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Abstract.
This paper presents a robust level-set-based approach that integrates a Lagrangian shell finite element

solver and an Eulerian finite element high speed fluid flow solver, with no need for mesh adaptation,
where the fluid representation relies on a fixed unstructured mesh larger or equal to the initial fluid
domain. The Eulerian fluid solver is based on a fully explicit scheme, with time integration based on
characteristics over an unstructured mesh of four nodes tetrahedral finite elements. The structure is mod-
eled using a positional finite element method formulation to deal with geometrical nonlinear dynamics of
shells based on the minimum potential energy theorem written regarding nodal positions and generalized
unconstrained vectors, not displacements and rotations, avoiding the use of large rotation approxima-
tions. The fluid-shell interface inside the fluid mesh is tracked with level sets of a boundary signed
distance function. The conservation laws and continuity at the interface are enforced by applying proper
interface boundary conditions to the fluid and shell solvers at the beginning of each time step. For the
fluid case this is done by enforcing values over the nodes outside the domain which are connected to
nodes inside, together with a signed distance based slope limiter that also changes velocities values on
inside nodes settled very close to the boundary avoiding stability problems when most of the element
volume is outside the structural region.
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1 INTRODUCTION

The mathematical model for physics problems is traditionally done in a Lagrangian or Eu-
lerian description. The Lagrangian description expresses the continuum medium movement in
terms of the initial configuration and time, being very efficient for problems where finite dis-
placements are the main variables, such as in solid mechanics. By other hand, the Eulerian
description is defined in terms of final configuration and time, being well used for problems
where the variables are velocities instead of displacements, such as for fluid mechanics (Vali-
appan, 1981).

Both fluid and solid mechanics are involved in the study of fluid-structure interaction prob-
lems, implying the need to couple Eulerian description to Lagrangian description. One widely
used way to deal with such situations is to solve the solid based on a Lagrangian description and
the fluid based on an Arbitrary Lagrangian-Eulerian (ALE) description, in which an arbitrary
velocity may be applied to the reference domain.

Using ALE description for Navier-Stokes equations together with some mesh moving tech-
nique is a methodology able to deal with many fluid-structure interaction problems (Soria and
Casadei, 1997; Donea et al., 1982; Teixeira and Awruch, 2005; Sanches and Coda, 2008). How-
ever, some problems of large scale of displacements, such as air-bag or parachute deployment,
will require also a re-mesh technique if the ALE description is employed.

Some authors have proposed immersed methods for Eulerian-Lagrangian coupling, most
of them in the finite difference context, considering immersed boundary in a structured mesh
(Cirak and Radovitzky, 2005; Habbal, 2009; M. Arienti and Shepherd, 2008).

The technique proposed here couples a Lagrangian shell finite element solver to an Eulerian
fluid finite element solver by considering the shell boundary moving inside the fluid unstruc-
tured mesh in which it is immersed. The shell position is tracked with level sets of a boundary
signed distance function, and the fluid Dirichlet boundary conditions are applied by enforcing a
ghost flow over the nodes immediately outside the shell boundary and at same time limiting the
velocity slope based on the signed distance function.

The outline of the paper consists in first describe shell and fluid formulations, then describe
the coupling algorithm, and finally present examples of inflatable structure problems giving a
qualitative demonstration of feasibility and quality of the proposed technique.

2 FINITE ELEMENT METHOD FOR FLUID MECHANICS

The Eulerian description of fluid dynamics governing equations (Navier-Stokes) is well
known, leading to the equations:

∂ρ

∂t
= −

∂(ρui)

∂xi

, (1)

which is the mass conservation equation,

∂(ρui)

∂t
= −

∂(ujρui)

∂xj

+
∂τij
∂xj

−
∂p

∂xi

+ ρgi, (2)

which is the momentum equation, and

∂(ρE)

∂t
= −

∂

∂xj

(ujρE) +
∂

∂xi

�

k
∂T

∂xi

�

−
∂

∂xj

(ujp) +
∂

∂xj

(τijuj) + ρgiui, (3)

which is the energy equation. In these equations ρ is the specific mass, ui is the i velocity
component, with i being the Cartesian axis 1, 2 or 3 (x, y or z), p is the pressure, τij are the
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deviatoric stress tensor (i, j) components, gi is the i direction field forces constant, E is the
specific energy, T is the temperature ans k is the thermal conductivity.

