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Abstract. Meshfree methods have certain advantages with respect to other more classical numerical
methods. The Element Free Galerkin Method (EFGM), in particular, seems to offer a good performance
when dealing with problems that include the treatment of large deformations together with the presence
of strong or weak discontinuities to model cracks or material interfaces. A possible approach is to intro-
duce the discontinuity to the discretization by adding special enrichment functions to the standard shape
functions. The cracking particles method, based on EFGM, is an example of such approaches. When
dealing with dynamic applications by means of explicit time integration schemes, a lumped mass matrix
is necessary for an efficient numerical simulation. However, when the shape functions include discon-
tinuous enrichment, studying the behavior of the critical time step becomes problematic. Moreover, it
may tend to very small values, thus leading to computationally expensive simulations. In this work, we
present some contributions to the study of these stability issues for an explicit enriched EFGM for one-
and two-dimensional problems.
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1 INTRODUCTION

Meshfree methods posses some advantages over the widely used finite element method when
the material undergoes large deformation and fracture. One of these advantages is the possibility
of enriching the standard shape functions in a very natural way. Within the finite elements con-
text, the so-called Extended Finite Elements (XFEM), which was introduced by Belytschko and
his group in Belytschko and Black (1999); Moes et al. (1999); Dolbow et al. (2000), is based
on the so-called partition of unity methods (PUM) Babuška and Melenk (1997). In XFEM, the
representation of a strong or weak discontinuity is done via enrichment of the shape functions.
Therefore the crack representation as, for example, a strong discontinuity within the element
edges or remeshing is no longer needed. The concept of discontinuity enrichment has been
used in the EFG method and successfully applied for static and dynamic problems Ventura et al.
(2002); Rabczuk and Belytschko (2004, 2006); Rabczuk et al. (2007).

In dynamic problems, mass lumping is commonly used in order to avoid solving a system of
equations. However, when XFEM is used for dynamic crack propagation, the extra degrees of
freedom and the enriched shape function introduce some unusual behavior in the mass matrix.
Belytschko et al. (2003) were the first to point out the possibility of a very small critical time
step for X-FEM.

Menouillard et al. (2008, 2006) have addressed the problem and offered a strategy for mass
lumping when the approximation spaces are enriched. This strategy prevents the critical time
step to vanish and it is in the order of the critical time step for the model without cracks. In
Talebi et al. (2010), this framework is extended by the authors in order to apply it to meshless
methods. The high sensitivity of the critical time step to the relative crack location and the
nodes is dealt with in this reference. However, there is no straightforward way of building a
diagonalized mass matrix for extended meshfree method. Thus, we first must briefly examine
the critical time step for the consistent mass matrix for extended meshfree. Then, two strategies
for mass lumping for one and two dimensional problems are presented. Once this is done,
we can analyze the critical time step with the proposed lumping strategies and show that the
order of critical time step for the new lumped mass matrices is the same as the one without a
discontinuity.

The remaining of this paper is organized as follows. In Section 2, we write the governing
equations. Section 3 deals with the EFG and enriching meshfree shape functions. Next, the
general mass lumping formulas are derived and applied to crack modeling. Critical time steps
estimates are introduced. Some issues about the stability of the resulting formulations are tack-
led by means of a combination of numerical experiments and analytical estimates. Finally, some
conclusions are extracted.

2 GOVERNING EQUATIONS

Consider a domain Ω in RD, corresponding to the current position of a solid, with boundary
Γ, where D is the dimension of the physical space (in this paper D = 2 unless stated otherwise).
The images of Ω and Γ in the initial configuration are the Ω0 and Γ0, respectively. By choosing
the reference state as the initial state, the strong form of linear momentum equation in total
Langrangian description is

∇0 · P + %0b = %0ü in Ω0\Γc
0 (1)
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and the boundary conditions are

n0 · P = t̄0 on Γt
0 (2)

u = ū on Γu
0 (3)

nC
0 · P − = nC

0 · P + = tc0 on Γc
0 (4)

where P is the nominal stress, %0 is the initial density, b are the body forces, u and ü are the
displacements and accelerations, respectively; n0 is the normal to the boundary in the initial
configuration, ū and t̄ denote the prescribed displacements and traction, respectively, consider-
ing that the structure is subjected to a set of displacement and traction boundary conditions on
the disjoint complementary parts of the boundary in the initial configuration, i.e. Γu

0 and Γt
0; P −

and P + denote the nominal stress at the left and at the right of the discontinuity, respectively,
nC

0 is the normal to the discontinuity, and tc0 is the traction on the interface.

