similarity of 

representations of displacements ond

i
u Γ , with Eqs. (5) and (7), and of ijσ ∗  in Ω , with Eqs. (11) 

and (16), is not a coincidence but rather a key concept that should deserve more explicit 

appreciation in the technical literature. 

The elastic body is comprised by Ω , the actual domain of interest, and there is in principle no 

need to invoke the extension 
ext

Ω . The singularity explicitly expressed by 
im

∆  in Eq. (15) is a 

feature to be welcome not only in the frame of an integral statement but also in the present 

variational developments, as this will assure that the resulting equation systems are well 

conditioned. 

The displacements corresponding to the stresses s

ijσ  are defined as 

 * *( ) ins p r p r r p

i i i i im m i is s im is sm m i
u u u u u p u u c u u C p u

∗ ∗ ∗= + + = + + ≡ + + Ω  (17) 

where 
i

u
∗  and p

i
u  are analytical displacement fields uniquely obtained - except for arbitrary rigid 

body displacements r

i
u  - from the stress fundamental solution ijσ ∗  given in Eq. (11) and from the 

body force particular solution p

ijσ  of Eq. (12), respectively. The vector of constants [ ]
r

n

s
c= ∈c ℝ  is 

in principle arbitrary. The equivalent representation shown above, in terms of an arbitrary matrix of 
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constants [ ]
d r

n n

sm
C

×= ∈C ℝ  that multiplies *p , may become convenient in some of the following 

developments. 

 

ηηηη
�

1=∗
p

Γ

Ω

Γ

Ω

ηηηη
�

p

p

 
Figure 1: Scheme of a finite domain Ω  and of the complementary, unbounded domain Ω , with respective 

integration orientations.  

3.4 Some matrix relations that may become useful 

Boundary approximation of the particular solution. As proposed for the sake of simplifying 

notation (Dumont, 2003), given a sufficiently refined boundary mesh, the displacements p

i
u  and the 

traction forces p

i
t  related to an arbitrary particular solution of the non-homogeneous governing Eq. 

(1), whenever available, can be approximated accurately enough by nodal displacement parameters 

[ ]
d

p p n

n
d= ∈d ℝ  and traction force parameters [ ]

t
p p n

t= ∈t
ℓ
ℝ , respectively, in terms of the 

interpolation functions of Eqs. (5) and (10):  

 onp p

i in n
u u d≈ Γ  (18) 

 onp p

i i
t t t≈ Γ

ℓ ℓ
 (19) 

One assumes with the above equations that a particular solution for the domain forces 
i

b  in Eq. 

(1) is known in terms of displacements p

i
u  and stresses p

ijσ . The means to obtain such particular 

solutions other than in close form are not discussed herein (see, for instance, Partridge et al, 1992).  

Virtual-work representation of equivalent nodal forces. Moreover, it is sometimes advisable 

to think of the boundary traction forces as expressed in terms of equivalent nodal forces 

[ ]
d

n

m
p= ∈p ℝ  that come up from the virtual work statement: 

 
Tor

m m m im i

m m

d p d u t d t

p L t

δ δ
Γ

= Γ

⇒ = =

∫
p L t

ℓ ℓ

ℓ ℓ

 (20) 

where [ ]
t d

n n

m
L

×= ∈L
ℓ

ℝ , whose transpose performs an equilibrium transformation, is 

 
m i im

L t u d
Γ

≡ = Γ∫L
ℓ ℓ

 (21) 

4 THE CONVENTIONAL BOUNDARY ELEMENT METHOD 

The matrix equation of the conventional, collocation boundary element method (Brebbia et al, 
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1984) may be expressed from a minimum residual statement or, equivalently, directly from the 

Somigliana's identity in order to correlate boundary displacement and traction-force parameters 
n

d  

and t
ℓ
, as introduced in Eqs. (5) and (10) under the premise of Eqs. (2) and (3), such that Eq. (1) is 

best satisfied:  

 

( ) ( )

d , d

d d

m jim j in jim j in n

r r

m im sm is i m im sm is i

p u u d

p u C u t t p u C u b

δ σ η σ

δ δ

∗ ∗ ∗

Γ Ω

∗ ∗ ∗ ∗

Γ Ω

 Γ − Ω
 

   = + Γ + + Ω
   

∫ ∫

∫ ∫ℓ ℓ

 (22) 

The weighting function is a virtual field that is in equilibrium in Ω , thus a variation of s

ijσ  in Eq. 

(11) expressed in terms of 
m

pδ ∗ . The variation of the field displacements s

i
u  in Eq. (17) also enters 

in the expression, which leads to two terms with the matrix 
sm

C  of rigid body displacements. The 

presence of 
sm

C  together with the use of the set of virtual forces 
m

pδ ∗  make the above expression a 

consistent statement that is not usual in the literature (Dumont, 1998, 2010). 

Since 
m

pδ ∗  is arbitrary, Eq. (22) leads to the matrix expression 

 = + +Hd Gt b ε  (23) 

As it is developed in the sequence, this equation establishes displacement compatibility in terms of a 

set of equivalent nodal displacements * *[ ]
d

n

m
d= ∈d ℝ  over which the force parameters *p  may 

perform virtual work, where [ ]
d d

n n

mn
H

×= ∈H ℝ  in the product Hd  is a kinematic transformation 

matrix, [ ]
d t

n n

m
G

×= ∈G
ℓ
ℝ  in the product Gt  is a flexibility-like matrix (that is in general 

rectangular, as proposed) and [ ]
d

n

m
b= ∈b ℝ  is a vector of nodal displacements equivalent to the 

applied body forces. The formal definition of these matrices is 

 *

mn jim j in
H u dσ η

Γ
= Γ∫  (24) 

 *

m i im
G t u d

Γ
= Γ∫ℓ ℓ

 (25) 

 d
m im i

b u b
∗

Ω
= Ω∫  (26) 

 d dr r

m is i is i smu t t u b C
Γ Ω

 = Γ + Ω
 ∫ ∫ℓ ℓ

ε  (27) 

The double-layer and single-layer potential matrices 
mn

H  and 
m

G
ℓ
 comprise in their definition 

singular and improper integrals, respectively, when source ( m ) and field (either n  or ℓ ) indexes 

refer to the same nodal points. Then, special care must be taken in the numerical integrations. If the 

integration of 
mn

H  is represented as carried out along 
ext

Γ , in the frame of the outline presented 

with respect to Eqs. (15) and (16), a term 
mn

δ  is naturally accrued (Dumont, 2010b). One is 

obviously taking into account the singularity present in Eq. (24), which presupposes adequate 

evaluation in terms of a Cauchy principal value. The representation of Eq. (24) is the simplest 

possible way, with any singularity being an issue to be dealt with mathematically. 

