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Abstract. The framework of the Generalized Finite Element Method (GFEM) is applied to a 
nonconventional Hybrid Stress Formulation (HSF) aiming linear plane analysis. In the original HSF 
two approximation fields are involved: stresses in the domain and displacements on the static 
boundary. The main features of the HSF are that the stress field satisfies equilibrium condition in the 
domain, while equilibrium on the common boundaries between elements is enforced in a weak form. 
In the combined GFEM-HSF approach the enrichment of the displacement boundary field is provided 
by the product of the partition of unity (PU) and a basis of polynomials enrichment functions. 
Quadrilateral and triangular finite elements with selective nodal enrichment are then derived. The 
numerical performance of the HSF with nodal enrichment formulation is tested in several examples. 
The numerical investigation focuses mainly a sensitivity analysis of the results to mesh distortion. 
Relating to this aspect some mesh distortion conditions imposed over plane stress beam-bending 
benchmarks are addressed. In addition, considering both computational and numerical aspects, one 
conclude that GFEM-HSF can provide good alternative to conventional displacement based 
formulations for plane linear analysis. 
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1 INTRODUCTION 

This work addresses some recent developments on the nonconventional finite elements 
formulation for linear plane analysis derived from a Hybrid Stress Formulation (HSF) with 
nodal enrichment, Góis and Proença (2007a,b) and Góis (2009a).  

In the original HSF proposed in Freitas, Almeida e Pereira (1996) two independent 
approximation fields are involved: stresses in the domain and a displacement field on the 
static boundary, i.e., part of the boundary where surface forces are imposed. Due to this 
particular feature such nonconventional formulation is typified as Hybrid. An additional basic 
feature of the HSF here adopted is that equilibrium through common boundaries between 
elements is weakly imposed, once the discretized domain is considered. In view of this fact, 
the non-conventional form is finally referenced as a Hybrid Stress Formulation (HSF). 

On the other hand, the Generalized Finite Element Method (GFEM), originally presented in 
Oden, Duarte and Zienkiewicz (1998), is essentially a partition of unity (PU) based approach 
involving a nodal enrichment strategy. The enrichment feature consists on a p-refinement of 
the approximation fields, however without introducing additional nodes over an adopted 
discretization mesh, Duarte and Oden (1995). Therefore, the nodal strategy differs from the 
finite element p-adaptive classical process.  

In this work both HSF and a nodal enrichment strategy of the boundary displacement field 
are combined generating a new class of finite elements for linear plane analysis. One 
particular feature of this class of elements is its insensitivity to mesh distortion. In order to 
emphasize such aspect, distortion sensitivity tests are conducted considering four nodes 
quadrilateral HSF elements. 

On the other hand, considering the independence of the approximation fields provided to 
the displacement on the boundary and the stresses in the domain, the enrichment could be 
unconditionally imposed to the boundary displacement field. However, such an option is 
restricted by stability aspects. Actually, in this study a kind of inspection test controlling the 
balance between the number of related stresses and displacement variables is adopted in order 
supply stable and convergent solutions. 

On what follows, in section 2 the HSF for plane elasticity is addressed. The section 3 is 
devoted to the GFEM formulation in the HSF. In section 4 some numerical experiments 
related to the distortion sensitivity are presented. Finally, in section 5 the conclusions of the 
present study are given. 

2 HYBRID STRESS FORMULATION (HSF) IN PLANE ELASTICITY  

Based on Freitas, Almeida e Pereira (1996), considering a linear-elastic solid of domain Ω  
and boundary Γ  composed by complementary parts uΓ  and tΓ , where kinematic and static 

boundary conditions are imposed, respectively, the following Galerkin weighting relations for 
the compatibility and equilibrium conditions can be written: 

 ( )T TL u f d 0.
Ω

δσ σ Ω− =∫  (1) 

 ( )Tu L b d 0.
Ω

δ σ Ω+ =∫  (2) 

 ( )
t

t

Tu t N d 0.ΓΓ
δ σ Γ− =∫  (3) 

In Eq. (1), Eq. (2) and Eq. (3) the following domain fields are involved: stressesσ , strains 
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ε  and displacements u . In particular, the first relation includes the constitutive condition as 
well. In addition L  is the divergence operator; b  the vector of body forces; N  the matrix 
formed by the components of the unit vector normal to the boundaryΓ ; f the flexibility 

matrix for isotropic linear elastic material and t  the vector of applied superficial forces ontΓ . 