3 EXTENDED ELEMENT FREE GALERKIN METHOD(XEFG)

Meshfree approximations in terms of the material (Lagrangian) coordinates can be written
as

uh (X, t) =
∑
I∈W

ΦI (X) uI (t) (5)

where ΦI (X) are the shape functions and uI is the value at the particle parameter (it is, usu-
ally, nearly equal to the displacement) at the position XI , and W is the set of particles for
which ΦI (XJ) 6= 0. Note that the above form is identical to the form of an FEM approxi-
mation. However, in contrast to FEM, ΦI (X) is only an approximant and not an interpolant,
since u (XI) 6= uI . Therefore special techniques are needed to treat displacement boundary
conditions; see for example Fernandez-Mendez and Huerta (2004).

In the EFG method the shape function Φ is defined as

ΦI = p (X)T ·A (X)−1 · pI (X) W (X − XI , h) , (6)

A (X) =
∑
I∈S

pI (X) pT
I (X) W (X − XI , h) . (7)

where p is the basis function and h is the dilation parameter which are explained in Belytschko et al.
(1994) in detail. In addition to the fact that the order of continuity can be increased quite eas-
ily, meshfree methods have advantages over finite elements because of their smoothness and
nonlocal interpolation character. Moreover, better stress distributions around the crack tip are
obtained, promising a less oscillatory crack path.

Representation of the crack in the XEFG method is realized via enriching the test and
trial functions with additional unknowns so that the approximation is continuous in the whole
domain but discontinuous along the crack as done in many former methods such as XFEM
Moes et al. (1999). The approximation is:

uh (X) =
∑
I∈W

ΦI (X) uI +
∑
I∈Wb

ΦI (X) H (fI (X)) aI +
∑
I∈Ws

ΦI (X)
∑
K

BKbKI (8)
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Figure 1: Crack with complete and partial cut domain of influence nodes

whereW (X) is the entire domain,Wb (X) is the completely cut domain,Ws (X) is the partial
cut domain, and H and B are the enrichment functions, which are meant to capture the crack tip
correctly. The first term on the right hand side of Eq.(8) is the usual approximation,the second
and third term are the enrichment, in which the coefficient a and b, respectively, are additional
unknowns introduced for the crack.

H (f (X)) depends on the signed distance function fI (X) and is defined as:

H (f (X)) =

{
H (fI (X)) = 1 if fI (X) > 0

H (fI (X)) = −1 if fI (X) < 0
(9)

with

fI (X) =

{
sign [n · (XI −X)] min ‖XI −X‖ , for XI ∈ Wb

n · (Xtip −XI) , for XI ∈ Ws

(10)

where Xtip are the coordinates of the crack tip and n is the crack normal. Only nodes which
are located in the domain Wb (X) are enriched with the additional unknowns a. The second
term of Eq.(8) is called the step enrichment.

The third term of Eq.(8) is applied around the crack tip Ws (X). In linear elastic fracture
mechanics, B is chosen to be continuous in the whole domain Ws (X), but discontinuous at
the crack line.

For cohesive cracks, there is no crack tip singularity and the crack opening displacement,
which the cohesive traction depends on, may be described by the additional unknown a only.
Assuming the equal test and trial functions and after substituting them in the weak form, the
final form of the equation of motion is obtained by

MIJ · D̈I = Fext
I − Fint

I (11)

where M is the consistent mass matrix and Fint are the internal forces. The cohesive forces are
taken into account in the external forces, Fext. Gauss quadrature is used to obtain the discrete
equations. Generally, four nodes are arranged so that they form the quadrature cell. Integration
cells that are cut by a crack are sub-triangulated as in XFEM. Please refer to Rabczuk and Zi
(2007) for the details of integration technique used here and the derivation of equations.
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Figure 2: Enriched shape functions for a set of ten nodes with the point of discontinuity at Xcr = 4.5

4 LUMPED MASS AND THE TIME STEP ESTIMATES

It is well-known that the explicit time integration is conditionally stable and, in order to
guarantee stability, the critical time step, ∆tc, should not be exceeded:

∆t ≤ ∆tc =
2

ωmax

(12)

where ωmax is a solution of the generalized eigenvalue problem K− ω2M = 0, where K is the
tangent matrix. Thus, λ = ω2 is a generalized eigenvalue.