The latter term in Eq. (23), as presented in Eq. (27), corresponds to residuals whose magnitude 

depends on the amount of rigid body displacements that are always implicit in the fundamental 

solution, Eq. (17), as well as on how refined the boundary has been discretized, that is, how 

accurately the boundary traction forces approximated according to Eq. (10) are in equilibrium with 

the applied domain forces 
i

b  (then, the term in brackets is equal to zero only if the traction forces 

i
t t
ℓ ℓ

 on Γ  exactly reproduce the analytical solution of the problem). However, the vector of 

residuals ε  is usually disregarded in the implementations shown in the literature, or sometimes used 

as a measure of convergence of the numerical model. A consistent numerical model must take this 
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term explicitly into account (Dumont, 2010). 

This specific issue has already been the subject of a thorough theoretical investigation (Dumont, 

1998). The main results are briefly outlined in the following, also introducing a - not necessary, 

however convenient - simplification related to the particular solution term 
m

b  of Eq. (26), as already 

alluded to with Eqs. (18) and (19).  

The vector of residuals ε  in Eq. (27) may be written as 

 ( )T T p= −C R t tε  (28) 

where [ ]
t r

n n

s
R

×= ∈R
ℓ
ℝ  is defined as 

 dr

s is i
R u t l

Γ
= Γ∫ℓ ℓ

 (29) 

and the product T p
R t  comes from the approximation  

 d d dr r p r p

is i is ji j is i
u b u u u tσ η

Ω Γ Γ
Ω = − Γ ≈ − Γ∫ ∫ ∫ ℓ ℓ

 (30) 

whenever a particular solution for the body force problem, as stated in Eq. (12), is available. By the 

same token, the vector 
m

b  of equivalent nodal displacements, introduced in Eq. (26), may be 

approximated as developed in the following: 

 * *d dp p p

m im i im ji j jim j i im i
b u b u u d uσ η σ η δ∗

Ω Γ Γ
= Ω = − Γ + Γ +∫ ∫ ∫  (31) 

 p p

m m mn n
b G t H d⇒ ≈ − +

ℓ ℓ
 (32) 

Then, making use of Eqs. (28) and (32), a convenient way of expressing Eq. (23) is  

 ( ) ( ) ( )T Tp p− = + −H d d G C R t t  (33) 

One identifies in Eq. (28), as supported by other linear algebra manipulations (Dumont, 1998), that 

the columns of the matrix R  span the space of inadmissible traction forces p−t t  in Eq. (33) that 

cannot be transformed. Then,  

 ( )T T T T 1( )−+ = ⇒ = −G C R R 0 C GR R R  (34) 

which leads to the consistent boundary element equation  

 ( ) ( ) ( )p p p

a Z

⊥− = − ≡ −H d d G t t GP t t  (35) 

where 
a Z

⊥≡G GP  is the admissible part of G  and  

 T 1 T T( )
Z Z

⊥ −= − = − = −P I P I R R R R I ZZ  (36) 

is the orthogonal projector onto the admissible space of the traction forces, which comprises the 

subsets of tractions forces that are in balance and can therefore be transformed into equivalent nodal 

displacements. For the sake of convenience, one introduces the orthogonal basis Z , such that 
T =Z Z I , to represent the subspace spanned by the columns of R . One observes that, from Eqs. (9) 

and (21), 

 =R LW  (37) 

which means that, from Eq. (20), 

 T T= ⇔ =W 0 Rp t 0  (38) 

Moreover, one checks the consistency of Eq. (35) in terms of the spectral properties 

 ( )
a

N= ⇒ =W H G Z 0  (39) 
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whenever the elastic body is liable to rigid body displacements, which means that unbalanced 

traction forces are filtered from the compatibility equation. This is, however, not a fully consistent 

equation system, as the conventional boundary element method is not based on a variational 

principle and redundantly approximates via Eqs. (5) and (10) displacements and traction forces 

along Γ . This lack of full consistency is reflected by the fact that, given V  as the null space of TH , 

 T( )N= ⇒V H
T 0

a
=V G  (40) 

in Eq. (35), although  

 T 0
a

→V G  (41) 

with increasing mesh refinement. 

The inconsistent Eq. (23), obtained by just neglecting ε  as usually presented in the literature, as 

well as the Eq. (33), in which one neglects C , may be expressed as a compact system of equations 

in the shape 

 =Ax y  (42) 

where the vector x  gathers all the unknown coefficients of d  and t , y  is a vector of known 

quantities and the (non-symmetric) square matrix A  is obtained by adequately stacking the columns 

of H  and G  corresponding to the unknown coefficients. If one is lucky (as it seems to occur in the 

applications displayed in the literature), G  is a full rank matrix and A  is well conditioned. 

However, there is an in principle uncontrolled amount of rigid body displacements implicit in the 

term *

im
u  of Eq. (42), so that the good conditioning of A  cannot be assured beforehand (Rencis et 

al, 1995).  

On the other hand, if one introduces the concept of an admissible matrix 
a

G , as in Eq. (35), one 

assumes full control of the condition of 
a

G : it is not full rank and ( )T

a a
N ≈G G V . This is 

auspicious news, since a singularity can be better handled than a quasi-singularity. However, one 

must prevent oneself from just trying to write Eq. (35) in the shape of Eq. (42), since now the matrix 

A  would be definitely ill conditioned. On the other hand, if one adds to Eq. (35) the restriction that 

( )p− =R t t 0 , according to Eq. (38), a system in the shape of Eq. (42) can be obtained and 

consistently solved in the frame of generalized inverse matrices.  

