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Abstract. The Gurson-Tvergaard-Needleman material model is frequently used to model ductile
failure. At the inception of ductile fracture, the modeling of the strain localization phenomenon
requires the use of different scales for the description of the continuum and the localized subdomains,
thus inducing mesh dependent results when finite elements are used.

In this work the necessary and sufficient localization conditions are explored for the Gurson-
Tvergaard-Needleman material and the outcome is inserted into a mesh indifferent formulation with
the use of embedded strong discontinuity modes. An heuristic rule to set a proper interscales
connection between the localized and the continuum scales is introduced. The new formulation does
not require a specific mesh refinement to model strain localization and provides mesh independent
results.
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1 INTRODUCTION

Ductile fracture is a complex phenomenon normally preceded by a strong plastic deform-
ation localized in a very narrow zone. The mechanical process that triggers this deformation
concentration is the strain localization, seee (1976) andOttosen and Runess@§h991). The
typical band width of this localization is much smaller than the problem domain dimensions
with the material inside the band undergoing a strong degmdptocess and the off-band ma-
terial undergoing a less severe degradation process. Thus a multiscale formulation is required
to asses the simultaneous modeling of the localized plastic deformations and of the elastoplastic
continua.

To describe the ductile material behavior we adopt the Gurson-Tvergaard-Needleman (G-T-
N) material model. G-T-N material model is used to model the material mechanical degradation
in void containing ductile materials. The plasticity model was introduce@unson(1975)
and Gurson(1977), and modified iMvergaard(1981), Tvergaard(1982) andTvergaard and
Needleman(1984). It incorporates to the standafgdplasticity model the material degradation
that is due to the nucleation, growth and coalescence of voids.

We summarize some of the techniques that have been proposed for dealing with the multiple
coexisting scales in shear banding of ductile materials. The enhancement of the strain fields
used in the finite element formulation was discusse@iitiz et al.(1987), where a strain jump
function was added to each element where the localization criterion was satisfied. Different en-
hancement techniques were also propose&mero and Garikipat{1996),Simo et al.(1993)
and Sluys (1997) among others.

Discontinuous displacement fields were used to represent the strain jump across the band
in the strong discontinuity approach, asGfiver (1996), Oliver et al.(1999) andOliver and
Huespe(2004). To model shear bands using this technique, a specific Ssétgning material
law was defined for the material inside the bands.

X-FEM techniques were used for modeling shear ban@simaniego and Belytschk®005)
andAreias and Belytschk006) among other references. There the enhancement of the dis-
placement field was performed with a fine scale strain function. A combination of X-FEM for
the macroscale and FEM for the microscale was present@eliytschko et al(2007). This
multiscale aggregating discontinuities method (MAD) excludes the subdomains with internal
discontinuities from the coarser mesh and replaces them with an equivalent discontinuity to
overcame instability using X-FEM. In the finer scale a unit cell is used to determine the beha-
vior of the microscale under the loadings obtained from the larger scale. The multiple discon-
tinuities existing in the microscale are aggregated into only one equivalent to be injected into
the larger scale.

Our objective in the present paper is to extend the two-scale finite element formulation de-
veloped inD’hers and Dvorkin(2009) andD’hers and Dvorkin(2010) to model shear banding
in G-T-N materials. For this purpose a stress localization criterion is also devised.

The paper is organized as follows: the G-T-N material formulation and the derivation of the
stress localization criteria are presented in sections 2 and 3. The finite element formulation, the
strong discontinuity modes and the virtual work principle are presented in sections 4, 5 and 6.
The required interscales connection is attained via the equivalency of the dissipated work and
the scales relation is derived for G-T-N material, in section 7. A test case is conducted in section
8 and the conclusions are stated in section 9.
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2 THE G-T-N MATERIAL MODEL

The Gurson plasticity material model was first presentecinson(1975) andGurson
(1977) with the objective of modelling ductile porous media. Suektenmls show an increase
in their void content during the plastiiow. Since the model introduction a number of modific-
ations were proposed to adjust its parameters and a third void growth mechanism due to coales-
cence was added, ségergaard et al(1981), Tvergaard1981) andlvergaard and Needleman
(1984). The complete set is now called the Gurson-Tvergaard-blaadimaterial model.