This classical formula for standard finite elements is presented in textbooks such as Flanagan DP.
(1981); Belytschko et al. (2000b). For meshfree methods, the time step estimates without en-
richment are presented in Belytschko et al. (2000a); M. A. Puso (2008). According to these
references,the lumped mass not only saves us from solving a system of equations but also pro-
vides much larger time steps. However the lumping strategy for the mass matrix values of extra
degrees of freedom is problematic. Here we analyze the critical time step for the consistent
mass matrix of XEFG first and then we propose two methods for the mass lumping of XEFG
and show that the critical time step for the new methods is of the order of the critical time step
without enrichment through many numerical experiments. We also evaluate the critical time
step for various crack positions.

We first start with a 1D bar with patch of 10 particles. The Young’s modulus of the bar is E =
200GPa and the density is 7850kg/m3. Assume that the domain of influence (DMAX) is 2.3
The particle spacing is uniform and the distance between two neighboring particles is 1m. The
enriched nodes are those whose domain of influence is cut by the crack (point of discontinuity
here). Therefore, if for example DMAX = 2.3, then the nodes 5,6,7,8 are affected by the crack
and therefore should be enriched. Every enriched node will have one extra degree of freedom.
Using a step function to model the jump in the displacement field, we build the enriched shape
functions that are shown in the Fig.2. The node numbering is also shown in the same figure.

For the step enrichment, H , the consistent mass matrix is calculated by Eq.(11) except that
for the 1D case we will not have the branch enrichment B. Using a background cell for integra-
tion, at each point of integration the value of the shape functions at the neighboring particles are
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Figure 3: Normalized critical time step versus the crack position for the consistent mass matrix in 1D

calculated and put back to the equation to compute the mass. Thus, the consistent mass matrix
for the system in hand and the corresponding extra degrees of freedom is:

M =

∫

Ω0\Γc
0

%0




Φ1Φ1 Φ1Φ2 ... Φ1Φ10 Φ1Φ̃11 ... Φ1Φ̃14

Φ2Φ1 Φ2Φ2 ... Φ2Φ10 Φ2Φ̃11 ... Φ2Φ̃14

. .

. .

. .

Φ̃13Φ1 Φ̃13Φ2 ... Φ̃13Φ10 Φ̃13Φ̃11 ... Φ̃13Φ̃14

Φ̃14Φ1 Φ̃14Φ2 ... Φ̃14Φ10 Φ̃14Φ̃11 ... Φ̃14Φ̃14




dΩ0 (13)

In the Eq.(13), ΦI refers to the value of the shape function at the integration point X . For
the extra degrees of freedom i.e. 11,12,13,14 here, the value of the shape function is Φ̃I =
ΦIH (X −Xcr) and Xcr is the position of the crack.

The critical time step, ∆t, for the above consistent mass matrix dependens on the position
of the crack; however unlike XFEM, due to the smoothed nature of meshfree methods ∆t does
not vanish when the location of the discontinuity approaches the node (Fig. 3). Moreover
Belytschko et al. (2000a) showed that the critical time step depends on the size of domain of
influence. Thus, for a patch of nodes with nodal spacing of 1m different size of domain of
influence(DMAX), the critical time step versus the relative position of the crack to the neigh-
boring nodes is plotted in the Fig.3 for 1D and Fig.4 for 2D. This shows that, unlike XFEM,
a purely explicit approach can be used for dynamic XEFG since the critical time step does not
drop to zero. Moreover, the simulation can be run with lumping only the ordinary degrees
of freedom and maintaining the consistent mass matrix for the enriched degrees of freedom.
Therefore, we only need to solve the system of equations for the enriched degrees of freedom
which are few compared to the rest of the system.

