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Abstract. The framework of the Generalized Finite Element et (GFEM) is applied to a
nonconventional Hybrid Stress Formulation (HSF)iagrlinear plane analysis. In the original HSF
two approximation fields are involved: stressesthe domain and displacements on the static
boundary. The main features of the HSF are thastitess field satisfies equilibrium condition ireth
domain, while equilibrium on the common boundabesveen elements is enforced in a weak form.
In the combined GFEM-HSF approach the enrichmethedisplacement boundary field is provided
by the product of the partition of unity (PU) andbasis of polynomials enrichment functions.
Quadrilateral and triangular finite elements witlestive nodal enrichment are then derived. The
numerical performance of the HSF with nodal enriehtrformulation is tested in several examples.
The numerical investigation focuses mainly a sestsitanalysis of the results to mesh distortion.
Relating to this aspect some mesh distortion canditimposed over plane stress beam-bending
benchmarks are addressed. In addition, considdratly computational and numerical aspects, one
conclude that GFEM-HSF can provide good alternative conventional displacement based

formulations for plane linear analysis
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1 INTRODUCTION

This work addresses some recent developments onaheonventional finite elements
formulation for linear plane analysis derived frarHybrid Stress Formulation (HSF) with
nodal enrichment6is and Proenca (2007adndGois (2009a).

In the original HSF proposed iRreitas, Almeida e Pereira (19968)0 independent
approximation fields are involved: stresses in dognain and a displacement field on the
static boundary, i.e., part of the boundary whardase forces are imposed. Due to this
particular feature such nonconventional formulai®typified as Hybrid. An additional basic
feature of the HSF here adopted is that equilibrilmmough common boundaries between
elements is weakly imposed, once the discretizedaiio is considered. In view of this fact,
the non-conventional form is finally referencedaddybrid Stress Formulation (HSF).

On the other hand, the Generalized Finite Elemesthibd (GFEM), originally presented in
Oden, Duarte and Zienkiewicz (1998 essentially a partition of unity (PU) basegraach
involving a nodal enrichment strategy. The enrichtrfeature consists on a p-refinement of
the approximation fields, however without introchgiadditional nodes over an adopted
discretization meshpuarte and Oden (1995T herefore, the nodal strategy differs from the
finite element p-adaptive classical process.

In this work both HSF and a nodal enrichment stpatef the boundary displacement field
are combined generating a new class of finite etgsndor linear plane analysis. One
particular feature of this class of elements isintensitivity to mesh distortion. In order to
emphasize such aspect, distortion sensitivity tesés conducted considering four nodes
quadrilateral HSF elements.

On the other hand, considering the independendkeofpproximation fields provided to
the displacement on the boundary and the stressd#gidomain, the enrichment could be
unconditionally imposed to the boundary displacenfezid. However, such an option is
restricted by stability aspects. Actually, in tetsidy a kind of inspection test controlling the
balance between the number of related stressedigpldcement variables is adopted in order
supply stable and convergent solutions.

On what follows, in section 2 the HSF for planesetaty is addressed. The section 3 is
devoted to the GFEM formulation in the HSF. In s®Btt4 some numerical experiments
related to the distortion sensitivity are presentédally, in section 5 the conclusions of the
present study are given.

2 HYBRID STRESS FORMULATION (HSF) IN PLANE ELASTICITY
Based orfreitas, Almeida e Pereira (1996pnsidering a linear-elastic solid of domaih
and boundary” composed by complementary parts and /,, where kinematic and static

boundary conditions are imposed, respectivelyfahewing Galerkin weighting relations for
the compatibility and equilibrium conditions canwstten:

[ a0"(L'u-fo)de=0 (1)
[ ou"(Lo+b)de=0 ()
Iﬂ du; (T-No)dr =o0. (3)

In Eg. @), Eq. @) and Eg. ) the followingdomain fields are involved: stresgesstrains
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¢ and displacements. In particular, the first relation includes thenstitutive condition as
well. In addition L is the divergence operatdp; the vector of body forcesN the matrix
formed by the components of the unit vector nortoathe boundary ; f the flexibility

matrix for isotropic linear elastic material andthe vector of applied superficial forces/on
Assuming that the kinematic restrictian=0 is strongly imposed oif, and considering
Eq. L) transformed by the Divergence Theorem one oltains

[ a0 tod2+[ (Loo) ud@~| (Noo)' ud™= 0 (4)

Once a finite element mesh is adopted the bounfarfgr hybrid formulation includes the
common inner boundary between elements defined/as Therefore, by definition:

[ =r +r,+7, and Eq. 4) takes the following form:
|, 00" fod@+[ (Loo) ude-| (Noo)' y o -] (Nw) y d=C (5

Here, displacement continuity between elementg pis strongly imposed, implying that

this part of the boundary can be assumed as a Neurnaundary where equilibrium is
verified in a weak form. Then, considering thatréhare no superficial forcds prescribed on

I;, the correspondent weak equilibrium relatioh 5”; (NO’) d/ is added to the Eq3)

and this equation can be expressed as:
jﬂ auy. (No) d/'+J'ri o (No) dr—jﬂmll () d=¢ (6)

Actually, Eq. @), Eq. 6) and Eq. §) correspond to a more general Hybrid-Mixed Stress
Formulation (HMSF) typified by three independemids: stresses and displacements defined
in the domain® and displacements defined on the boundary. In aupéneral framework it
is assumed that the displacements on the bourigaaye prescribed with zero value.

The following approximations for the independertdscould then be introduced:

0=5% (7)
ua=U,q,. ®)
O, =Urq . (9)
u. =U,q, . (10)

In the preceding relationss, represents the vector of nodal stress variablédeqy, ,
q- andq, are vectors of nodal degrees of freedom relatédetalisplacements. Furthermore,
S,, Uy, Uy andU, are respectively the matrices collecting the agipration functions
for stress and displacement fields.

Applying the approximations given by Eq) to Eq. (0) in Eq. @), Eq. 6) and Eq. §),
the following linear system of equations governing HMSF could be deduced:
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F A -A -Alls, 0
A; 0 0 0 qg _ _Q;

-AL 0 0 o [la.[ |]-q[ (1)
-A. 0 0 0 |la 0

In Eq. 1) the following matrices were introduced:

F= jﬂ S S, d2 (12)

A, =] (LS;) Uy de (13)

A =Iﬂ(r\|sﬁ,)T U. d” (14)

A = J'ri(N%)T U. d" (15)

Q, = jgu;bdg. (16)

Q. =| uitdr. (17)

T

The reason to present the general framework oHM&F is that HSF can then be derived
from it assuming that the stress approximationsllpcsatisfy the equilibrium condition.
Moreover, if no body forces are considered thesstrapproximations compose a self-
equilibrated field, thus satisfying:

LS, =0 (18)
Once this condition is assumed, the matriégsand Q,, vanish and Eqg.1{) simplifies to:
FooA ~Als, 0

-A. 0 0 |ig.r=1-Q (19)
-A 0 0 ||g 0

Accordingly, no displacement fields in the domaie mvolved in the HSF approach.
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3 FINITE ELEMENT APPROACH AND NODAL ENRICHMENT IN HSF

/

Figure 1: Domain and boundary elements

The element meshes employed for discretizing dormathboundary regions are indicated
Figure 1 Either four-node quadrilateral elements (Begure 3 or three-node triangular (see
Figure 3 elements can be used in the domain discretizaborthe boundary regions classical
linear elements are defined.

The geometry of the quadrilateral element (B&gire J is built from a master element
using the conventional Lagrangian bilinear funcsiamdicated in Eq.20) to Eq 3).

Domain Element Q

4 3

Q
I 2 y I
Boundary Element I} I ou I,

X

Figure 2: Four-node quadrilateral element

0.(£0)=5(6-1)(7-1). (20)
.(Em)=-4(E+ (-1 @)
o,(Em)=5(E+D)(7+1). 22)
.(60)=-(6-1)(n+1). 23
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In the relations abové and s are the dimensionless coordinates taking valuas fr
1to 1.

The typical triangular element employed is depidgteBigure 3 The normalized triangular
coordinates are defined by Eg4) to Eq. ¢6).

y
3(X5.Y5)
Domain Element Q, Boundary Element FIE” i l"‘c“ ou FUE,_“
y As A, /
/ A 2(x,.v,)
1(x,.v,) '

X

Figure 3: Three-node triangular element

:ﬁ. 24
&= (24)
:_AZ_ 25
gr2 Ab ( )
=13 26
&= (26)

where A, A, and A, are the areas indicated figure 3and A, is for the total area of the
triangle.

The linear Lagrangian linear functions of the bcamdelements attached to the
quadrilateral elements sides are defined in logatdinates as:

Y, = —%(5—1) . 27)

w, :%(5+1). (28)

The local coordinat& varies from -1 to 1.
While for the boundary elements attachethistriangular elements sides one has:
w,=(1-¢). (29)

W, =<. (30)

In this case, the local coordinafevaries from 0 to 1.