The yield surfacé® depends on the hydrostatic stréss, the.J, equivalent stres$ . and
internal state variable§;" (i=1..number of internal state variables),

i) (tah,t Oe,! (Z) =0, (1)
1
tgh - 5 tg : tga (2)
3 =" 2
o, = : (3)
being ‘s the deviatoric stress tensor afgthe metric tensor.
Explicitly the yield surface is defined ifivergaard and Needlem#h984) as,
¢ ‘o ? ¢ ¢ tp2 2
@:(tay) +2 fqlcosh(a)—l— f°ai, (4)
with, .
3 Op
t
= —g—02t. 5
@ 2Q2t0 (5)

Y

The parameterg, andg. are set to fit the experimental result§,is the void volume fraction
and’c, is an equivalent tensilgow stress representing the actual microscopic stress-$tte.
adoptq; = 1.5 and ¢ = 1 for the present work, sééplic and Needlema(iL988).

The evolution of o, is modeled with an implicit hardening law presentedhimvas(1987),

%_y:(t/o-_y_‘_ﬁtgp)]\] (6)

0 0 0
Oy Oy Oy

where’s, is the initial yield stressSg” is the microscopic equivalent plastic strain a¥ids the
hardening exponent. To determifig’, it is assumed the equivalence of the microscopic and the
macroscopic plastic workyence,

(1—tf) o, de" = 'o : de”. (7

Then solving ford zFwe get,

.,
[ty
.

to -

(1= *f) oy

dzf =

(8)

We determin€ o, using the fact that during yieldingd = 0 hdds. Thus we solve fofo,
from Eqgn. @),
to,? = tayQ (1 + b2 qf —2%f ¢ cosh (ta)) . (9)

\We indicate the tensorial product between two tensorsteand the number of underlines is the tensor order.
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In the absence of distortive stresses, we can define the hydrostatic stress required to produce
yielding. Hence usingr, = 0 in Egn. @) we get,

top,., = 31(]2 ‘o, arccosh (%f{;gf) . (20)
Thevoid content growth is associated with three mechanisms:
e The growth of existing voids, driven by the bulk deformation,
fgrown = (1= 'f) de”: 'g (12)
e The nucleation of new voids, driven by the plastic deformatio
Afnucteation = ‘A dg” (12)

where’ A is a distribution function. We define functiéA based on the assumption that the void
nudeation rate has a normal distribution as suggestéthin and Needlemafi980),

1/ teP —en\’
tA = fN exT - (7]\[) . 13
SNV 2 Pl SN (13)
In the above equatiory,y is the void volume fraction of nucleating particlesy its standard

deviation and=y the mean strain for void nucleation. We adept = 0.1, fy = 0.04 and
EN = 0.3.

e The coalescence mechanism, driven by the void content. fticilsded into the yield
condition by modifying’ f once a critical void fraction,f.,, is reached, seévergaard
ard Needlemai(1984). Then, when thé,..; value is reached, the material is assumed to
loose all its load carrying capacity thus opening a crack. The values adoptéd.are
0.15 and fr,..: = 0.25. The pseudocode for this modification is as follows,

tf tf < me't
thod - { %*fcm't (14)

fCritical + m (tf - fC’rit) fC’rit < tf < fFract
= Faton (15)
It must be noted that the internal variables that describe the deformation histdrfy amre:

tzP with explicit dependence of the yield surface (Egf)) bn‘f and implicit on’z” through
Egns. ©) and (L3).

The plastic strain increment results naturally split into volumetric and deviatoric contribu-
tions by chain derivation of the associatéalv rule as is discussed Aravas(1987),

0ld 10t 0td
P _ _
dg” = dA oo a\ (58’50;1 t§+ dto, tg) (16)
where tﬂ is the deviatoric direction tensor,
3 s
tQ = §t0-_ . (17)

[
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The tensofn can be determined from the converged state or from the elastic trial state as the
return to the yield surface is along &ravas(1987).