4.1 Mass Lumping Strategy 1 (MLS1)

Now we wish to find a full lumped mass matrix which does not have any negative values.
As noted in Belytschko et al. (2000a), the ordinary degrees of freedom can be lumped by the
row-sum technique. However, for the enriched degrees of freedom the row-sum method is of no
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Figure 4: Normalized critical time step versus the crack position for the consistent mass matrix in 2D

use as noted in T. Elguedj (2009) for XFEM. Here we propose to use the special mass lumping
technique introduced by Hinton et al. (1976) and also Hughes (1987); Wriggers (2008). This
mass lumping strategy always leads to positive masses at the nodes. For finite elements, the
idea is to start from a consistent mass matrix and to scale the diagonal terms in such a way
that the mass is constant within the element. With little change this procedure can be used
for meshfree methods where instead of the elements we have the background cells Li and Liu
(2000). Therefore for EFG method we have:

mEFG
I = ϑhMIII (14)

where
MII =

∫

Ωh

%0Φ̃
2
IdΩ (15)

and the scaling factor

ϑh =
Mh∑m

I=1 MII

,Mh =

∫

Ωh

%0dΩ (16)

where m is the number of particles that are in the domain of influence of the integration point
X and Mh is the mass of the integration cell. Also, Φ̃I refers to any shape function including
enriched and non-enriched ones. Using Eq.(14) leads to a lumped mass matrix that conserves
the mass of the whole system even when the enrichment functions exist.

Hinton’s special lumping technique retains the diagonal part of the consistent mass matrix,
and assumes that the diagonal part of the consistent mass matrix covers the correct frequency
range of the dynamic response, whereas the non-diagonal part of the consistent mass matrix
is not essential for the final results. This technique ensures the positive definiteness of the
mass matrix, and eliminates the singular mode. A possible setback could be that it cuts of the
connection, or interaction between the neighboring material particles. However, this setback
may be compensated by the non-local nature of mesh-free methods, because each material
point in mesh-free methods is covered by more than one shape function; therefore the interaction
between the adjacent particles is always present. This lumping technique was proven to produce
high-quality, detailed resolution shear-band solutions in numerical simulations using the RKPM
Li and Liu (2000).
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Figure 5: A sample Gauss point where the neighboring nodes are enriched

4.2 Mass Lumping Strategy 2 (MLS2)

The second lumping strategy is based on the idea proposed by Menouillard et al. (2006);
T. Elguedj (2009). The idea is to impose that the discretization preserves the value of the ki-
netic energy with respect to rigid body translations. Adapting this idea to meshfree methods
introduces some complications, mainly due to the fact that, unlike in FEM, the so called Kro-
necker delta condition is not fulfilled. Thus, we use some simplifying assumptions in order to
derive a workable expression for the lumped mass matrix. Numerical experiments will show
later the good performance of the obtained expression.

Let us consider an equally spaced sample patch of N nodes, for which there is a point
of discontinuity in the middle (see Fig.5). The patch of nodes resembles a finite element
or an enriched element when there is a discontinuity. Having this in mind and following
Menouillard et al. (2006), we assume that all the nodes in the patch are enriched; therefore
we will not consider the blending region. Thus we have N extra degrees of freedom, the same
as number of nodes in the patch. As noted in M. A. Puso (2008), for any meshfree or finite
element method, the lumped mass of the ordinary degrees of freedom can be calculated by:

MI =
N∑

J=1

ρ (XJ) ΦI (XJ) WJ and MI = ρ (XI) WI if Φ (XJ) = δIJ (17)

where WI is the nodal weighting, which is the length in 1D, the area in 2D and the volume in
3D. Eq.(17) is the same as the result of the row-sum technique to compute the lumped masses.
The lumped mass obtained from the expressions at the left and at the right in Eq.(17) are close
if the support is tight.

Now we need a mass matrix in the format below:

M =




M1

M2 0
.

MN

M ′
1

0 .
M ′

N




(18)

where MI are the mass for ordinary degrees of freedom and the M ′
I stand for the mass of

the extra degrees of freedom. As noted by Menouillard et al. (2006) we can still use the row-
sum technique for the usual degrees of freedom. To obtain the mass for the extra degrees of
freedom, we use the concept of preserving the value of the exact kinetic energy with respect
to rigid body motions. In order to do this, the arbitrary enrichment function ψ is imposed
as a constant velocity condition everywhere within the patch of nodes by using the velocity
array V̂ = [ 0 ... 0 ψ ... ψ ]T , where V̂ denotes the value of the velocity approximation
evaluated at the nodes, as opposed to the value of the approximation parameters related to these
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nodes, which are arranged in V. Arrays V̂ and V can be related by the transformation method
in Chen and Wang (2000). With the assumptions made above, we can consider that V̂ = V,
which, in a general case, does not hold (remember that meshfree shape functions do not satisfy
the Kronecker delta properties).