As already mentioned the HSF stress field approkona are assumed to be self-
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equilibrated. In this work polynomial Airy functisn(A(x,y)) are adopted to accomplish

that particular feature. Thus, constant, linear angdadratic elementstresses
approximations can be defined:

Constant approximation

1 00
S,={0 10 (31)
0 01
Linear approximation
1 00:y-x 00
S,=/0 1 0. 0 -y (32)
0010 x 0

Quadratic approximation

100 y-x 0 0y —-2xy X 0
S,={0 1070 0-y x/ 0 O y - 2xy ? (33)
00 1-0 y x 0 0 § -2xy X

In order to provide enrichment of the boundary agpnation field, the boundary cloud
concept is introduced. As depictedrigure 1a boundary cloud attached to a node is defined
by the linear elements sharing that node. The lemént of the boundary displacement field
can then be performed following the PU based ambrad the Generalized Finite Element
Method (GFEM), Oden, Duarte and Zienkiewicz (1998n this work, the option for
polynomial enrichment is explored.

Thus, assuming that a two-dimensional domain ha beeshed with HSF four-node
guadrilateral or three-node triangular elements, ftiilowing HSF-GFEM boundary shape
functions can be indicated:

N/ N i .
:'%”— :[{U/—ir}jrzl D{U"jrhjr“er}jrzl r =l N M, = 1""’|( J-)} (34)
The boundary displacement approximation field ¢eamtbe constructed as:
" N/ N,
0-=> U, {ur,»r 204, } | (39)
jr=1 i=1
where U,jr are the displacement approximations (see, &4)) ( u- are the displacement

degrees of freedom associated with the origingbstanctions,d, ; are the additional nodal

i

parameters introduced by the enrichmemy, is for the number of enrichment functions

defined in each index nodg-. Then, the following matrix notation can be usedndicate
the HSF-GFEM shape functions:

U-=U, :[‘/’14'1 ‘//24'2]- (36)
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In the relation aboveé, represents the identity matrix of second order Apjgis given by:

A =1 hyly oo g, by (37)

A final remark is that by convenience the enrichtrfanctionsh, , are adopted in such a

way that they are null at the attached nodes, tlmislestroying the meaning of the original
nodal parameters. Essentially, they are given by:

* X

b, (E7)= (X +9,%) - %, (38)

e (E ’17) = (wl Y+, yz) Y (39)

er

4 NUMERICAL ANALYSIS

In the whole set of examples hereby presentecritiehment methodology was performed
in such a way that the number of stress variabkes always greater than the number of nodal
displacement parameters, including the ones intredilby the enrichment. This procedure
derives from the Zienkiewicz-patch test extended&F with nodal enrichmenGdis and
Proenca (2007aand ensures stability of the numerical results

As the first example, the HSF approach with nodaichment is tested on what concerns
to mesh distortion sensitivity. Two quadrilaterldreents are employed to discretize the two
problems illustrated ifrigure 4 a) a cantilever under pure moment applied atigist edge
and b) a cantilever subjected to action of a sfeae applied at its right edge.

10 10

A
~N D ~ 1100

L. L

Figure 4: Cantilever beam

As the main purpose here is to analyze the numiepedormance of the proposed
approach, for convenience no units for the elgséiameters and dimensions are adopted,
therefore the following values to the Young’s Magkiland Poisson’s ratio, respectively, are
assumedE =1 andv =0.25.

The cantilever mesh is progressively distortedegsated inFigure 5 As can be seen, each
mesh is typified by the distortion parameter)(value. Such a parameter is referenced later in

the graphics of the numerical performance. Theodisin parameter value was calculated by
the rate of the differences between of the cootdsa of the two central nodes and the
cantilever prescribed length.
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Figure 5: Quadrilateral element meshes

The reference values to both the right side verticesplacementu, and the strain energy
U of problem a) are, respectively; =-7,50C andU =75,00C; while the references values
generated with a very refined mesh for problemrb) 8, =-1.03e0f andU =1.03e07.
Concerning the results analysis, both displacerardtstrain energy were normalized by the
reference values.

Regarding problem a), iRigure 6is shown that considering quadratic stress approac
the domain and without nodal enrichment of the loauy displacement field the HSF
quadrilateral element is strongly affected by maistortion.