=

ts

= (18)

t

13
DN W
o

being th the trial elastic stress tensor.
The integration of the plastic strain (Eqri.6)) using a backward Euler scheme, provides the
increment of plastic strain fromto ¢ + At,

1
P t+At P t P P t+At P t+At
g = el — Tl = oe g el T, (19)

109

where ¢’ is the volumetric plastic strain increment asjdis the distortive plastic strain incre-
ment defined as,

0P
P _
Eh = )\at—(jh (20)
0td
P _
g, = )\8 i (21)
Eliminating A from the previous we get,
Lo ‘P
pO® P07 (22)

5 5
hotg, ¢ Otoy

To determine the equivalent plastic strain increment, we introduce Ed).irfto Eqn. 8)
and integrate it backward Euler to get

A P A P
=P _ t+AtzP _ t o A (23)
(1— tHatf) t+dig

g = 5 P =

The void growth is found integrating the addition of Eqnsl)and (2). Then considering
Egn. (19) we get the void volume fraction increment betweamd: + At

BRALptp (1_ t+Atf) Py t+AL g zP (24)

Summarizing the calculation procedure, Eqris3)(and 24) are the evolution of the internal
variables, and have to be solved simultaneously with Egasaifd ¢2) to determine the new
state att + At.

3 BIFURCATION DETECTION

We proceed with the determination of a stress based criterion for the bifurcation detection
for the G-T-N material model based on the acoustic tensor properties. We state the fourth order
constitutive tensor for the G-T-N material, s8&nchez et al(2008) andZhang and Niemi

(1995),
(tcE : tM) (tM: tcE>
IQEP _ 1B _ A\ = —J\T =

téf ( tf’ tg«P,t O-h)

lle!

(25)
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wheretgE is the elastic isotropic constitutive tensé‘rQE = 2L lglg 4 2( tI) ‘M is the

o
llog~

plastic direction tenso(tM

on the internal variable'sf and ‘z P:
The function’¢ is,

)andtg is a positive scalar function dependent’ep and

tf(tf, tght ah) = (tM: th : t&) — 'Ng (1 — tf) trace(tg) (26)
(Nt )2 27)
(L—=1f) toy

and,

tS( f tPt h>>0

In the previous Eqns.26) and £6), the fact that Eqn.9) holds and the following definitions
andresults adopted frorBanchez et a(2008) have been used,

t q192 . 3

M = E f sinh (toz) t§+ﬁ tg (28)

'Ne= (2qicosh (‘) =2 ¢ ' f)
t
'‘R=(4q:"f cosh(‘a) =2-2q°"f* = ‘o5 trace ('M)) 7H
y
1y 00y
H= der|,
anodzfzed

'Hy =

= df .

To simplify the algebraic operations, we set a convenient Cartesian coordinate $¥stem
aligned to the band withx, in the ‘n—direction and'x, in the ‘m—direction and build aD
function as the determinant of the acoustic tensor,

D = det (_ tCEP. tA_) (29)
The limit value for’o, expressed in Eqn.9f becomes a restriction because the stress state
has to be on the yield surface in order to bifurcate, since no localization is possible inside the

yield surfaceOttosen and Runess¢h991).

We introduce the fact that stress deviator components are not mutually independent as Egns.
(3) and Q) hold, therefore we determine a suitable restriction for theatieric components
t515 and *3y3,

2
8127+ 5157 = UTy (1 +f%qi —2"f qu cosh (tOé)> - (%112 + "800 + 511 TSa0 + t§232)
(30)
Replacing Egns. ) and @0) into 29) we get after some laborious algebra,
Dg=@Q (té’n2 + 1 (t=§’222 + 511 "8 + 3’232) —Q2— Q3 t§11) (31)
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where a set of constants that do not depend on the orientation of the coordinate’gystave
been defined,