4.1 Evaluation of a stiffness matrix 

Instead of solving a problem in terms of the transformed system of Eq. (42), one may need to 

obtain a formulation in terms of a stiffness-type matrix, 

 ( ) ( )p p− = −K d d p p . (43) 

The matrix K  is obtained by solving for ( )p−t t  in Eq. (35) in terms of either 
a

G  or G , and 

also resorting to TL  defined in eqn (24). A first possibility is 

 ( )
1T

inconsistent

−
=K L L GL H , (44) 

where ( )
1−

L GL  is a {1, 2, 3}-inverse of G  (GL  supposedly well conditioned). There are several 

other possibilities, also in terms of a {1, 2, 3, 4}-inverse of G  (Oliveira, 2004). 

However, the only fully consistent formulation stemming from Eq. (35) is 

 ( )
1

T T

consistent R a

−⊥= +K L P L G L WW H  (45) 
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The solution of Eq. (35) in whichever format is not the main concern of the present 

developments (Dumont, 2010b). This Section was devoted to establishing the conventional 

boundary element method in the most consistent way possible, as a means to further outline the core 

concepts of this paper.  

Before doing that, however, one must outline as briefly as possible the main features of the 

simplified boundary element method, which is the subject of the next Section. 

5 THE SIMPLIFIED HYBRID BOUNDARY ELEMENT METHOD 

5.1 A brief introduction with reference to the hybrid boundary element method 

The hybrid boundary element method (HBEM) was introduced about two decades ago on the 

basis of the Hellinger-Reissner potential, as a generalization of Pian's hybrid finite element method 

(Pian,1964; Dumont, 1987; Dumont, 1989). The formulation requires evaluation of integrals only 

along the boundary and makes use of fundamental solutions to interpolate fields in the domain. 

Accordingly, an elastic body of arbitrary shape may be treated as a single finite macro-element with 

as many boundary degrees of freedom as desired. The original method makes use of a flexibility 

matrix *F , for which evaluation of integrals along the entire boundary is required. 

A simplified, although equally accurate, version of the HBEM was proposed about a decade ago 

(Dumont and Chaves, 2001). This simplified hybrid boundary element method (SHBEM) makes use 

of a displacement matrix that is obtained directly from the fundamental solution, with which the 

time-consuming evaluation of *F  is circumvented. In either formulation, submatrices about the 

main diagonal cannot be obtained by mathematical means: their evaluation requires the use of 

spectral properties related to either rigid-body displacements or simple displacement configurations.  

This paper presents new theoretical developments that provide a solution that seems definitive 

and completely general. As outlined in Sections 5.3 and 5.5, the SHBEM relies basically on a virtual 

work statement and on a displacement compatibility equation. The key improvement has consisted 

in correctly applying a contragradient theorem, as in Section 5.6, to derive simple relations that are 

generally valid and can successfully substitute for the spectral properties that have been initially 

proposed. Actually, the hybrid virtual work principle of Section 5.3 had been identified since the 

onset of the SHBEM, but its application possibilities have not been visualized until recently. Now, 

once some simple stress or strain cases are identified as inherent to a given problem, it is always 

possible to find a set of linearly independent analytical solutions to provide sufficient equations for 

the evaluation of the still unknown coefficients, regardless of topology and spectral properties.  

5.2 Stress and Displacement assumptions 

Two independent trial fields are assumed, according to the hybrid methodology proposed by 

Pian. The displacement field is explicitly approximated along the boundary by d

iu , exactly as 

proposed in Section 3.1, in the external reference system of the numerical problem. An independent 

stress field s

ijσ , where ()s  stands for stress assumption, is given in the domain in terms of a series of 

fundamental solutions *

ij mσ  with global support, multiplied by point force parameters *p  applied at 

the same boundary nodal points m  to which the nodal displacements md  are attached, also exactly 

as proposed in Section 3.3 - this is the internal reference system of the numerical problem. 

Displacements s

iu  are obtained from s

ijσ  as in Eq. (17). Then, differently from the conventional 

boundary element method, one makes use of fundamental solutions as trial functions - not just 

weighting functions. Moreover, no assumptions are made on the traction-force behavior along Γ .  

The Hellinger-Reissner potential, based on the two-field assumptions of the latter Section, as 

implemented by Pian (1964) and generalized by Dumont (1989), leads to two matrix equations that 

express nodal equilibrium and compatibility requirements. In the following simplified 

developments, the same equilibrium matrix equation is obtained in terms of virtual work (which is a 
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variational approach), but the set of compatibility equations is obtained by direct evaluation of 

displacements at the boundary nodal points (which is non-variational). 

5.3 A displacement virtual-work statement 

The equilibrium of forces acting on the elastic body, according to Eqs. (1) and (2), may be 

weakly enforced by 

 , d d ds d d d

ij i j i i i iu b u t u
σ

σ δ δ δ
Ω Ω Γ

Ω = Ω + Γ∫ ∫ ∫  (46) 

since s s

ij j iσ σ= . Integrating by parts the term at the left-hand side of Eq. (46), applying Green's 

theorem, and, finally, substituting for s

ijσ  and d

iu  according to Eqs. (11) and (5) (also observing that 

0d

iuδ =  on uΓ ) leads to the expression 

 * * *

,d d d dp

n ijm j in ijm j in m n i in ij j ind u u p d t u uδ σ η σ δ σ η
Γ Ω Γ Γ

   Γ − Ω = Γ − Γ
   ∫ ∫ ∫ ∫  (47) 

Then, for arbitrary nodal displacements ndδ  one obtains the matrix equilibrium equation 

 * T *orp p

mn m n n
H p p p= − = −H p p p  (48) 

where TH  is an equilibrium transformation matrix, the transpose of the same double-layer potential 

matrix that has already been introduced in the frame of the conventional boundary element method 

of Section 4. Recall that the domain integral of Eq. (47) is actually void, since *

ijmσ  are fundamental 

solutions and the domain Ω  excludes the points of singularities of the point forces *

mp . Moreover, 

[ ]
dn

np= ∈p ℝ  and [ ]
dp p n

np= ∈p ℝ , where  

 d
n i in

p t u
Γ

= Γ∫  (49) 

 dp p

n ji j in
p uσ η

Γ
= Γ∫  (50) 

are vectors of nodal forces that are equivalent, in terms of virtual work, to the applied traction it  

forces on the boundary and to the particular stress solution p

ijσ  for the domain forces ib . 