Assuming that the kinematic restriction u 0=  is strongly imposed on uΓ  and considering 

Eq. (1) transformed by the Divergence Theorem one obtains: 

 ( ) ( )T TT f d L ud N ud 0.
Ω Ω Γ

δσ σ Ω δσ Ω δσ Γ+ − =∫ ∫ ∫  (4) 

Once a finite element mesh is adopted the boundary Γ  for hybrid formulation includes the 
common inner boundary between elements defined as iΓ . Therefore, by definition: 

i t uΓ Γ Γ Γ= + +  and Eq. (4) takes the following form: 

 ( ) ( ) ( )
t i

t i

T T TT f d L ud N u d N u d 0.Γ ΓΩ Ω Γ Γ
δσ σ Ω δσ Ω δσ Γ δσ Γ+ − − =∫ ∫ ∫ ∫  (5) 

Here, displacement continuity between elements on iΓ  is strongly imposed, implying that 

this part of the boundary can be assumed as a Neumann boundary where equilibrium is 
verified in a weak form. Then, considering that there are no superficial forces t  prescribed on 

iΓ , the correspondent weak equilibrium relation  ( )
i

i

Tu N dΓΓ
δ σ Γ∫  is added to the Eq. (3) 

and this equation can be expressed as: 

 ( ) ( ) ( )
t i t

t i t

T T Tu N d u N d u t d 0.Γ Γ ΓΓ Γ Γ
δ σ Γ δ σ Γ δ Γ+ − =∫ ∫ ∫  (6) 

Actually, Eq. (2), Eq. (5) and Eq. (6) correspond to a more general Hybrid-Mixed Stress 
Formulation (HMSF) typified by three independent fields: stresses and displacements defined 
in the domain Ω  and displacements defined on the boundary. In such a general framework it 
is assumed that the displacements on the boundaryuΓ  are prescribed with zero value. 

The following approximations for the independent fields could then be introduced: 
 

 S s .Ω Ωσ =ɶ  (7) 

 
u U q .Ω Ω=ɶ

 (8) 

 
t t t

u U q .Γ Γ Γ=ɶ  (9) 

 
i i i

u U q .Γ Γ Γ=ɶ  (10) 

In the preceding relations, sΩ  represents the vector of nodal stress variables, whileqΩ , 

t
qΓ and 

i
qΓ  are vectors of nodal degrees of freedom related to the displacements. Furthermore, 

SΩ , UΩ , 
t

UΓ  and 
i

UΓ  are respectively the matrices collecting the approximation functions 

for stress and displacement fields. 
Applying the approximations given by Eq. (7) to Eq. (10) in Eq. (2), Eq. (5) and Eq. (6), 

the following linear system of equations governing the HMSF could be deduced: 
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t i

tt t

ii

T

T

T

F A A A s 0

qA 0 0 0 Q
.

qA 0 0 0 Q

qA 0 0 0 0

Ω Γ Γ Ω

ΩΩ Ω

ΓΓ Γ

ΓΓ

− −     
     −     =    − −    

   −     

 (11) 

In Eq. (11) the following matrices were introduced: 

 TF S fS d .Ω ΩΩ
Ω= ∫  (12) 

 ( )T
A LS U d .Ω Ω ΩΩ

Ω= ∫  (13) 

 ( )
t t

t

T
A NS U d .Γ Ω ΓΓ

Γ= ∫  (14) 

 ( )
i i

i

T
A NS U d .Γ Ω ΓΓ

Γ= ∫  (15) 

 TQ U bd .Ω ΩΩ
Ω= ∫  (16) 

 
t t

t

TQ U td .Γ ΓΓ
Γ= ∫  (17) 

The reason to present the general framework of the HMSF is that HSF can then be derived 
from it assuming that the stress approximations locally satisfy the equilibrium condition. 
Moreover, if no body forces are considered the stress approximations compose a self-
equilibrated field, thus satisfying: 

 LS 0.Ω =  (18) 

Once this condition is assumed, the matrices AΩ  and QΩ  vanish and Eq. (11) simplifies to: 

 
t i

t t t

i i

F A A s 0

A 0 0 q Q .