G4
o, i€ (1 20)
Ql = 2(1 - V>

Q =36

_ ' () trace (M)*  4q,'fcosh(‘a) —2 - 2(q 'f)’
Q2= "oy (1-v) (18G_ - (i-20) 3o,

2
Qs = g trace (‘'M) ‘o,* (1+v)

To find a necessary condition for bifurcation, independefrtyn stress deviator compon-
ents, we assume a certain known internal variables state definefdang ‘z” along with’c),
and then look for the extremum @ with respect tds;;, ‘55, ands,s. By differentiation it
comes out that there is only one extremum located at,

2
b1 = §tmce (tM) to,? (32)

1599 = —%trace (tg) tayQ

t§23 =0

This extremum is a minimum since théessian of D is always positive definite.

Sunmmarizing, asD is continuous and has only one extremum for any known statethisa
extremumD < 0 it would imply that D vanishes at some region in the independent deviatoric
stresses spacfs, '5q, 'S93) Or at least at a point. Therefore Eqn31) evaluated at the
deviatoric stresses resulting from Eqn82],

1°¢ 6240 tf cosh (fa) —1— (g 'f)?  (1+v) trace (‘M) <0
2G T 7,2 31—20)

becomes a necessary condition for bifurcation in G-T-N materials. It is a necessary condition
and not a sufficient one since the requirement for the stress state being able to satisfy conditions
stated in Egn. 32) simultaneously amn—direction is too restrictive. This is due to the fact
that a stress state could be able to fulfil < 0 at some point in the deviatoric stress space,
nevertheless not being able to reach the absolute minimum. of

Although Eqgn. 83) is not a sufficient condition, it is useful for studying the graeters
influence on localization. To focus on variables that trigger dloallzation, we adopt the fol-
lowing set of G-T-N material parameter&: = 200G Pa, %0, = 600M Pa, andv = 0.3. In
Figs. 1 and2 we map the region of the' — (IZZ) (Relative hydrostatic stress) plane where the
necessary condition is fulfilled for increasing levels'ef ; onthe same plane we plét,,,, ,,
seeSanchez et al2008). In Fig. 1 it can be seen that for a null hardening expon&ntthe
feasibility of bifurcation advances towards the compressive region Wiésincreased. As no
hardening is presenty;, . .. is the same for ever{g”. It must be noted that for this situation
with no voids present, the localization results are coincident with those obtainefd fam
Mises plasticity.

Increasing the hardening parameterNo= 0.1, in Fig. 2, the localization feasibility gets
closertdoy,, ., and the area of localization with niili”” vanishes following the previous tend-
ency. In this figure the admissibility limits are clearly distinguishable due to the high hardening.

(33)
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Figure 1: Necessary condition fulfillment with N=0.

admissible limit

0.15

Figure 2: Necessary condition fulfilment with N=0.1.

To state the sufficient condition for localization, assuming EdiB) (s fulfilled, we must
determine if the available stress deviatoric components can sadtisfy0 for some'n direction.
For simplicity we restrict the following analysis to plane problems, but a three-dimensional
problem could be solved adding the second projection angle. Thus we'aglopt0 for plane
strain.

To find the angle3 where D is minimum we state the deviator stresses in the coordinate
systemz; referred to the global coordinates systemand introduce them int&(). Thus we
e,

D = R+ R;sin(253) + Ry cos (23) + Ry sin (40) + Ry cos (40) (34)
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with the following constants dependent on the actual stress state:

5 t ot 2 t 4+t
R= (s +' 522)” (z _ y) N M _ Q3M 4t 1O
Ry = s (Q?, + (t511 + t522) (1- 2’/))
("s11— 's20) t t
Ry = 5 (Q3 - ( S11 + 322) (1- 2’/))
_( fs11 — t522) tg
T S

1 tSH — t822 2 1
Ra=5 (T —5

As no closed form for the minima dP could be founds is determined via a global search in
theinterval (—7 /2, 7/2) and then a bisection algorithm is performed to improve thelteku
must be noted that th&¥ parameter has no inénce in direction obtained from the the necessary
condition fulfilment as deviatoric stresses in EqA4] results scaled by,,.