Equation (48) is fully consistent, as, according to the spectral properties of H  already given in 

Eq. (39), only balanced equivalent forces p−p p  can be transformed into a vector subset *p  that is 

related to a plain state of deformation, that is,  

 T  ( )p− =W p p 0  (51) 

 T * =V p 0  (52) 

In fact, for Neumann boundary conditions, Eq. (48), which is consistent because of Eq. (51) and 

(52), leads to a unique solution for *p  and thus via Eq. (11) to a unique stress state response in the 

domain. 

It is worth noticing that, although Eq. (11) is valid for any *

mp , a subset of *p  in the range of V  

shall yield a stress state that is void within discretization errors (Dumont-1989).  

5.4 A contragradient expression of the displacement virtual-work statement 

The external reference system ( , )d p , with nodal displacements d  introduced in Eq. (5) and 

equivalent nodal forces p  obtained in the frame of the virtual work statement that has led to Eq. 

(48), provides the numerical approximation of the actions along the boundary of the elastic body, 

rigid body displacements and unbalanced forces excluded. For mechanical consistency, the internal 
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reference system * *( , )d p  must approximate the corresponding domain stresses in terms of point 

forces *p , which perform work on equivalent nodal displacements *
d , as defined in the following 

contragradient statement. 

One starts with the virtual work statement 

 *T * T ( )p

V W
δ δ⊥ ⊥= −p P d p P d d  (53) 

for virtual forces *δp  and δp  that are in equilibrium, according to Eq. (48), and consistent with 

Eqs. (51) and (52). Substituting for δp , one obtains, for arbitrary *δp , 

 * *( ) or simply ( )p p

W V

⊥ ⊥− = − =HP d d P d H d d d  (54) 

as the orthogonal projectors W

⊥
P  and V

⊥
P  may be omitted with no harm to the consistency of the 

contragradient statement. This equation is integrant part of the variationally-based hybrid boundary 

element method and might be inferred to in the conventional boundary element method, as well, 

according to Eq. (33) (Dumont, 2003). 

5.5 Nodal Displacement Compatibility 

Application of the Hellinger-Reissner potential leads to, besides Eq. (46), a stress virtual work 

statement that enables writing a set of compatibility equations between nodal displacements d  and 

equivalent nodal displacements *
d  that are related to the internal reference system given in terms of 

fundamental solutions (Dumont and Chaves, 2001).
2
  

Actually, one may dispense with any reference to the Hellinger-Reissner potential and simply 

establish that both eqs. (5) and (17) apply to the boundary nodal points, that is,  

 * * * * * *orp p

n n nm m ns sm m
d d U p W C p− = + − = +d d U p WCp  (55) 

with the introduction of the nodal {\it displacement} matrix * *[ ]
d dn n

nmU
×= ∈U ℝ  and still in terms of 

a matrix C  of rigid body displacements.  

Let * *[ ]
d dn n

u nmuU
×= ∈U ℝ  be a block-diagonal matrix, with all coefficients equal to zero, except 

when m  and n  refer to the same nodal point, in which case *

mu nU  is unknown. One may define a 

difference matrix * * *

e u= −U U U  that has all its coefficients directly obtained in terms of the 

fundamental solution Eq. (55), that is, such that 

 * * *

e u
= +U U U  (56) 

For singular fundamental solutions, the coefficients of *

uU  cannot be directly measured, as the 

singularity points are excluded from the domain Ω . This feature is consistent with the requirement 

                                                           

2
 This set of equations relies on the evaluation of a flexibility matrix 

* *[ ]
d dn n

mnF
×= ∈F ℝ , defined as 

* * dijm j inuσ η
Γ

Γ∫  (and that cannot be evaluated when m  and n  refer to the same nodal point), that enters in the 

equation 
* * =F p Hd  that establishes compatibility in terms of equivalent nodal displacements and such that, for 

consistency, 
* =F V 0 , when dealing with a finite domain. Application of the formulation to the complementary 

unbounded domain Ω  leads to a flexibility matrix 
*

F  such that 
** *+ =F F U , where 

* *[ ]
d dn n

nmU
×= ∈U ℝ  

corresponds to the fundamental solution 
*

imu  measured as nd  at the nodal degree of freedom n  for a unit point force 

*

mp  applied at the nodal degree of freedom m . However, no reference to the developments above are actually needed, 

as outlined in the following, in a framework that is computationally simpler, although no longer primarily related to a 

variational statement.  
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that *

imu  be analytical in Ω . Then, the coefficients of *

uU  can only be obtained by means of some 

global, problem-dependent, assessment of the linear algebra properties of Eq. (55) in conjunction 

with Eq. (48).  

The reasoning of the above paragraph leads to the conclusion that, in a fully variational 

framework, but not as the direct outcome of a variational statement, one is entitled to transform 

point forces *

mp  into nodal displacements nd  by explicitly using the fundamental solution *

imu  as in 

Eq. (55). This has led to the simplified hybrid boundary element method, in which the time-

consuming evaluation of the flexibility matrix *F  of the firstly developed, fully variational hybrid 

formulation could be circumvented.  

Abstracting for the moment that *

uU  is still unknown, one may pre-multiply Eq. (55) by T
W  and 

solve for *Cp  in terms of the problem's primary parameters d  and *p : 

 * T * *( )p= − −Cp W d d U p  (57) 

Applied to Eq. (55), this expression leads to 

 * * ( )p

W W

⊥ ⊥= −P U p P d d  (58) 

with introduction of the orthogonal projector T

W

⊥ = −P I WW . Then, for a finite domain, only 

displacements that are orthogonal to rigid body motions can be transformed between the stress and 

displacement reference systems. 