80

60

% uy(p)/uy Exact

40

i
ZOQM "

0 10 20 30 40 50 60 70 80 90
% p

Classic FEM
—B— HSF- Linear Stress Approximation Base in the Domain - Without Enrichment

—>¢— HSF- Quadratic Stress Approximation Base in the Domain - Without Enrichment

Figure 6: Normalized displacement - quadrilatetaient mesh without enrichment

A simple nodal enrichment of the boundary displagetfield by means of the function
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(x) improves the response of the quadrilateral elént¢8F with quadratic stress

approximation, reducing its sensitivity even ine@tireme distortion condition, as shown in
Figure 7andFigure 8 The enrichment was not imposed on the restraweddary nodes.
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Figure 7: Problem a): displacement - quadrilatelaient - enrichment imposed to selective noddsoomdary
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~— H5F-Quadratic Stress Approximation Base in the Domain - Enrichment - Displacement on the Boundary (x)
Figure 8: Strain energy - quadrilateral elementhmeish nodal boundary field displacement

The effectiveness of the quadratic stress apprdiomaombined with nodal enrichment
can be verified inFigure 9 where the stress distributiofu,) for the problem a) on a
distortion condition ofu =0,8 is shown.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 4687-4705 (2010) 4697

140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00
-20.00
-40.00
-60.00
-80.00
-100.00
-120.00
-140.00
-160.00

o, Quadrilateral Element (%1t =80)= with enrichment

Figure 9: Stress components, - quadrilateral element mesh and nodal enrichment
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Figure 10: Comparison of normalized displacemdtinch and Atluri (1984) and GFEM-HSF
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The comparison with some class of similar hybriddyilateral elements studied Funch
and Atluri (1984)indicates that they are more sensitive to mestlorigh than the HSF
quadrilateral element with quadratic stress appnation and nodal enrichment, segure
10.

In Figure 10 the four-node quadrilateral elements analyze®@unch and Atluri (1984)
have following notation: APR: least-order a priequilibrated Cartesian stress field in a
hybrid stress functional, APO: a posteriori equdiled cartesian stress field in a Hellinger-
Reissner functional, APC: a posteriori equilibramgdvilinear stress field in a Hellinger-
Reissner functional and APS: a posteriori equalieéd centroidal stress field in a Hellinger-
Reissner functional.

Concerning the problem Wyjgure 11lillustrates that the HSF quadrilateral elemenhuouit
enrichment, analogously to the FEM classic elemisigs efficiency when the distortion
parameter increases.

100
80
80
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&0
50
40

) [l\b}\
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%o uy (4 )/uy Reference

ey
O

-
=

a

0 10 20 30 40 50 60 70 80 90
Yo p

Classic FEM

—B—H5F- Quadratic Stress Approximation Base in the Domain - Without Enrichment

Figure 11: Normalized displacement - quadrilatetaiment mesh without enrichment

However, as shown iRigure 12andFigure 13 the nodal enrichment improves the element
robustness.
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Figure 12: Normalized displacement - quadrilatetainent mesh with and without nodal enrichment
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Figure 13: Strain energy - quadrilateral elemenghmgith and without nodal enrichment

Again, the comparison with the elements proposeBunych and Atluri (1984depicted in
Figure 14highlights the performance of the proposed strategy
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Figure 14: Comparison normalized displacement cRw@amnd Atluri (1984) and GFEM-HSF

The next example is a benchmark for linear plarayars and is illustrated iRigure 15
The problem was proposed Byok (1987) consisting of a cantilever plate of unit thickeies
and submitted to a uniform distributed loading aapht its free end, as depictedHigure 15

A

44

48

Figure 15: Cook’s Panel

0

—

44

q=0.00625

Assuming E =10 for the Young modulus and:é to the Poisson’s coefficient, the

following reference results were obtained usamgover killing’ discretization: Strain energy:
1,200110% and vertical displacement at point A at the frearulary:u, =-0,238.
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Figure 16: Triangular and quadrilateral meshes

The basic aim here is to check the convergenceonsgs in terms of strain energy and
displacement at point A (sed&igure 15. The simulations were conduced considering
distorted quadrilateral and triangular element raeshs shown ifigure 16 Analogously to
the previous analysis, the enrichment was apptetid whole set of nodes except to the ones
with prescribed null displacements.