2.1 Time integration along characteristics

Characteristics are the curves that indicate the spatial positions by where a given property φ
is transported (Fortuna, 2000) (see Fig 1).

Figure 1: Characteristics for non-linear convection

If there is no diffusion, the time variation of φ over a characteristic of coordinates x� is by
definition null:

dφ

dt
(x�, t) = 0. (4)

For the Navier-Stokes equations we can write:

∂φ(x�, t)

∂t
−Q(x�) = 0, (5)

where Q(x�) contains all the non convective terms.
We assume the following approximation for Eq. (5) (Zienkiewicz and Taylor, 2000):

φ(y)n+1 − φ(x)n
Δt

≈ θ(Q(y)n+1) + (1− θ)(Q(x)n), (6)

where x and y means respectively the characteristic positions at t = n and t = n + 1, θ is a
constant with value 0 for explicit solution and may be chosen larger than zero 0 and smaller
than 1 for semi-implicit or implicit solution.

The product uφ and the term Q(x) may be approximated by Taylor resulting the following
expressions:

uφ(x)n = uφ(y)n − (y − x)
∂(uφ(y))n

∂x
+

(y − x)2

2

∂2(uφ(y)n)

∂x2

+O(Δt3),
(7)
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Q(x)n = Q(y)n − (y − x)
∂Q(y)n

∂x
+O(Δt2). (8)

Dividing Eq. (7) by u and substituting on Eq. (6), then substituting Q(x)n by Eq. (8) and
assuming θ = 0 (explicit form), results:

1

Δt

�

φ(y)n+1 − φ(y)n +
(y − x)

u

∂(uφ(y))n
∂x

−
(y − x)2

2u

∂2(uφ(y)n)

∂x2

�

=

Q(y)n − (y − x)
∂Q(y)n

∂x
+O(Δt2) .

(9)

Assuming Δt = (y − x)/u on Eq. (9) and reorganizing, we have:

φ(y)n+1 = φ(y)n −Δt

�
∂(uφ(y))n

∂x
−Q(y)n

�

+
(Δt)2

2
u

∂

∂x

�
∂(uφ(y)n)

∂x
−Q(y)n

�

+O(Δt2).

(10)

One important point about this procedure is that the high order terms of Eq. (10), obtained
due to time integration along characteristics, introduce dissipation on stream lines direction,
which as shown by Zienkiewicz and Taylor (2000) are equivalent to the SUPG schemes when
the time interval tends to the critical time interval, and gets smaller effects as the time interval
get smaller.

2.1.1 Navier-Stokes equations discretization

From the same procedure that produced Eq. (10), applied to Eq. (2), one may write:

Δ(ρui)n+1 = Δt

�

−
∂(ujρui)

∂xj

+
∂τij
∂xj

−
∂p

∂xi

+ ρgi

�

n

+

Δt2

2

�

uk
∂

∂xk

�
∂(ujρui)

∂xj

−
∂τij
∂xj

+
∂p

∂xi

− ρgi

��

n

, (11)

where all the right hand side terms are known at the instant t = n.
Based on the Eulerian mass conservation equation, Zienkiewicz and Taylor (2000) suggest

the following expression for explicit solution:

Δρn+1 = −Δt
∂ (ρui)n+θ

∂xi

= −Δt

�
∂

∂xi

(ρui)n + θ
∂ (Δ (ρui))n+1

∂xi

�

, (12)

where θ is a arbitrary constant with value between 0.5 and 1.
Finally, applying to Eq. (3) the same procedure that produced (11), we have:

Δ(ρE)n+1 = Δt

�

−
∂(uiρE)

∂xi

+
∂

∂xi

�

k
∂T

∂xi

�

−
∂(uip)

∂xi

+
∂(τijuj)

∂xi

− ρgiui

�

+

Δt2

2
uk

∂

∂xk

�
∂(uiρE)

∂xi

�

+

Δt2

2
uk

∂

∂xk

�

−
∂

∂xi

�

k
∂T

∂xi

�

+
∂(uip)

∂xi

−
∂(τijuj)

∂xi

+ ρgiui

�

n

.

(13)
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2.2 FINITE ELEMENT discretization

Applying the Galerkin method to Eq. (11), (12) and (13), in order to obtain the spatial
discretization, making use of divergence theorem and neglecting the boundary high order terms,
we get the following expressions:

�

Ω

NΔ(ρui)dΩ = Δt

�

Ω

N

�

−
∂(ujρui)

∂xj

+ ρgi

�

dΩ

−Δt

��

Ω

∂N

∂xj

(τij − δijp)dΩ +

�

Γ

N(τijnj − pni)dΓ

�

−
Δt2

2

�

Ω

∂(Nuk)

∂xk

�
∂

∂xj

(ujρui)−
∂τij
∂xj

+
∂p

∂xi

− ρgi

�

dΩ

, (14)

�

Ω

NΔρdΩ = −Δt

�

Ω

N (ρui + θΔ(ρui)) (15)

and
�

Ω

NΔ(ρE)dΩ = Δt

�

Ω

N

�

−
∂ (ui(ρE + p))

∂xi

�

dΩ−

Δt

�

Ω

∂N

∂xi

�

τijuj + k
∂T

∂xi

�

dΩ +
Δt2

2

�

Ω

∂ (ujN)

∂xj

�
∂(−ui(ρE + p))

∂xi

�

dΩ+

Δt

�

Γ

φ

�

τijuj + k
∂T

∂xi

�

nidΓ,

(16)

where N is the shape functions vector.
Writing in a matrix form we have:

Mρui = Δtfu, (17)

MΔρ = Δtfρ (18)

and
MΔρE = Δtfe (19)

where fu, fρ and fe are the right hand side vectors and M is the mass matrix given by:

M =

�

Ω

NTNdΩ, (20)

The mass matrix M may be easily lumped, which is highly desirable for explicit methods.
However the use of consistent mass matrix can prevent spurious variations when Δt is small, as
presented by Zienkiewicz and Taylor (2000).

Therefore, we employ the iterative approach to solve the systems based on mass balance
given by:

(Δφ)l = (Δφ)l−1 +ML
−1

�
B −M (Δφ)l−1

�
, (21)

where Δφ is the unknowns vector, l is the interaction step, ML is the lumped matrix, M is the
consistent mass matrix and B is the right hand side vector. This procedure converges very fast
to the consistent solution for Δφ.

Solving Eqs. (17),(18),and (17), all the variables can be computed on instant tn+1 based on
the thermodynamic equations.
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2.3 Shock capturing

We still need to choose a shock capturing technique, as the standard Galerkin method is
unable to deal with strong discontinuities, such as shock waves.

Therefore we add an artificial dissipative term based on the pressure second derivative, given
by the following expression (Nithiarasu et al., 2006):

fµa = Δtµa
∂

∂xi

�
∂φ

∂xi

�

, (22)

where φ is the variable to be smoothed and µa is the artificial viscosity given by:

µa = qdifh
3 (|u|+ c)

pmed

�
�
�
�
∂

∂xi

�
∂p

∂xi

��
�
�
�
e

, (23)

where |u| is the modulus of the velocity vector, pmed is the pressure average over the element,
qdif is an user coefficient taken between 0 and 2, c is the sound speed and h is the element size.