Assuming that *

uU  is known, it is possible to solve for *p  in Eqs. (48) and (58) and thus arrive at 

a matrix equation solely in terms of d  and p  - with the identification of a stiffness-type 

transformation matrix. However, *

0U  still has to be evaluated in a way that is both computationally 

feasible and mechanically sound. 

5.6 A hybrid virtual work statement 

As introduced in Sections 3.1 and 3.3, d  and *p  are the primary unknowns of the problem, to 

which correspond equivalent nodal forces and displacements p  and *
d , respectively. The quantities 

p  and *p  are interrelated by Eq. (48); d  and *p  are interrelated by Eq. (59). At present, one is 

attempting to find an expression that interrelates the equivalent nodal quantities p  and *
d , for 

reasons that will be soon uncovered. Let a virtual stress state be represented by *δp  and δd , as 

interrelated by Eq. (60). Only admissible subsets of *δp  and δd  actually enter in Eq. (61), as the 

orthogonal projector WP  excludes the participation of any quantities related to rigid body 

displacements (or unbalanced forces). The virtual work ( )δ dW  related to the conjugate 

( ), ( )p

Wδ ⊥ −u P p p  and the complementary virtual work *( )Cδ pW  related to the conjugate 

( )* *,V δ⊥P d p  are given by 

 T( ) ( )p

W
δ δ ⊥= −d d P p pW  (62) 

 * *T *( )C

V
δ δ ⊥=p p P dW  (63) 

In the frame of the present linear elastic problem, ( )δ dW  and *( )Cδ pW  are equivalent. Then, 

the following hybrid virtual work principle holds: 

 T *T *( )p

W V
δ δ⊥ ⊥− =d P p p p P d  (64) 

Substituting for T

Wδ ⊥
u P  according to Eq. (65), one obtains  
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 *T *T *T *( )p

W V
δ δ⊥ ⊥− =p U P p p p P d  (66) 

This expression is valid for any virtual set of point forces *δp  (not just the admissible ones). 

Thus, 

 *T *( )p

W V

⊥ ⊥− =U P p p P d  (67) 

This might be the final expression one is looking for. However, resorting to the contragradient 

Eq. (54), it is possible to arrive at a more convenient equation, 

 *T ( ) ( )p p

W

⊥ − = −U P p p H d d  (68) 

that explicitly relates nodal displacements and equivalent nodal forces without the intervenience of 

the auxiliary set of forces *p , instead of the originally proposed double system of Eqs. (48) and (58)

. The construction of a stiffness relation from Eq. (68) is not addressed in this paper (Oliveira, 

2004). 

5.7 Evaluation of the coefficients about the main diagonal of the matrix 
*

U  

Let [ ]
d an n

msD
×= ∈D ℝ  and [ ]

d an n

msP
×= ∈P ℝ  be two matrices whose columns are nodal 

displacements and equivalent nodal forces that correspond to a number a
n  of simple analytical 

solutions (the superscript a  stands for analytical). Equation (68) must pass a patch test, exactly as 

proposed by Zienkiewicz and Irons (Irons and Ahmad, 1970) in the frame of the displacement finite 

element method. Applying this solution to Eq. (68), one obtains  

 *T =U P HU  (69) 

since W

⊥ =P P 0 , or, for *
U  split as in Eq. (56), 

 *T *T

u e
= −U P HU U P  (70) 

For potential problems, *

uU  is a diagonal matrix. There are 2a
n =  and 3a

n =  simple analytical 

solutions for 2D and 3D potential problems, respectively, as potentials that vary linearly in the 

coordinate directions. For elasticity problems, the non-zero values of *

uU  comprise a block-diagonal 

matrix with 2 2×  and 3 3×  submatrices for 2D and 3D problems, respectively. There are 3a
n =  

and 6a
n =  simple analytical solutions for 2D and 3D elasticity problems, respectively, for 

displacements that vary linearly in the coordinate directions, rigid body rotations excluded. These 

solutions are presented in Appendix A in a more general framework. Then, there are more 

analytical, linear solutions available than unknowns for each row of uncoupled equations 

represented by Eq. (70). The best procedure is to solve for each row in terms of least squares, which 

means that no direction is preferred in the solution and, most important, making sure that the 

resultant matrix of the equation system is always well conditioned regardless of spatial orientation 

of the boundary segments that are adjacent to each nodal point (since the orientation of the boundary 

normal vectors enters in the evaluation of the equivalent nodal forces P . 

It is worth noticing that, for elasticity problems, each row of unknowns of *

uU  in Eq. (70) is best 

solved separately from the remaining rows related to the same node, as there is no mechanical basis 

to enforce that the block-diagonal matrices of *

uU  be symmetric, although *

eU  is symmetric by 

construction - the origin of *
U  in Eq. (55) is not directly related to a variational statement. In fact, 

as tested by Oliveira (2004), numerical results obtained using a coarse mesh do not improve by 

enforcing symmetry of *

uU , although *

uU  tends to become symmetric with mesh refinement. 

Observe also that, owing to the fact that W

⊥ =P P 0  and =HW 0 , no rigid body displacements 

interfere with Eq. (69). 
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5.8 Comparison of the conventional and the simplified hybrid boundary element methods 

Equation (68) may be rewritten by substituting for the equivalent nodal forces according to Eq. 