We impose that the corresponding discrete and exact kinetic energies are equal in order to
preserve the value of the kinetic energy, which reads

1

2

∫

Ω

ρV 2dΩ =
1

2
VTMV (19)

Since the meshfree shape functions we are considering satisfy the partition of unity and
velocity is imposed equally to all the additional degrees of freedom, the nodal values of the
initial velocity are equal to the real values. Therefore, we will have

1

2

∫

Ω

ρV 2dΩ =
1

2

∫

Ω

ψ2ρdΩ =
1

2
VTMV =

1

2
V̂TM̂V̂ (20)

and M̂I = M̂J , as well as MI = M̂I . The symbol M̂I stands for the nodal masses calculated
from the shape functions, with ΦI (XJ) = δIJ . Of course, this is not true for the nodes located
on the boundary. However, we also assume our patch of nodes is away enough from the bound-
ary. Notice that M̂ and M are both diagonal and equal to each other, with the assumptions made
here. However, in general, we would have to consider a non-diagonal M, which is of no use
for our purposes, or MI 6= MJ , which will complicate the expressions of the resulting lumped
mass matrix.

With all the above considerations, from Equation (20) we have:

M̂ ′
I =

1∑NQ

I=1 ψ2

∫

Ω

ψ2ρdΩ (21)

This expression is similar to the one obtained in T. Elguedj (2009). Therefore for the step
enrichment we obtain:

M̂ ′
I =

1∑N
I=1 ψ2

∫

Ω

ψ2ρdΩ =
1∑N

I=1 12

∫

Ω

12ρdΩ =
1

N

∫

Ω

ρdΩ = M̂I (22)

4.3 Critical Time Step Analysis

In this section we study the relation between the values of the critical time step for problems
with and without cracks. We will show, that the time steps obtained in both cases are similar for
the lumping strategies presented in this paper. We then deduce an analytic expression for the
critical time step in one dimensional problems without discontinuity, which can also be used for
problems presenting a discontinuity. This expression can be generalized for two dimensional
problems following a methodology presented in Belytschko et al. (2000a).

Now, we will compare the values of the critical time step obtained with and without cracks for
different problems. These values are obtained for both lumping strategies in 1 and 2 dimensions.
As mentioned before, the critical time step also depends on the size of the domain of influence
(DMAX) which is carefully studied. The graphs for the critical time steps are all generated by
moving the location of discontinuity from one node to the neighboring node to study how the
∆t changes with respect to crack position.
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Figure 6: Normalized critical time step versus the crack position for mass lumping strategy 1 (MLS1) in 1D

4.3.1 Critical Time Step for MLS1

We will start with the critical time step results in 1D for the mass lumping strategy 1. Fig.6
shows the normalized ∆t for the new lumped mass matrix versus the crack position. As the
figure clearly illustrates, ∆tdiscon is of order of ∆tcon. As can be seen in Fig.6 there is a jump
in the graph which belongs to the point that the enriched nodes are changed. This is directly
related to the value of DMAX . The jumps in the Fig.6 occur due to the change in the nodes to
be enriched. In other words when the position of the discontinuity is altered, the enrichment of
the nodes changes as well. Fig. 7 also shows the values of ∆t versus crack position in 1D. It is
obvious that with increasing size of domain of influence(DMAX) the time step size increases;
however, a bigger DMAX implies excessive smoothing of the fields and more neighboring
nodes which in turn means more computational time.

In 2D, the crack position is varied. We first consider a pure step enrichment, Fig.8, where we
vary the crack position in the x direction while the crack completely cuts the patch. Then, the
tip is placed at the relative position of y = 0.9 and x is varying. This resembles a rather difficult
case since the crack tip will be very close to the neighboring nodes. Fig.8 and Fig.10 show the
normalized ∆t results for mass lumping strategy 1 in 2D with and without tip enrichment. Fig.9
also shows the computed ∆t for different DMAX. As it is realized from Fig.10, the order of
∆tdiscon to ∆tcon for the first lumping strategy drops down to 30 percent.