The resulting condition depends on the stress deviator and the internal variables. To invest-
igate its behavior we plot the angle between the localization and the maximum shear direction

in the scaled deviatoric spac(éf,—lyl) — (2—2;) for several parameter sets. In addition scaled

shear <ttfj—1y2> isolines are added to the plot for better understanding.

In Fig. 3 it can be seen that the localization angle coincides with theman shear for
low tf = 0.001,)2" = 0.001 and’c;, = 0.06M Pa. In Fig. 4, increasing the parameters
upto’f = 0.1,'2"7 = 0.1 and s}, = 600M Pa the localization area moves towards positive
s11. In this case we find a significant difference between the maximum shear direction and

the localization one. The contraction of the admissible stresses in all the figures is due to the
tf growth.

[

0.02
0.015
0.01

0.005

0 0.2 0.4 0.6

Figure 3: Angle between localization and maximum shear directignor {f = 0.001,!£” = 0.001. and
ton, = 0.06 M Pa.
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Figure 4: Angle between localization and maximum shear direcfigrior {f = 0.1,'z" = 0.1 and oy, =
600M Pa.

Summarizing, the resulting procedure for localization detection is as follows: if EBfi). (
is fulfilled we find the 5 angle that minimizes Eqn.3{). If there D < 0 then the material
localizes atg direction, if not the bifurcation is precluded.

4 FINITEELEMENT FORMULATION

We solve the nonlinear problems using an incremental procedure. Hence we write,
t+Atﬂ — tu_i_u (35)

where, 2% : is the displacement field at ¢ At)-configurationw is the displacement field
that defines thet}-configuration and. is the incremental displacement field that goes from the
(t)-configuration to thet(+ At)-configuration.

Wediscretize the continuum using the finite element methodBsée=(1996.), interpolating
in every element the displacement field using interpolation m&ifix, y, z) and the respective
nodd displacements vectof$2‘U, ‘U andU,

t+AtQ _ E t+AtH — H tH + EH (36)

To be able to describe the continuum displacement and the localization mechanism, the in-
cremental displacement field is decomposed into continuum and localized contributions:

U = Ueopt + Uppe- (37)

These contributions are also interpolated using the interpolation ntdtard the respective
incremental nodal displacemertt, ,,, andU,, .. Hence it results that the total increment of
nodd displacements is,

U=U,,+ U,. (38)

To model the localization mechanism, we introduce a specific deformation @adt® the
formulation,
Hloc =7 @7 (39)
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where~ is the increment of a scalar parameter that is used to detetherlecalization mech-
anism evolution. The incremental relation for the parametiey

ALy = Ty 4. (40)

Therefore evaluating Eqn3() we get,

v=HU=HU-70)+Hy0O (41)
where we recognize that,
Uppe = H /7 @ (43)

Here it must be noted that, ,,, represents the displacement in the continuumwandepresents
the displacement induced by the localization and both are distributed along the element domain.
The continuum contribution is physically meaningful since it is defined in the proper scale, but
the localized contribution does not, since it distributes the localization effect over the element
domain.

5 MODE CONSTRUCTION

The construction of th® modes was presented fds materials inD’hers and Dvorkin
(2009) andD’hers and Dvorkin(2010), where it is considered that the localization mechanism
behaves as rigid-plastic, neglecting therefore its elastic component. For the strain field we also
use an additive decompositioconsidering infinitesimal strains we get,

t+At§ _t

%)

+e. (44

The deformation incrementt is decomposed into elastic and plastic parts and the elastic
strain increment only contributes to the continuum scale but the plastic deformation increment
contributes to the continuum and to the localized scales,

e=¢g” +¢e° +¢” (45)

=cont = =cont = =loc’

Using the Egns. 42) and ¢3) we get,

Econt = chont + gtl;nt = B (H -7 @) (46)
Eloc = glIZc = B Hloc = B Y Q ) (47)
where B is the element strain-displacement matrix andghg,, eX . ande’ . are the respective

strain tensor components arrays resulting from adoption of the Voight notation
To construct th@® mode we impose two conditions on it:

2The strain components in the xy plane for plane problems are:
o forplanestresscased = [ e1 e &1 | = €z &y 260y |,

o forplane strain and axisymmetriccaseS = [ e1 ez €3 &1 | = car Eyy €22 264y |
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e It has to have its maximum distortional deformation alignethvtihe band (defined by
angles, which is the angle between directidnsand ‘x;)

_Sloe o (25 + g) (48)

€loc; — €locs
e The volume strain has to be controlled,

Elocy + Elocs + Elocs = Elocy - (49)

To build © for the particular case of 2D elements, we recall that-anode quadrilateral
element formulated in the isoparametric natural element spagghas2 N eigenmodes among
which there can be found: two pure shear modes, one with its maximum distortion tilted from
the axes by; and one with the maximum distortion aligned with the axes, and one volume
change mode. By linearly combining these modes we can constreitdaa base so as to
obtain a pure shear mode in any desired direction and add a volume change mode to control the
volumetric strainig.

We compute the strain components at the element center from the three modes,

e, =B. ¥, (50)
€1 = Bc lll

Err = Bc lnl

whereB, = B(z{, z9) is the strain-displacements matrix evaluated at the eleneemeic The
linear combination of the above defined strain fields results in the localization gtyainshere
cr, ¢ andegy; are constant parameters to be determined,

Eloe = CIE; Y C11E[r T CrIIIE I = EC (Clil + CIIEU + CIIIEIH) (51)

The G-T-N plastic evolution in a shear band does have volumetric strain besides distortive
strain (Egn. (2)). To include both effects in th® mode formulation, we decompose the band
strain into two contributions: one distortive {,,.,....) and one volumetrice(,;,,.ctric)- FOr
each of these contributions a strong discontinuity mode is obtained, a distortive @opar(d
avolume change®, ) one.

The localization modes are determined linearly combining the strains belongingdwetine
base (Egns. £0)). Hence,

_ 4 d d _ d d d
Edistortive = C1Er + C11€r1 + €1 €1 = Be (Clil + ¥+ CIIIEIH) (52a)

__ U (% (% . (0 v (3
Evolumetric = C1Er + Cr1€1r + i€ = B (7 ¥ + ¥ + ¢ ¥ yyr) (52Db)

where ¢ andcy, are two sets of constants. Both sets are determined independently using the
conditions in Eqns48) and £9).

Hence we request for th®_ mode thak ;... Nas its maximum distortional deformations
aligned to the band anglé and no volume change. Thus,

Edistortives — tan (2ﬁ + Z)

Edistortiver — Edistortives 2

Edistortive, + Edistortives + Edistortives — 0 )
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from where we determing!, ¢, andc?,; imposing that?;, = 0 if €, andg;; are incompress-

ible orc?;; = 1 otherwise.
Then, for the mod®,,, we request,;.,,....i. 10 have only volume change and no distortion

in any direction. Thus,

Evolumetricy + Evolumetrics + 5volumetricg, =1
Evolumetricy — 0
Evolumetricy, — Evolumetrics — 0

from where. we determiney, cqjlland cy;; imposing again that},, = 0 if g; andg;; are
incompressible ofY,; = 1 otherwise.
Finally we get the normalized modes,

e — ¥+ ¥y + i ¥ (53)
- |Ccflil + Ccfllin + Ccflninﬂ
¥+ ¥+ ¥ (54)

@ - 5
" |7+ 5+ ¥
andtheir respective strains per unit
(55)

Edistortive — B
g =B,

Swvolumetric —

Now we get the localization strains per um;tgloc,combining the strain contributions scaled
by parameters, anday,,

|® |®

gloc = Qe gdistortive + @n gvolumetric ’ (56)
where the straing, , &, ~ andé _are written in tensor form instead of a vector
—loc’ =distortive —volumetric

array.
To determinez, anda,, we resort to the continuum strains without localization present, i.e.

the resulting strain if band is inactive. Therefore we enfdrceto have the same proportion of
volumetric and distortive strains as the continuum would fave if the element band was closed.