(20), 

 *T T( ) ( )p p

W

⊥− = −H d d U P L t t  (71) 

and compared with Eq. (35), obtained in the frame of the conventional, however consistent, 

collocation boundary element method, reproduced below: 

 ( ) ( )p p

Z

⊥− = −H d d GP t t  (72) 

Then, the simplified hybrid boundary element method has led with Eq. (71) to an expedite 

expression of the consistent single-layer matrix Z

⊥
GP  of the conventional boundary element method, 

which is in general computationally expensive to be accurately evaluated owing to the improper 

integral term that has to be resolved. The evaluation of the corresponding matrix in Eq. (71) only 

requires the evaluation of the banded matrix L  (which can be stored as a sparse matrix) and of the 

few columns of equivalent nodal forces of the matrix P  in Eq. (69), with all integrations carried out 

in terms of a Gauss-Legendre quadrature. The least-square solution of the series of small uncoupled 

systems of equations in Eq. (70) is rather inexpensive. One observes that, in general, the matrices on 

the right-hand side of Eqs. (71) and (72) are different from each other, particularly in terms of null 

spaces: 

 ( ) ( )*T T

W Z
N N⊥ ⊥≠U P L GP  (73) 

However, it is expected that, if the numerical models represented by Eqs. (71) and (72)converge 

to the idealized mechanical problem with increasing mesh refinement, then it is possible to have a 

boundary mesh refined in such a way that 

 *T T

W Z

⊥ ⊥− ≤U P L GP ε‖ ‖  (74) 

for an arbitrarily small error ε  and any given norm •‖ ‖ . 
It is remarkable how two basically different methods - the conventional boundary element 

method and the simplified-hybrid boundary element method - seemingly converge to the same final 

equations. Nevertheless, the developments of this Section - in terms of virtual work statements, 

contragradient assumptions (or theorems) and a patch test - may be further extended in the direction 

of a more simplified, expedite, formulation of the boundary element method, as shown in the next 

Section. 

The next Section compares concepts of both methods for the evaluation of results at internal 

points and a numerical example is presented. 

6 AN EXPEDITE FORMULATION OF THE BOUNDARY ELEMENT METHOD 

Equation (55) has a variational justification - the hybrid boundary element method applied to a 

finite domain and then to its complementary, unbounded domain[Reference????]. However, this 

equation was introduced as just a plausible assumption that becomes validated both in terms of 

linear algebra consistency of the resultant matrix equations and numerically. One goes one step 

further and assumes that, if Eq. (55) is valid, then one also may evaluate boundary traction forces, 

according to Eq. (2) for the entire boundary Γ , directly from the fundamental solutions of Eq. (11) 

as 

 * *p− =t t T p  (75) 

where * *[ ]
t dn n

mnT
×= ∈T ℝ  is a generally rectangular matrix. This matrix transforms the point force 

parameters *p  of the series of fundamental solutions of the internal reference system into traction 
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forces t  measured at the extremities of the boundary segments adjacent to the nodal points, 

according to the definition of the traction-force parameters of Eq. (10).  

As proceeded in Section 5.7 for dealing with the displacement matrix *
U , let * *[ ]

t dn n

u u mnT
×= ∈T ℝ  

be a block-diagonal matrix, with all coefficients equal to zero, except when m  and n  refer to the 

same nodal point, in which case *

u mnT  is unknown. One may define a difference matrix * * *

e u= −T T T  

that has all its coefficients directly obtained in terms of the fundamental solution Eq. (11), that is, 

such that 

 * * *

e u
= +T T T  (76) 

For singular fundamental solutions, the coefficients of *

uT  cannot be directly measured, as the 

singularity points are excluded from the domain Ω . This feature is consistent with the requirement 

that *

ijmσ  be analytical in Ω . Then, the coefficients of *

uT  can only be obtained by means of some 

global, problem-dependent, assessment of the linear algebra properties of *T  in eq. (75) in 

conjunction with other matrix relations, some of them are still to be introduced.  

In terms of a variational analysis, t  are Lagrangian multipliers that perform virtual work on 

equivalent nodal displacements that are here defined as t
d  (and may be rather difficult to 

understand physically). The conjugate quantities ( , )tt d  represent an auxiliary reference system for 

the deformation state of the elastic body, for numerical discretization schemes as proposed in 

Section 3. Then, one may write the following virtual work statement, for virtual forces δ t  and δp  

that are in equilibrium: 

 T T( ) ( )p t tp

W Z
δ δ⊥ ⊥− = −p P d d t P d d  (77) 

This procedure is in accordance with the ones of Sections 5.4 and 5.6, for a deformed state 

represented in terms of nodal displacements ( )p

W

⊥ −P d d  of the external reference system, which are 

compatible with equivalent displacements ( )t tp

Z

⊥ −P d d  of the auxiliary system (where tp
d  is 

formally defined as equivalent to the domain forces ib ). Substituting for δp  from Eq. (20), one 

obtains, for arbitrary δ t , 

 ( ) ( )p t tp

W Z

⊥ ⊥− = −LP d d P d d  (78) 

On the other hand, it is also possible to relate the equivalent displacements ( )t tp

Z

⊥ −P d d  of the 

auxiliary system to the equivalent nodal displacements *

V

⊥
P d  of the internal reference system, for 

and admissible deformed state, in terms of the virtual work performed by forces δ t  and *δp  that 

are in equilibrium: 

 *T * T ( )t tp

V Z
δ δ⊥ ⊥= −p P d t P d d  (79) 

Substituting for δ t  from Eq. (75), one obtains, for arbitrary *δp , 

 * *T ( )t tp

V Z

⊥ ⊥= −P d T P d d  (80) 

Finally, one substitutes in this equation for *

V

⊥
P d  according to Eq. (54), and for ( )t tp

Z

⊥ −P d d  

according to Eq. (78), thus arriving at 

 *T( ) ( )p p

W

⊥− = −H d d T LP d d  (81) 

Since this equation must be valid for any nodal displacements (rigid body displacements 

included), *T

W

⊥
T LP  is an approximation of H , provided that the still unknown coefficients of *

uT  

are evaluated. One observes that, by construction, *T( ) ( )WN N
⊥ =T LP H . In principle, a simple 
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means to evaluate *

uT  would be by imposing that T * T( ) )(WN N
⊥ =P L T H , which would lead to full 

consistency of Eq. (71). However, as already mentioned in Footnote 2, one can rely on the 

coefficients of V  only for strictly convex domains
3
. 

The best procedure seems to follow the scheme proposed in Section 5.7 and evaluate *

uT  in Eq. 