025
02

015

01 \ / \ .
0,05 /
Strain Energy=Strain Energy Reference | K

05 1 1.5 2 25 35 4

-0.05

Log (Strain Energy/Strain Energy Reference)

-0,15

-0,25
Log(Degree of Freedom)
= Classic FEM
=fll—HSF- Constant Stress Approximation Base in the Domain - Without Enrichment
==t H5F- Linear Stress Approximation Base in the Domain - Without Enrichment

= H5F- Quadratic Stress Approximation Base in the Domain - Without Enrichment

Figure 17: Strain Energy Convergence — quadrilagdesnent mesh without enrichment

Figure 17shows the strain energy convergence for both ksical FEM quadrilateral
element and the HSF quadrilateral element withauicement on the boundary field,
however exploring different level of stress apptoadnlike the FEM element, the HSF
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quadrilateral element provides answers asymptdticainvergent to the reference value of
strain energy.

Triangular Element Quadrilateral Element

Appr%t):?nition Mesh Displagemeni Relative Mesh Displagemeni Relative
Base at point A Error at point A Error
(%) (%)

2x2 -0.120 49.79 2x2 -0.148 38.08

Quadratic 4x4 -0.183 23.43 4x4 -0.206 13.81

8x8 -0.220 7.95 8x8 -0.229 4.18

16x16 -0.234 2.09 @ 16x16 -0.237 0.84

2x2 -0.120 49.79 2x2 -0.150 37.24

Linear 4x4 -0.183 23.43 4x4 -0.206 13.81

8x8 -0.220 7.95 8x8 -0.229 4.18

16x16 -0.234 2.09 @ 16x16 -0.237 0.84

2x2 -0.120 49.79 2x2 -0.303 -26.78

Constant 4x4 -0.183 23.43 4x4 -0.248 -3.77

8x8 -0,220 7.95 8x8 -0.242 -1.26

16x16 -0.234 2.09 | 16x16 -0.240 -0.42

Table 1: Cook’s Panel — HSF without enrichmentsptiicement at point A results.

Table 1presents the relative error on the displacememioatt A considering triangular
and quadrilateral HSF element meshes without emecti. In particular, the triangular mesh
is apparently insensible to the stress approximatiggrovement considering its influence on
the displacement value. Some similar feature isered by the quadrilateral mesh once
linear and quadratic stress approaches are adopted.

A quite interesting and known result is recoveregligure 18 The HSF triangular element
without enrichment presents similar answer to the obtained by the conventional FEM
analysis for the whole set of meshes. Howeverghadrinumber of degrees of freedom were
involved. This feature is known as the limitatiomnpiple for mixed formulationsiraeijs de
Veubeke (1965)

The nodal enrichment of the boundary displacemefd improves the HSF triangular and
quadrilateral elements performance as showhRigura 19andFigure 20 In particular, the
results for the HSF quadrilateral element with qatid stress approximation show that it is
possible to recover the reference strain energyevaven with a coarse mesh. It is important
to note that in order to guarantee the numericallte stability the enrichment was imposed
only when linear and quadratic stress approximatigere involved.
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18: Strain Energy Convergence — triangukment mesh without enrichment
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Figura 19: Strain Energy Convergence — quadrilagdemnent with and without nodal enrichment
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Figure 20: Strain Energy Convergence — triangulament with nodal enrichment

The effectiveness of the enrichment can also b#iagrconsidering the results listed in
Table 2

Triangular Element Quadrilateral Element

Appro?(?:re]z;on Mesh Displac_ement Relative Mesh Displac_ement Relative
Base at point A Error at point A Error
(%) (%)

2x2 -0.173 27.61 2x2 -0.239 0.01

Quadratic 4x4 -0.218 8.79 4x4 -0.238 0.42

8x8 -0.233 2.51 8x8 -0.240 -0.42

16x16 -0.238 0.42 | 16x16 -0.240 -0.42

2x2 -0.179 25.10 2x2 -0.270 -12.97

Linear 4x4 -0.220 7.95 4x4 -0.232 2.93

8x8 -0.234 2.09 8x8 -0.240 -0.42

16x16 -0.238 0.42 | 16x16 -0.240 -0.42

Table 2: Cook’s Panel — HSF with no@alrichment - displacement at point A.

5 CONCLUSIONS

The proposed numerical approach combining HybricesSt Formulation with nodal
enrichment of the displacement boundary field,ofwlhg the framework of the Generalized
Finite Element, provides robust four-node quadsiiatand three-node triangular elements.

The good performance in terms of insensitivity tesh distortion and asymptotic
convergence is always effective provided the exddndienkiewicz’'s inspection test is
verified.
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