3 POSITIONALFEMFORGEOMETRICALNONLINEARDYNAMICSOF SHELLS

The methodology employed is based on the minimum potential energy theorem written re-
garding nodal positions and generalized unconstrained vectors instead of displacements and
rotations. This characteristic avoid the use of large rotation approximations The shell formula-
tion is total Lagrangian and, due to its unconstrained vector mapping, it presents constant mass
matrix and therefore it is possible to apply the Newmak β integrator as a momentum conserving
algorithm.

3.1 Strain measure and specific strain energy potential

We employ the Green strain tensor to derive the proposed formulation. The Green strain
tensor is derived directly from the gradient of the configuration change function as depicted on
Fig. 2, represented by letter A, given as follows:

Aij =
∂χi

∂Xj

(24)

where χ is the configuration change function, and X represents variation regarding initial posi-
tion.

Following Ogden (1984), the Green strain tensor can be written as:

Eij =
1

2
[AkiAkj − δij] =

1

2
[Cij − δij] (25)

The variables Cij and δij are the right Cauchy-Green stretch tensor and the Kroenecker delta,
respectively. The following quadratic strain energy per unit of initial volume is adopted,

ue =
1

2
EijCijklEkl (26)

resulting into a linear elastic constitutive law relating second Piola-Kirchhoff stress and Green
strain, usually called Saint-Venant–Kirchhoff elastic law, i.e.:

Sij =
∂ue

∂Eij

= CijklEkl (27)
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Figure 2: Change of configuration

The elastic tensor is given by

Cijkl =
2Gν

1− 2ν
δijδkl +G(δikδjl + δilδjk) (28)

Where G is the shear modulus.
The true stress (Cauchy stress) is achieved directly from the Second Piolla-Kirchhoff stress

following simple expressions given by Ogden (1984), for instance.

3.2 Positional shell formulation

Shell structures consists on solids with one dimension much larger than the others.Therefore
Coda and Paccola (2009) develop the shell formulation based on the middle surface configura-
tion change as depicted on Fig. (3).

Figure 3: Middle surface mapping

The fictitious configuration change functions fm0 and fm1, from an auxiliary non-dimensional
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space respectively to the initial and final configurations may be written as follows:

fm0
i = Xm

i (ξ1, ξ2, Xji) = Nj(ξ1, ξ2)X
m
ji (29)

e
fm1
i = xm

i (ξ1, ξ2, xji) = Nj(ξ1, ξ2)x
m
ji , (30)

For any point out of the middle surface, its position at initial and final configuration may be
written as:

Xi = Xm
i + g0i , (31)

and
xi = xm

i + g1i , (32)

where the g0 and g1 are called generalized position vectors for the initial and final configura-
tions.

Considering a linear strain rate along the thickness, the vectors g0 and g1 may be written as
(Coda and Paccola, 2009):

g0i =
h0

2
ξ3Nj(ξ1, ξ2)e

0
ij (33)

and

g1i =
h0

2

�
ξ3 + a(ξ1, ξ2)ξ

2
3

�
Nj(ξ1, ξ2) Ḡij (34)

where Ḡij are the nodal values (unknowns) for the generalized vector at node j at final con-
figuration, h0 and h are respectively the initial thickness and final thickness, e0i and e1i and the

i components for unitary vectors
−→
e0 and

−→
e1 , normal to the midle surface at initial and final

configuration and a is the strain rate along thickness.(see Fig. 4).
Finally, the real middle surface configuration change from initial to final configurations is

represented by:

−→
f m =

−→
f m

�−→
Xm

�
=

�−−→
fm1

�
◦
�−−→
fm0

�−1

(35)

The gradient Am of the configuration change function may be expressed by:

Am = Grad
�−→
f m

�
=

∂
−→
f m

∂
−→
Xm

=
�
Am1

� �
Am0

�−1
. (36)

Using the shape functions, one may write Am0 and Am1 as:

Am0
ij = fm0

i,j = Nk,j(ξ1, ξ2, ξ3)Xki, (37)

and
Am1

ij = fm1
i,j = Nk,j(ξ1, ξ2, ξ3)xki, (38)

where the indexes ,j indicate derivatives on direction j.
After evaluating the gradient A, the Green strain tensor and the specific strain energy may be

obtained from Eqs. (25) and (26).
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Figure 4: Generalized vectors

3.2.1 The adopted shell element

The finite element adopted in for this paper is an isoparametric triangular element with 10
nodes (cubic shape functions). Each node has 7 nodal parameters: 3 position vector components
xi with i = 1, 2 or 3, 3 components of the generalized position vector Ḡi with i = 1, 2 or 3 and
the strain ratio along thickness a.

3.3 Time integration

The time integrator employed is the Newmark β, which is summarized as:

xS+1 = xS +ΔtẋS +Δt2
��

1

2
− β

�

ẍS + βẍS+1

�

(39)

and
ẋS+1 = ẋS +Δt (1− γ) ẍS + γΔtẍS+1. (40)

Coda and Paccola (2009) proved that for a positional total Lagrangian description, the New-
mark β with γ = 1/2 presents momentum and energy conservative properties for most of shell
dynamics problems.

3.4 Newton-Raphson procedure

From preceding developments, one may write the equilibrium equation as the minimization
of the energy functional as:

∂Ue

∂x
− F +Mẍ+ Cẋ = 0, (41)

where F is the external forces vector, C is the dissipative matrix and M is the mass matrix.
At instant tS+1, the equilibrium is expressed by the following equation:

∂Π

∂x

�
�
�
�
S+1

=
∂Ue

∂x

�
�
�
�
S+1

− FS+1 +MẍS+1 + CẋS+1 = 0. (42)
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From Newmark β method, Eq. (39) and Eq. (40), the equation Eq. (42) becomes:

f (xS+1) =
∂Π

∂x

�
�
�
�
S+1

=
∂Ue

∂x

�
�
�
�
S+1

− FS+1 +
M

βΔt2
xS+1 −MQS + CRS +

γC

βΔt
xS+1 − γΔtCQS = 0,

(43)

where the vectors Qs and Rs represent the dynamic contribution from the past and are expressed
by:

QS =
xS

βΔt2
+

ẋS

βΔt
+

�
1

2β
− 1

�

ẍS (44)

and
RS = ẋS +Δt (1− γ) ẍS. (45)

The second energy functional variation is expressed by:

∂2Π

∂x2

�
�
�
�
S+1

= ∇f (xs+1) =
∂2Ue

∂x2

�
�
�
�
S+1

+
M

βΔt2
+

γC

βΔt
. (46)

An Taylor series first order approximation for the energy functional f gives:

0 = f(x) ∼= f
�
x0
�
+∇f

�
x0
�
Δx. (47)

The Newton-Raphson process for each time step is summarized on estimate a value x0
s+1 for

the final position xs+1, and apply the interactive process:

∇f
�
xl
s

�
Δx = −f

�
xl
s

�
(48)

xl+1
S+1 = xl +Δx, (49)

where l is the interactions number. The interactions are interrupted when the admissible error
prescribed is reached.

4 FLUID-STRUCTURE COUPLING PROCEDURE

4.1 Implicit boundary representation

Before moving on to the discussion of the immersed boundary conditions prescription, we
first elaborate on the representation of the physical domain immersed on an unstructured mesh.
The proposed method for enforcing boundary conditions requires to identify all the fluid ele-
ments close to the boundary Γs and if they are inside or outside the physical domain Ωf . To this
end, a computationally efficient and scalable approach is to use a signed distance function (or,
level set function):

φ(x,Γ) =






distance(x,Γ) if x ∈ Ω

0 ifx ∈ Γ

−distance(x,Γ) otherwise

(50)

A discrete representation of the signed distance function can be obtained by combining the fluid
shape functions with the signed distance values at the nodes φI

φ =
�

NI,nφI (51)
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Note that the shape functions NI,n do not need to conform to the physical boundary since they
are only used for interpolation of a scalar field φ.