(81) in the frame of a patch test for a set of simple analytical solutions of the problem. If the 

numerical models represented by Eq. (72) and by using the approximate matrix of Eq. (81) converge 

to the idealized mechanical problem with increasing mesh refinement, then it is possible to have a 

boundary mesh refined in such a way that 

 *T

W

⊥ − ≤T LP H ε‖ ‖  (82) 

for an arbitrarily small error ε  and any given norm •‖ ‖ . 
Before proposing a scheme for the evaluation of *

uT , one is encouraged to move on in the present 

developments by comparing Eqs. (68) and (81), thus writing 

 *T *T( ) ( )p p

W W

⊥ ⊥− = −T LP d d U P p p  (83) 

or, else, making use of Eq. (20) and according to Eq. (71), 

 *T *T T( ) ( )p p

W W

⊥ ⊥− = −T LP d d U P L t t  (84) 

This equation may be compared with Eq. (35) from the conventional boundary element method, 

here repeated once more: 

 ( ) ( )p p

Z

⊥− = −H d d GP t t  (85) 

One concludes that Eqs. (83) and (84) are expedite ways of constructing an equation system that 

circumvents the need of carrying out any singular or quasi-singular integral and in fact requires the 

Gauss-Legendre integration of relatively few coefficients. The application possibilities of the 

equations above to solve a numerical problem is discussed in Section 7. 

It is worth extending the scheme proposed in Section 5.7 and suggesting a means for the 

evaluation of the unknown terms of both *

uU  and *

uT  in one and the same numerical framework. 

One may apply Eq. (83) to a set of deformed states corresponding to a sufficient number a
n  of 

simple analytical solutions, by making use of the split expressions of Eqs. (56) and (76), with the 

unknowns written formally on the left-hand side: 

 *T *T *T *T

u W u e W e

⊥ ⊥− = − +T LP D U P T LP D U P  (86) 

The number of unknown coefficients of *

uU  per row of the resulting uncoupled systems of 

equations derived from equation above is already discussed in the paragraph the follows Eq. (70). 

For a nodal point on a smooth boundary, the unknown coefficients of *

uT  are equal to 1, 2 or 3 for 

potential, 2D or 3D elasticity problems, respectively. Then, the total number of unknowns for *

uU  

and *

uT  per row are respectively 2, 4 or 6, and a sufficient number a
n  of simple analytical solutions 

may be envisaged to construct a system of equations that solves for *

uU  and *

uT  in a least-squares 

sense.  

7 NUMERICAL EXAMPLES 

Figure 2 shows two irregularly shaped domains for which the equations and concepts outlined in 

                                                           
3
 The spectral property just outlined is not sufficient to solve the problem, as 

T *

W

⊥
P L T  is already by construction 

singular. This is related to the impossible task of finding 
*

uU  from Eq. (68) by imposing that 
*

W

⊥ =P U V 0 . 
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this paper shall be tested numerically in the frame of the solution of the 2D Laplace equation. One 

illustrates on the left an irregularly-shaped continuum for a set of five numerical examples, which 

present the same conceptual issues as in an elasticity problem. The mesh shown corresponds to 

examples M2_quad and M2_quadN, with a total of 62 quadratic elements and 124 nodes (46 

elements along the external boundary and 16 elements modeling the hole indicated). There are also 

examples M1_quad and M1_quadN, with the same shapes of examples M2_quad and M2_quadN, 

but with 23 quadratic elements and 46 nodes only along the external boundary (no hole is modeled), 

as well as example M1_lin with the same mesh as before, but comprising 46 linear elements. In the 

examples M2_quad and M1_quad, polynomials 
i

t
ℓ
 are used to build up the matrices G  and L . In 

the examples M2_quadN and M1_quadN, on the other hand, 
i

t
ℓ
 is defined according to eqn (10). 

One is dealing with a non-convex domain, with a pronounced notch (whose tip is node 17 for the 

finer mesh and 9 for the coarse one) and a hole, in case of the finer mesh, comprised by nodes 

numbered 93 through 124. 

On the right, Figure 2 illustrates a quadrilateral continuum made of five cubic elements, with a 

total of 15 nodes, whose corner coordinates are (0, 0), (15, 0), (10, 12) and (0, 12). One of the 

straight edges has a finer mesh, which results in elements of disparate sizes that may lead to some 

accuracy loss of the numerical model. The code implementation was in Maple language using 15 

digits precision. 

Since one did not want to worry about numerical integration issues, eight points were used in the 

Gauss-Legendre quadratures as well as in the quadratures with logarithmic weights, for integrations 

carried out along each boundary segment between two consecutive nodes. A far smaller number of 

integration points would be required - and far better accuracy achieved - if one had employed the 

numerical techniques preconized by Dumont and Noronha (1998). 

 
 

 
Figure 2: Discretization schemes to illustrate six numerical examples.  

 

The primary accuracy check, as shown in the first row of Table 1, concerns the fact that one 

should have =HW 0 , according to Eq. (39). A relative error in terms of the Euclidian norm of 

matrices was established, as follows for the matrix product HW , but similarly used in the 

subsequent rows: 

 

2 2

m

mn n mn n

n nm

H W H W
   
   


=
  

∑ ∑∑ ∑HW  (87) 

 

2 2

max max mn n mn n

n n

H W H W
   
   
  

=


∑ ∑HW  (88) 

1

15

13 7

4
1

124
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××
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The larger errors in the last columns of Table 1 are mainly due to quasi-singularity issues related to 

the elements around corner points and particularly around the notch tip, which could have been 

avoided, if strictly necessary (Dumont and Noronha, 1998). The errors indicated in the first row are 

given as just an estimate of the maximal accuracy one should expect in the subsequent rows of 

results. The second row indicates that the null space of ( )TN=V H , introduced in Eq. (40), could 

be evaluated very accurately. One obtains in the third row that the stiffness-like matrix of Eq. (44), 

although spectrally inconsistent by construction, actually leads to forces that are almost in balance. 

In the fourth row, one evaluates the errors related to the expedite matrix *T TU L  that substitutes for 

the single layer potential matrix G  (in the error norms, obtained similarly to Eqs. (87) and (88), the 

Euclidian norm of G  is used in the denominators). The fifth row shows that the admissible matrix 

a
G  is almost orthogonal to ( )TN H , as one should expect. The same happens with its consistent 

substitute *T T

W

⊥
U P L , as shown in the sixth row, except for the coarse mesh of cubic elements. The 

seventh row deals with the substitute *TT L  of the second layer potential matrix H , in the same way 

as explained for the fifth row, although showing larger relative errors (which is conceptually 

explainable). The last row displays the errors of *TT L  in terms of its orthogonality to ( )TN H , with 

reasonable results even for the coarsest mesh. 