4.3.2 Critical Time Step for MLS2

Now we will analyze the mass lumping strategy 2 first for pure step enrichment in 1D ,Fig.11.
Fig.11 shows the normalized ∆t for MLS2 in 1D and Fig.12 shows the computed values of ∆t
with different DMAX. The critical time step of MLS2(∆tdiscon.) is similar to ∆tcon. Similar
to the results of MLS1 in 1D, Fig.13, Fig.14, Fig.15 and Fig.16 show the results for ∆t in 2D.
It can be realized from the figures that the ∆t drops to 85 percent which is perfectly usable for
explicit dynamic simulations. Moreover, the changes in ∆t with respect to DMAX complies
with the results obtained by Belytschko et al. (2000a) in the continuous problem. While the
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Figure 7: Critical time step versus the crack position for mass lumping strategy 1 (MLS1) in 1D
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Figure 8: Normalized critical time step versus the crack position for mass lumping strategy 1 (MLS1) in 2D
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Figure 9: Critical time step versus the crack position for mass lumping strategy 1 (MLS1) in 2D
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Figure 10: Normalized Critical time step versus the crack position for mass lumping strategy 1 (MLS1) in 2D
with tip enrichment
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Figure 11: Normalized critical time step versus the crack position for mass lumping strategy 2 (MLS2) in 1D
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Figure 12: Critical time step versus the crack position for mass lumping strategy 2 (MLS2) in 2D without tip
enrichment

critical time step in MLS2 drops to 80% of ∆tcon the MLS1 allows only 30% of ∆tcon. We
attribute these difference to the different mass values. While MLS1 conserves the mass of the
whole system which implies smaller mass for some degrees of freedom which leads to smaller
time step, the MLS2 increases the mass or in other words:

∑Ntotal

I=1 MMLS1
II <

∑Ntotal

I=1 MMLS2
II .

For a pure rigid body motion of two crack surfaces, with u = 0, MLS2 seems more appropriate
and MLS1 will produce too small time steps; however, when the kinetic is not conserved1,
MLS2 will provide a mass value that is too large.

Now, we will obtain an analytic expression for the critical time step in the former case.

1This will not be the case for generic problems.

Mecánica Computacional Vol XXIX, págs. 4781-4800 (2010) 4793

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Relative crack position

N
or

m
al

iz
ed

 c
ri

tic
al

 ti
m

e 
st

ep

 

 
D

max
=2.1

D
max

=3.1

D
max

=5.1

Figure 13: Normalized Critical time step versus the crack position for mass lumping strategy 2 (MLS2) in 2D
without tip enrichment
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Figure 14: Critical time step versus the crack position for mass lumping strategy 2 (MLS2) in 2D without tip
enrichment
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Figure 15: Normalized Critical time step versus the crack position for mass lumping strategy 2 (MLS2) in 2D
with tip enrichment
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Figure 16: Critical time step versus the crack position for mass lumping strategy 2 (MLS2) in 2D with tip enrich-
ment
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4.3.3 Analytical Critical Time step Estimates

By using the fact that, for both mass lumping techniques studied here, the values of the
critical time steps for the case with and without discontinuities are similar, we get some critical
time step estimates for the latter case. Keep in mind that the second mass lumping technique
reduces to the row-sum technique when no extra degrees of freedom are considered.

Consider a problem in one dimension. The domain is discretized in a finite set of nodes
[x1, x2, ..., xN ] that are uniformly spaced. The density is constant in all the domain. The inter-
vals between the nodes define the integration cells.

Let us use a standard Element Free Galerkin method to solve the problem. The kernel func-
tions are defined as cubic splines. The consistent mass and stiffness matrices in an integration
cell are

Mcell = %

∫

Ωc

ΦT (x)Φ(x)dΩc (23)

and
Kcell = E

∫

Ωc

Φx(x)Φx(x)dΩc (24)

where E is the Young’s modulus,

Φ =
[

Φ1(x) Φ2(x) ... Φn(x)
]

(25)

are the shape functions, n the number of nodes that are different from zero in the integration
cell and

Φ,x =
[

Φ1,x(x) Φ2,x(x) ... Φn,x(x)
]

(26)

are the derivatives of the shape functions.
Solving the integrals defined in mass and stiffness matrices, we will obtain

Mcell = ρ∆x




m11 m12 ... m1n

m21 m22 ... m2n
...

...
...

mn1 mn2 ... mnn


 = ρ∆xMdmax (27)

and

Kcell =
E

∆x




k11 k12 ... k1n

k21 k22 ... k2n
...

...
...

kn1 kn2 ... knn


 = E

1

∆x
Kdmax (28)

where ∆x is the length of the integration cell and mij and kij depend on Dmax. The matrices
Mdmax and Kdmax are introduced for the sake of convenience in further derivations.