A 0 0 q 0

Γ Γ Ω

Γ Γ Γ

Γ Γ

   − −  
      − = −     
     −        

 (19) 

Accordingly, no displacement fields in the domain are involved in the HSF approach. 
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3 FINITE ELEMENT APPROACH AND NODAL ENRICHMENT IN HSF  

jωωωω

jx

Γ
jω

Γ
jx iΓ

eΩ

 
Figure 1: Domain and boundary elements 

The element meshes employed for discretizing domain and boundary regions are indicated 
Figure 1. Either four-node quadrilateral elements (see Figure 2) or three-node triangular (see 
Figure 3) elements can be used in the domain discretization. On the boundary regions classical 
linear elements are defined.  

The geometry of the quadrilateral element (see Figure 2) is built from a master element 
using the conventional Lagrangian bilinear functions indicated in Eq. (20) to Eq (23). 

 
Domain Element eΩ

Boundary Element
eΓt

tΓ ,
eΓi

iΓ ou
eΓu

uΓ

 
Figure 2: Four-node quadrilateral element 

 ( ) ( )( )1

1
, 1 1 .

4
ϕ ξ η ξ η= − −  (20) 

 ( ) ( ) ( )2

1
, 1 1 .

4
ϕ ξ η ξ η= − + −  (21) 

 ( ) ( ) ( )3

1
, 1 1 .

4
ϕ ξ η ξ η= + +  (22) 

 ( ) ( )( )1

1
, 1 1 .

4
ϕ ξ η ξ η= − − +  (23) 
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In the relations above ξ  and η  are the dimensionless coordinates taking values from -
1 to 1. 

The typical triangular element employed is depicted in Figure 3. The normalized triangular 
coordinates are defined by Eq. (24) to Eq. (26). 

 

x

y

y

x

(((( ))))1 11 x , y
(((( ))))2 22 x , y

(((( ))))3 33 x , y

1A

2A3A
P

Domain Element
Boundary Element

eΓt
tΓ ,

eΓi
iΓ ou

eΓu
uΓ

eΩ

 
Figure 3: Three-node triangular element 

 1
1

e

A
.

A
ξ =  (24) 

 2
2

e

A
.

A
ξ =  (25) 

 3
3

e

A
.

A
ξ =  (26) 

where 1A , 2A  and 3A  are the areas indicated in Figure 3 and eA  is for the total area of the 

triangle. 
The linear Lagrangian linear functions of the boundary elements attached to the 

quadrilateral elements sides are defined in local coordinates as: 

 ( )1

1
1 .

2
ψ ξ= − −  (27) 

 ( )2

1
1 .

2
ψ ξ= +  (28) 

The local coordinate ξ  varies from -1 to 1. 
While for the boundary elements attached to the triangular elements sides one has: 

 ( )1 1 .ψ ξ= −  (29) 

 2 .ψ ξ=  (30) 

In this case, the local coordinate ξ  varies from 0 to 1. 

As already mentioned the HSF stress field approximations are assumed to be self-
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equilibrated. In this work polynomial Airy functions ( ( )A x, y ) are adopted to accomplish 

that particular feature. Thus, constant, linear and quadratic element stresses 
approximations can be defined: 

 
Constant approximation 

 
e

1 0 0

S 0 1 0 .

0 0 1
Ω

 
 =  
  

 (31) 

Linear approximation 

 
e

1 0 0 y x 0 0

S 0 1 0 0 0 y x .

0 0 1 0 y x 0
Ω

− 
 = − 
  

⋮

⋮

⋮

 (32) 

Quadratic approximation 

 
e

2 2

2 2

2 2

1 0 0 y x 0 0 y 2xy x 0 0

S 0 1 0 0 0 y x 0 0 y 2xy x .