 

 M1_lin M1_quad M1_quadN M2_quad M2_quadN M3_cub 

HW  .239e-10 .223e-10 .223e-10 .565e-7 .565e-7 .222e-7 

max HW  .725e-10 .725e-10 .725e-10 .400e-6 .400e-6 .730e-7 

TH V  .366e-11 .362e-11 .362e-11 .246e-12 .246e-12 .218e-8 

max
TH V  .108e-10 .170e-10 .170e-10 .242e-11 .242e-11 .617e-8 

TK W  .688e-3 .167e-2 .168e-2 .798e-3 .799e-3 .311e-2 

max
TK W  .499e-2 .295e-2 .297e-2 .166e-2 .166e-2 .899e-2 

T T∗ −U L G  .151e-1 .946e-2 .950e-2 .589e-2 .590e-2 .324e-1 

max
T T∗ −U L G  .671e-1 .920e-1 .925e-1 .460e-1 .461e-1 .175 

T

a
G V  .545e-2 .442e-2 .448e-2 .232e-2 .233e-2 .105e-1 

VULP ∗⊥
W  .158e-2 .522e-3 .523e-3 .243e-3 .243e-3 .848e-2 

T∗ −T L H  .132e-1 .810e-2 .809e-2 .166e-1 .166e-1 .202e-1 

max
T∗ −T L H  .120e-1 .118e-1 .118e-1 .533e-1 .533e-1 .190e-1 

T ∗L T V  .488e-2 .324e-2 .324e-2 .255e-2 .255e-2 .548e-2 

 

 
Table 1: Euclidean norms of several matrix products. 

 

One also runs a series of patch tests for a total of ten potential fields applied to the models. Eight 

of them, numbered 1 to 8, are listed as the following four pairs, 
2 2 3 2 2 3 4 4 2 2 3 33 3 6x y xy x y x xy x y y x y x y x y xy− − − + + − − , corresponding to 

linear, quadratic, cubic and quartic fields. The potential fields numbered 9 and 10 correspond to 

ln( ) / 2r π , where r  is the distance to the source points (-5, 2) and (10, 2) marked as two crosses on 

the left of Figure 2. For the coarse mesh with cubic elements, the source points are (-5, 2) and (5, 
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15). The accuracy of the solutions in the frame of the conventional, collocation boundary element 

method - with the inconsistent matrix G  in Eq. (33) - is assessed in the first graphic of Figure 3, for 

all ten potential fields, with corresponding values of d  and t  evaluated analytically (the results 

using 
a

G , as in Eq. (35), are almost indistinguishable from the ones with G ). 

The second graphic in Figure 3 assesses the accuracy of using TL , as given in Eq. (21), to 

evaluate equivalent nodal gradients, for p  directly integrated as d
m im i

p u t
Γ

= Γ∫ . The last graphic 

assesses the accuracy of the ‘stiffness’ system of Eq. (43), where K  is the inconsistent matrix of 

Eq. (44). Numerical results using alternative definitions of K  are almost indistinguishable from 

these ones. 

 The curved parts of the boundaries are very deleterious to the numerical accuracy, 

particularly affecting the error norm T −L t p . One checks that the use of 
i

t
ℓ
 according to Eq. (10) 

significantly improves the problems’ response to constant gradients, in terms of both T −L t p  and 

−Hd Gt , but does not lead to perceptible improvements when testing for higher order gradients. 

However, the simplification achieved with Eq. (10) regarding numerical implementation is per se an 

improvement. Owing to the errors introduced by the approximation 
T≈p L t  for curved boundaries, 

results in terms of −Hd Gt  are in general significantly better than in terms of −Kd p . 

In the first two graphics of Figure 4, the unevaluated coefficients of *
U  and *TT L  are obtained 

through the comparison with results using the matrix H , for constant gradients, as given by Eqs. 

(70) and (81), and then error estimates are given for the applied potential fields. In the third graphic, 

the results using *
U  and *TT L , evaluated as mentioned above, are confronted. Finally, Figure 5 

presents results for the unevaluated coefficients of *
U  and *TT L  obtained without any reference to 

the matrix H , but rather by simply imposing that *T *T min− =T T PLD  for a sufficient number of 

simple potential fields characterized by the conjugate sets ( ),D P  of potentials and equivalent 

gradients. The results enable to conclude that, at least for the most refined mesh and despite curved 

boundaries, accuracy of about three digits is achieved. One observes that, in the outlined expedite 

formulation, the use of 
i

t
ℓ
 as either polynomials or according to Eq. (10) turns out to be irrelevant as 

concerning accuracy, although Eq. (10) leads to simpler code writing and less computational time in 

the evaluation of L . 

8 CONCLUSIONS 

The present developments are an attempt to arrive at a boundary element formulation that is as 

simple as possible and that also requires almost no numerical integrations. The Eqs. (83) and (84) 

are straightforward and effortless to implement and evaluate. They are also the seed of some new 

developments that may at least match the efficiency of the current fast multipole methods. Owing to 

space restrictions, this paper had to be devoted to the outline of the most fundamental concepts and 

to demonstrate - by means of some simple examples - the feasibility of numerically implementing 

such concepts. A second paper is being prepared to outline, as user friendly as possible, the basic 

features of the method as well as the algorithm that leads to the evaluation of 
u

∗
U  and T

u

∗
T L  in 

either Eq. (83) or (84). Focus will also be given to the direct evaluation of results at internal points, 

for which no boundary integrations are required. Work is in progress to implement the expedite 

boundary element method for large scale, time-dependent, 2D and 3D problems. 
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Figure 3: Error norms for three matrix equations from the collocation boundary element method. 
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Figure 4: Error norms for the expedite boundary element methods. 
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Figure 5: Error norms for the ultimate formulation of the expedite boundary element method. 
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