The resulting signed distance function describes after combining several entities again a
signed distance function, whose zero level set determines the resulting body shape.

In contrast to the usual parametric mesh based boundary representations (using segments or
facets), level set based representations are more suitable for problems with large deformations
and topology changes. There are efficient and scalable algorithms for converting a mesh based
representation into an implicit representation (e.g., closest point transform).

The interpolated boundary consists of the trace of the signed distance interpolated by linear
shape functions on a tetrahedral mesh (the adopted fluid mesh).

Next, all the fluid elements are tagged as physical, fictitious or boundary depending on
their position with respect to the physical domain. This classification is performed by com-
puting for each fluid element Ωef the minimum and maximum signed distance minφ(Ωef ) and
maxφ(Ωef ), respectively, then the classification is applied as (see Fig. 5):

• physical element: minφ(Ωe) > 0

• fictitious element: maxφ(Ωe) ≤ 0

• boundary element: neither a physical nor a fictitious element

Figure 5: Elements tags

This classification is unique as it is based on the signed distance function and not on the
parametric representation of the physical domain (e.g., via a surface mesh). The purpose of
the elements tags is to identify where the nodal fluid parameters must be modified in order to
enforce the Dirichlet proper boundary conditions. To this purpose, all the fluid mesh nodes are
tagged as active or inactive. A node k is active if φ(k) > 0 or if k bellows to some boundary
fluid element, and inactive otherwise.

This tags are computed for each time step and the inactive nodes as well as the fictitious
elements are deactivated from the analysis.
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4.2 Fluid Dirichlet boundary conditions

For each fluid node k, we find the closest point l on shell mesh, and store the shell element
Ωse for which l ∈ Ωse and the non-dimensional shell coordinates (ξ1, ξ2) for point l.

The active nodes k outside the physical domain (φ(k) < 0), need to be populated. For this
purpose we project the point k to the closest physical element determining a new point m from
where the values of density, specific energy and momentum are linearly extrapolated.

A way to prescribe the velocity at the boundary position would be to change the velocity
nodal values of the active nodes k with φ(k) < 0 (ghost nodes) in order to modify the values
over the boundary. However this procedure may imply on very large velocity values as φ(k)
becomes close to the element size.

To avoid this problem, we modify the velocity nodal values for the active nodes outside
the boundary and also the velocity nodal inside a strip of width δ according to the following
equation if the flow is inviscid:

uf = uf + (1−
φ

δ
)[(us − uf ) · n]n. (52)

or if the flow is viscous:

uf = uf + (1−
φ

δ
)[us − uf ] (53)

where uf is the fluid nodal fluid velocity vector, us is the shell velocity vector evaluated at the
shell closest point to the fluid node. This procedure applied to a 1D example is depicted on Fig.
6.

Figure 6: Immersed boundary condition enforcement

The term (1 − φ
δ
) limits the slope of velocity on direction normal to the boundary but also

introduces an artificial stiffness to the problem. However if we adopt a δ equal to the element
size, this artificial stiffness is equal to the one naturally produced by an mesh of same elements
size adapted to the boundary.
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4.3 Shell Neumman boundary conditions

Taking advantage of the fluid shape functions, the stress tensor may be evaluated directly
over the position of the embedded shell nodes k or directly over the shell quadrature points. the
shell loads with respect to the Cartesian axes are given by:

qkj = [−τjlnl − pnl]Pfk
, (54)

where the indexes j and l represent Cartesian direction and nl is the l component form the
normal vector to Γs.

5 NUMERICAL EXAMPLES

5.1 Inflatable tube

In order to compare the proposed coupling procedure to the ALE scheme, we propose a
problem consisting on a elastic tube with length L = 0.7m along the x axis, diameter D =
0.12m and thickness h = 0.0025, with all the nodes of coordinate x ≤ 0.05 m or x ≥ 0.65 m
completely clamped.