Now, we need to solve the generalized eigenvalue problem, focusing on finding the largest
one. This eigenvalue is necessary to obtain an expression for the critical time step, as said
before. With this aim in mind, we can show that

λ
(
Mcell,Kcell

)
=

E
ρ∆x2

λ
(
Mdmax,Kdmax

)
(29)

where λ is a generalized eigenvalue. The above expression is valid for both the consistent and
the lumped mass matrices
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For finding an estimate for the critical time step, valid for various values of the parameters
involved, we will solve the eigenvalue problem for different values of Dmax and then obtain an
analytic expression by fitting techniques.

In Belytschko et al. (2000a) the largest eigenvalue obtained for the row-sum technique for
the same one dimensional problem is

λ = α
E

%∆x2D2
max

(30)

where α = 13.30. As shown in Belytschko et al. (2000a) this result can be generalized for two
dimensional problems. We will adopt the form of this expression in order to perform the above
mentioned fitting. With our framework, for the same mass lumping strategy we get α = 12.46.

However, the expression obtained for λ with the first mass lumping is not very sharp. In prac-
tice, the critical time step estimates obtained seem to be excessively large. For these reasons,
we propose an alternative that allows to obtain better estimations for λ.

In general, in the mass matrix integration cell there exist very small contributions of some
nodes compared with other nodes. This effect enlarges the value of λ. However, in the global
system, these big differences between the nodal contributions are not observed. Moreover,
in practice, it seems that these small contributions spuriously decrease the critical time step
estimation with respect to the real critical time step of the the global system.

We propose the following heuristic solution. Let us denote the length of the shape function
support as s, and consider a local coordinate whose origin coincides with the initial point of
the cell. In order to avoid small contributions, we will only consider the support of any shape
function from 0.25s to 0.75s. In Fig. 17, the dotted line shows the values that are excluded from
the shape function. Also, we will only use even values for the parameter Dmax. It is easy to see
that this avoids very little contribution of some nodes in mass matrix.

As an example, see Fig. 18. We have an arbitrary integration cell defined between the nodes
xi and xi+1. The value of Dmax is equal to 4. The dotted line shows the values of the nodal
shape functions that we exclude. That is, we are not considering the contribution of the shape
functions associated with nodes xi−3, xi−2, xi+3 and xi+4. Notice that these contributions are
the smallest in the integration cell considered.

Finally, solving the eigenvalue problem for different even values of Dmax, we obtain α = 7.1
in Eq. (30) for the row-sum technique (relevant for mass lumping 2) and α = 10 for the first
mass lumping technique.

5 CONCLUSION

Some contributions to the analysis of the critical time step for partition of unity enriched
meshfree methods in explicit dynamics for one-dimensional and two-dimensional problems
were presented. Only uniformly distributed points were considered. The reader interested in
more general examples is referred to Talebi et al. (2010). The enriched EFG method was stud-
ied, but the approach can be extended to other meshfree methods. We limited our studies to
problems involving material failure with step enrichment. In a first step, we analyzed the critical
time step for different positions of the crack when a consistent mass matrix is used. We found
that in contrast to the extended finite element method, the critical time step does not drop to zero
even for the worst case when the crack directly goes through a node. We attribute this effect
to the overlapping meshfree shape functions. We observe that the critical time step increases
when the domain of influence is increased which is in good agreement to results obtained e.g.
in Belytschko et al. (2000a).
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Figure 18: Nodal shape functions in an integration cell. This cell is defined in the interval between the node xi and
the node xi+1. The dotted line indicates the values of the shape functions that are not considered.

Afterwards, we proposed two ways of obtaining a diagonalized mass matrix for the enriched
EFG method. The first idea is based on an approach from Hinton et al. (1976) and guarantees
conservation of mass of the entire system. The second idea uses the concept of preserving the
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continuum kinetic energy value after discretizacion, as presented by Menouillard et al. (2008)
in the context of the extended finite element method. For the first method, the critical time step
drops to a value of around 30-45% of the critical time step without enrichment. For the second
method, the worst case scenario1, gives a critical time step of around 84% of the critical time
without any enrichment. We attribute these difference to a conceptual increase in the mass for
the second approach. The diagonalized mass values might lie somewhere in between these two
approaches.

Based on the assumption that the critical time step of the enriched formulation is of the order
of the usual formulation, we analytically derived critical time step estimates that can be used
for practical applications.
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