Equating Egn. 19) to 66) we get,

1
P t+At t+At, > v
gécontinuumh § + Econtinuume 2 = Qe £ istortive T an £ votumetric (57)
To determiney, anda,, we project Eqn.§7) it onto**2‘g and'*4'n successively to get,
cP
continuum
an =3 : tiAt (58)
£ o g
=volumetric 2
3 Ecintinuum
e = 5 2 .+ ALy (59)
=distortive 2

We finally get the strong discontinuity mode combining mod@s and ®©, weighted by
parameters,;, anda. as in Eqn. (5,

B.®©=aB.O, +0a,B.0,. (60)
At last we normalize the mod®,
o _ a9y, + a0,
_ |(1th + ae@e|
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6 VIRTUAL WORK PRINCIPLE

To state the virtual work principle, we analyze a continuum subject to external forces crossed
by a localization line, as shown in Fi§.

Localization lin/

Figure 5: Continuum with a localized shear band

To determine the new configuration we use the virtual work principle for a “material nonlin-
ear only analysis” (geometrically linear analysithe(1996.). For this we need to determine
theinternal work in the volumé’, the external forces work on the surfagand the band forces
work ‘+A'F, . Equating the internal work and the band work to the external work equation we

get the virtual work principle,

/5€T t-‘rAtgcont dv + 5_}1;0 t-‘rAtEloc _ /5ET t—l—AtE ds. (61)

=cont

v S

The variations are determined using Eqr9)( (46) and {1). Hence we get,

§U},, =dy 07, (62)
el = (0U" — 6y @") B” (63)

and,
ou’ =oU" H. (64)

For the continuum stresses we use the constitutive relation and Egnta(get,

t+At tgcont + thP B (U o 7@) ) (65)

t tEP _
g gcont + g gcont - = \=

=cont

Replacing Eqns. §2), (63), 64) and £5) in Eqn. (6)and solving fov U anddy and making
use of the fact thaiU andd~ are arbitrary we get,

- , (66)
-0"'K, ©"'K,0] |y " ('F— ""A'F,,.)

tKu . tKu @ H t+AtB _ tF
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where we used,
tKu — / BT thP B dv
1%
t+AtB :/ HT t+AtB dS
s

tE — / BT tg dv.
14
The resulting Egns.66) are non-linear and have to be solved iteratively.

7 LENGTH SCALE ADOPTION FOR G-T-N MATERIAL

In the equations system stated in Eqri)( all variables are readily known excépt'F,, ..
Since during the deformation process the material remains inside the plastic range, its yield
stress has to evolve aS’fiers and Dvorkin(2009)),

t+AL _ t
O-yloc - k Uyloc' (67)

andit can be assumed that the equivalent localized nodal forces have to also evolve radially
hence,
@T H—AtEloc — k @T tEloc ) (68)

Soling for kin Egns. 67) and 68) we determine the evolution of the band forces,

t+At
Uyloc . (69)

t
Yloc

At the band direction the equilibrium is satisfied by EdiR)(where the material parameters
belonging to the localized scale are inserted in the equation thrétefr,, , which is the
inter-scales connecting variable.

If the shear band opens at the configuration, we have as initial condition for Eq#Rj,

T t+At _ Tt
Q Eloc - Q Eloc

@TTEloc:QTTE:QT/ BTng'U.
|4

Even though we are not intending to describe the micromecalnehavior inside the shear
bands, we know that the phenomena that take place there is beyond the continuum mechan-
ics hypothesis, since the band dimensions are in the granular size scale. For this reason, to
model the band formation, we heuristically define a bandwidth to represent the above mentioned
micro-scale evolution. The definition of this bandwidth allows the experimental calibration of
the model and provides mesh independent results also insensitive to mesh distortions.