0 0 1 0 y x 0 0 y 2xy x 0
Ω

 − −
 = − − 
 − 

⋮ ⋮

⋮ ⋮

⋮ ⋮

 (33) 

In order to provide enrichment of the boundary approximation field, the boundary cloud 
concept is introduced. As depicted in Figure 1 a boundary cloud attached to a node is defined 
by the linear elements sharing that node. The enrichment of the boundary displacement field 
can then be performed following the PU based approach of the Generalized Finite Element 
Method (GFEM), Oden, Duarte and Zienkiewicz (1998). In this work, the option for 
polynomial enrichment is explored. 

Thus, assuming that a two-dimensional domain has been meshed with HSF four-node 
quadrilateral or three-node triangular elements, the following HSF-GFEM boundary shape 
functions can be indicated: 

 { } { } ( ){ }j j e

N N
1
N j n e

j 1 j 1
U U h : j 1,...,N ;n 1,...,I j .

Γ Γ

Γ ΓΓ Γ ΓΓ Γ
Γ Γ Γ Γ Γ ΓΞ

= =
= ∪ = =  (34) 

The boundary displacement approximation field can then be constructed as: 

 
e

j j

nN

j i j i
j 1 i 1

û U u h d .
Γ Γ

Γ ΓΓ Γ
Γ

Γ Γ Γ
= =

  = + 
  

∑ ∑  (35) 

where 
j

U
ΓΓ  are the displacement approximations (see, Eq. (34)) , 

j
u

ΓΓ are the displacement 

degrees of freedom associated with the original shape functions, j id
Γ

 are the additional nodal 

parameters introduced by the enrichment, en
Γ

 is for the number of enrichment functions 

defined in each index node jΓ . Then, the following matrix notation can be used to indicate 

the HSF-GFEM shape functions: 

 
i t 1 21 2U U .Γ Γ Γ Γψ ∆ ψ ∆ = =    (36) 

Mecánica Computacional Vol XXIX, págs. 4687-4705 (2010) 4693

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



In the relation above 2I  represents the identity matrix of second order and 
jΓΓ∆ is given by: 

 
j e2 11 2 j k 2 j n 2I h I h I h I .
Γ Γ Γ ΓΓ∆  =

 
… …  (37) 

A final remark is that by convenience the enrichment functions 
ej nh

Γ Γ
are adopted in such a 

way that they are null at the attached nodes, thus not destroying the meaning of the original 
nodal parameters. Essentially, they are given by: 

 

x•  

 ( ) ( )
ej n 1 1 2 2 jh , x x x .

Γ ΓΓ
ξ η ψ ψ= + −  (38) 

y•  

 ( ) ( )
ej n 1 1 2 2 jh , y y y .

Γ ΓΓ
ξ η ψ ψ= + −  (39) 

4 NUMERICAL ANALYSIS  

In the whole set of examples hereby presented, the enrichment methodology was performed 
in such a way that the number of stress variables was always greater than the number of nodal 
displacement parameters, including the ones introduced by the enrichment. This procedure 
derives from the Zienkiewicz-patch test extended to HSF with nodal enrichment, Góis and 
Proença (2007a), and ensures stability of the numerical results.  

As the first example, the HSF approach with nodal enrichment is tested on what concerns 
to mesh distortion sensitivity. Two quadrilateral elements are employed to discretize the two 
problems illustrated in Figure 4: a) a cantilever under pure moment applied at its right edge 
and b) a cantilever subjected to action of a shear force applied at its right edge. 

 

  
Figure 4: Cantilever beam 

As the main purpose here is to analyze the numerical performance of the proposed 
approach, for convenience no units for the elastic parameters and dimensions are adopted, 
therefore the following values to the Young’s Modulus and Poisson’s ratio, respectively, are 
assumed: E 1=  and 0.25ν = .  

The cantilever mesh is progressively distorted as depicted in Figure 5. As can be seen, each 
mesh is typified by the distortion parameter (µ ) value. Such a parameter is referenced later in 
the graphics of the numerical performance. The distortion parameter value was calculated by 
the rate of the differences between of the coordinates x  of the two central nodes and the 
cantilever prescribed length. 
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Figure 5: Quadrilateral element meshes 

The reference values to both the right side vertical displacement yu  and the strain energy 

U  of problem a) are, respectively: yu 7,500= −  and U 75,000= ; while the references values 

generated with a very refined mesh for problem b) are: 
yu 1.03e05= −  and U 1.03e07= . 