The tube contains an ideal gas at rest with density ρf = 1.2kg/m3 pressure p = 99kPa and
specific heat ratio γ = 1.4. At left hand side enters a gas with ρfi = 2kg/m3, pfi = 200kPa,
producing a shock wave. At all right hand side and along the tube walls an slip wall boundary
condition is applied. This condition is kept constant until t = 0.0025 s, when the input is closed
and the boundary conditions are slip wall over all the boundary.

The tube is discretized by 760 elements and 3468 nodes (Fig. 5.1 and its material has Young’s
modulus E = 10MPa, Poison ratio ν = 0.4 and specific mass ρs = 470kg/m3

The fluid mesh where the tube is immersed is depicted on Fig. 5.1, whit 211585 elements
and 38147 nodes. For the ALE case we employ a mesh approximately with the same element
size.

Figure 8 presents a snapshot of pressure distribution and displacement for both ALE and
immersed case at t = 0.004s, where it is possible to observe good similarity.

On Fig. 9, a comparison between the radial displacements at x = 0.34m is done.

(a) Fluid (b) Shell

Figure 7: Tube discretization

5.2 Airbag inflation

As a qualitative example, we simulate and airbag with the geometry given by Fig. 10.
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(a) Immersed t = 0.001 s (b) ALE t = 0.001 s

(c) Immersed t = 0.002 s (d) ALE t = 0.002 s

Figure 8: Pressure distribution (Top) and shell displacements magnitude (Bottom)
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Figure 9: Radial displacements vs. time at x = 0.34 m
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Figure 10: Airbag geometry adapted from Cirak and Radovitzky (2005)

This is only a qualitative example, once due to computational reasons the airbag mesh is not
fine enough to represent the wrinkles that appears in high frequency and also the formulation is
not ready to simulate self contact, what is common in a problem like this.

The airbag on its flat initial condition is filled with an ideal gas at rest with density ρf =
1.3kg/m3 pressure p = 107kPa and specific heat ratio γ = 1.4. At inlet enters a gas with
ρfi = 10kg/m3, sound speed c = 370m/s and γ = 1.4 which produces a shock wave.

The input condition is kept constant until t = 0.004 s, when the input is closed and the
applied boundary condition is that of slip wall.

We assume that the problem is radially symmetric and discretize 1/4 of the problem. The
airbag is discretized by 258 elements and 1237 nodes (Fig. 11(b) and its material has Young’s
modulus E = 3GPa and specific mass ρs = 1000kg/m3 and thickness h = 1.5mm. The aibag
is clamped over all the input area and simmetry boundary conditions are applied to the planes
xz and yz.

The fluid mesh where the airbag is immersed is depicted on Fig. 11(a), whit 263667 elements
and 47491 nodes.

Figure 12 presents a snapshots of pressure distribution and deformed airbag deformation at
each 0.12ms and Fig. 13, plots the top displacement versus time.

(a) Fluid (b) Shell

Figure 11: Airbag discretization

These results show that the present procedure is a robust method for analysis of inflatable
structures.
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(a) t = 0.0012 s (b) t = 0.0024 s

(c) t = 0.0036 s (d) t = 0.0048 s

(e) t = 0.006 s (f) t = 0.0072 s

Figure 12: Pressure snapshots

6 CONCLUSION

The proposed approach furnishes a general algorithm for explicit coupling of Lagrangian
shell solvers with unstructured-mesh-based Eulerian fluid solvers.
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Both, fluid and shell solver have demonstrated to be appropriate for fluid-structure analysis.
The efficiency and robustness of the proposed approach is demonstrated with the inflatable
structures examples.

For future works we suggest: 1. A complete quantitative numerical study. 2. A deep study
of algorithms for signed distance function evaluation in order to optimize the computational
performance. e. The extension of the fluid solver to incompressible flow cases. 4. The study of
self impact models for the positional shell solver.
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