Concerning the results analysis, both displacement and strain energy were normalized by the 
reference values. 

Regarding problem a), in Figure 6 is shown that considering quadratic stress approach in 
the domain and without nodal enrichment of the boundary displacement field the HSF 
quadrilateral element is strongly affected by mesh distortion. 
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Figure 6: Normalized displacement - quadrilateral element mesh without enrichment 

A simple nodal enrichment of the boundary displacement field by means of the function 
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( )x   improves the response of the quadrilateral element HSF with quadratic stress 

approximation, reducing its sensitivity even in an extreme distortion condition, as shown in 
Figure 7 and Figure 8. The enrichment was not imposed on the restrained boundary nodes.  

 

 
Figure 7: Problem a): displacement - quadrilateral element - enrichment imposed to selective nodes on boundary 

 
Figure 8: Strain energy - quadrilateral element mesh with nodal boundary field displacement 

The effectiveness of the quadratic stress approximation combined with nodal enrichment 
can be verified in Figure 9, where the stress distribution ( )xσ  for the problem a) on a 

distortion condition of µ 0,8=  is shown.  
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Figure 9: Stress component - xσ  - quadrilateral element mesh and nodal enrichment 

 
Figure 10: Comparison of normalized displacement - Punch and Atluri (1984) and GFEM-HSF 
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The comparison with some class of similar hybrid quadrilateral elements studied in Punch 
and Atluri (1984) indicates that they are more sensitive to mesh distortion than the HSF 
quadrilateral element with quadratic stress approximation and nodal enrichment, see Figure 
10.  

In Figure 10, the four-node quadrilateral elements analyzed in Punch and Atluri (1984) 
have following notation: APR: least-order a priori equilibrated Cartesian stress field in a 
hybrid stress functional, APO: a posteriori equilibrated cartesian stress field in a Hellinger-
Reissner functional, APC: a posteriori equilibrated curvilinear stress field in a Hellinger-
Reissner functional  and APS: a posteriori equilibrated centroidal stress field in a Hellinger-
Reissner functional. 

Concerning the problem b), Figure 11 illustrates that the HSF quadrilateral element without 
enrichment, analogously to the FEM classic element, loses efficiency when the distortion 
parameter increases. 

 

 
Figure 11: Normalized displacement - quadrilateral element mesh without enrichment 

However, as shown in Figure 12 and Figure 13, the nodal enrichment improves the element 
robustness. 
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Figure 12: Normalized displacement - quadrilateral element mesh with and without nodal enrichment 

 

Figure 13: Strain energy - quadrilateral element mesh with and without nodal enrichment 

Again, the comparison with the elements proposed by Punch and Atluri (1984) depicted in 
Figure 14 highlights the performance of the proposed strategy. 
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Figure 14: Comparison normalized displacement - Punch and Atluri (1984) and GFEM-HSF 

The next example is a benchmark for linear plane analysis and is illustrated in Figure 15. 
The problem was proposed by Cook (1987), consisting of a cantilever plate of unit thickness 
and submitted to a uniform distributed loading applied at its free end, as depicted in Figure 15. 

 

 
Figure 15: Cook’s Panel 

Assuming E 10=  for the Young modulus and 
1

ν
3

=  to the Poisson’s coefficient, the 

following reference results were obtained using an ‘over killing’ discretization: Strain energy: 
21,20 10−⋅  and vertical displacement at point A at the free boundary: yu 0,239= − . 
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Figure 16: Triangular and quadrilateral meshes 

 
The basic aim here is to check the convergence responses in terms of strain energy and 

displacement at point A (see, Figure 15). The simulations were conduced considering 
distorted quadrilateral and triangular element meshes, as shown in Figure 16. Analogously to 
the previous analysis, the enrichment was applied to the whole set of nodes except to the ones 
with prescribed null displacements. 

 

 
Figure 17: Strain Energy Convergence – quadrilateral element mesh without enrichment 

Figure 17 shows the strain energy convergence for both the classical FEM quadrilateral 
element and the HSF quadrilateral element without enrichment on the boundary field, 
however exploring different level of stress approach. Unlike the FEM element, the HSF 
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quadrilateral element provides answers asymptotically convergent to the reference value of 
strain energy. 

 
 Triangular Element Quadrilateral Element 

Stress 
Approximation 

Base 
Mesh 

Displacement 
at point A 

 
Relative 

Error 
(%) 

Mesh 
Displacement 

at point A 

 
Relative 

Error 
(%) 

Quadratic 

2x2 -0.120 49.79 2x2 -0.148 38.08 
4x4 -0.183 23.43 4x4 -0.206 13.81 
8x8 -0.220 7.95 8x8 -0.229 4.18 

16x16 -0.234 2.09 16x16 -0.237 0.84 

Linear 

2x2 -0.120 49.79 2x2 -0.150 37.24 
4x4 -0.183 23.43 4x4 -0.206 13.81 
8x8 -0.220 7.95 8x8 -0.229 4.18 

16x16 -0.234 2.09 16x16 -0.237 0.84 

Constant 

2x2 -0.120 49.79 2x2 -0.303 -26.78 
4x4 -0.183 23.43 4x4 -0.248 -3.77 
8x8 -0,220 7.95 8x8 -0.242 -1.26 

16x16 -0.234 2.09 16x16 -0.240 -0.42 

Table 1: Cook’s Panel – HSF without enrichment - displacement at point A results.  

Table 1 presents the relative error on the displacement at point A considering triangular 
and quadrilateral HSF element meshes without enrichment. In particular, the triangular mesh 
is apparently insensible to the stress approximation improvement considering its influence on 
the displacement value. Some similar feature is presented by the quadrilateral mesh once 
linear and quadratic stress approaches are adopted.  

A quite interesting and known result is recovered in Figure 18. The HSF triangular element 
without enrichment presents similar answer to the one obtained by the conventional FEM 
analysis for the whole set of meshes. However, a higher number of degrees of freedom were 
involved. This feature is known as the limitation principle for mixed formulations, Fraeijs de 
Veubeke (1965). 

The nodal enrichment of the boundary displacement field improves the HSF triangular and 
quadrilateral elements performance as shown in Figura 19 and Figure 20. In particular, the 
results for the HSF quadrilateral element with quadratic stress approximation show that it is 
possible to recover the reference strain energy value, even with a coarse mesh. It is important 
to note that in order to guarantee the numerical results stability the enrichment was imposed 
only when linear and quadratic stress approximations were involved. 

 

W. GOIS, S. PROENCA4702

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
Figure 18: Strain Energy Convergence – triangular element mesh without enrichment 

 

 
Figura 19: Strain Energy Convergence – quadrilateral element with and without nodal enrichment 
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Figure 20: Strain Energy Convergence – triangular element with nodal enrichment 

The effectiveness of the enrichment can also be verified considering the results listed in 
Table 2.  

 
 Triangular Element Quadrilateral Element 

Stress 
Approximation 

Base 
Mesh 

Displacement 
at point A 

 
Relative 

Error 
(%) 

Mesh 
Displacement 

at point A 

 
Relative 

Error 
(%) 

Quadratic 

2x2 -0.173   27.61 2x2 -0.239 0.01 
4x4 -0.218 8.79 4x4 -0.238 0.42 
8x8 -0.233 2.51 8x8 -0.240 -0.42 

16x16 -0.238 0.42 16x16 -0.240 -0.42 

Linear 

2x2 -0.179     25.10 2x2 -0.270 -12.97 
4x4 -0.220 7.95 4x4 -0.232 2.93 
8x8 -0.234 2.09 8x8 -0.240 -0.42 

16x16 -0.238 0.42 16x16 -0.240 -0.42 

Table 2: Cook’s Panel – HSF with nodal enrichment - displacement at point A. 

5 CONCLUSIONS 

The proposed numerical approach combining Hybrid Stress Formulation with nodal 
enrichment of the displacement boundary field, following the framework of the Generalized 
Finite Element, provides robust four-node quadrilateral and three-node triangular elements.  

The good performance in terms of insensitivity to mesh distortion and asymptotic 
convergence is always effective provided the extended Zienkiewicz’s inspection test is 
verified. 
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