The determination of the yield stress required in E@9) {n the G-T-N material differs from
the J, case because, the yield surface dependsgn, '/, and g/, parameters. Thus we
define a modified yield stressz,, _, by means of Eqn.9),

_ 3 tO'h oc
ta-yloc (tflOC)t O-yloc?t Uh) = to-yloc \/ <]' + tfl()2€ q% - 2 tflOC ql COSh (quto'—l)) ’

Yioc

Its calculation requires the evaluation of the internalaldes of the band. Hence, to model their
evolution, we observe that the plastic deformation depends on the volumetric strain increment
(afl _.) and the respective distortive equivalent straifllo 0, as shown in Eqn.10).
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These two strains are calculated in the band scale using two separate inter-scales factors,

(F,.)" = (70)
(£m>=¢v- (71)

To determine the inter-scales factors we recall that the localization ®adduilt using two
modes,®, and®,. We request the distortive dissipated energy in the band to bal égjthe
energy dissipated by the distortive part of the localization mode, and apply the same reasoning
to relate the hydrostatic parts.

To derive these conditions, we use Eqri9) and the fact that the tensUTAtgloc can be
written as,

t+At t+At

t+At _ t+At t+At
- Op g + O-eloc ﬂ ’

—loc

2
3
to get the band dissipated energy,

t+At t+AL t+At
t . P _ t+At P t+At P
/ / g: dg AVipe = / (/ Oh dgh loc + / Oe dEe loc) AVioe
‘/ZOC t ‘/ZOC t t

(72)
There we clearly identify the distortive and the hydrostatic contributions to the energy dissipa-
tion. These contributions are equated to the respective mode energies to get,

t+At

t+AL
/ O AR dy = / / i, del . dVie. (73)
by Vioe

and

t+At
TAty

J,

Assuming unitary thickness, the volume of material comprised in the localization is,

t+At
of ¥Ry = [ [ o def i (74)
‘/lO(,

Viee = h L> (75)

where h is a reference bandwidth ardis the band length across the element.
Egns. (/3) and (4) are integrated Backward Euler usingj, to give,

7O, "YE = "ol WL, (76)

€ loc

and
7@%" t+AtE _ t+Ata_h5§loc hIL. (77)

Replacinge” e ande? .. definitions into the previous we get the inter-scales factors,

)

T t+At
@ Floc
h L t+AtU€loc

QZ t+AtE
h L t+AtO-hloc

.
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Now that a proper scale is defined for the band strains, we deteﬁﬁlneand gP from
Egns. (0) and (7/1). Finally we determine the internal variables mcrementhJEqns (6),
(13), (23) and p4) as,

t+AL t+At N
O-yloc _ ( Uyloc + 3 G t+At=P )
- )

l
Oa-y Oa-y Oa-y oc
1 / tHAtzP 2
t+AtA o fN €loc EN
loc — —2633]7 _5 S— )
SNV &T N
t+At P t+AL P
éP o Uh ghl + Ueloc €loc
foe (1 - t+Atfloc) 2tJrAtO_?JZoc ’

and
floc = (1 - t+Atfloc) gioc + t+AtAloc ( t+At€f;c> ‘Zjlfc))c'

The determination of the continuum scale evolution is cdraat at the standard Gauss
points. Aside from that, to detect the triggering of localization, we also determine the plastic
evolution at the element center. When at that point the localization conditions are met during
a step iteration process, as@itiz et al.(1987), the band displacement mode is added to the
element, i.e. localization is activated. From then on the element center is used to describe the
band scale, see’hers and Dvorkin(2010.

8 TEST CASE

The criterion to open a band and the stabilization procedures required to achieve convergence
are adopted frond’hers and Dvorkin(2010). The band triggering criterion is divided into three
levels of decision to improve performance. First it is required that an increment in plasticity
exists at the element center. Then in such case, the localization necessary condition is tested,
and at last if it is true then the sufficient condition is used. The election between two alternative
directions is necessary since the solution to E@4) loes not have only one solution for the
band angle,3. Following Samaniego and BelytschK@005), for the first shear band that is
triggered in the model we select one of the two directions and for the other ones we use a
“persistence criterion”, which means that in any new band opening we choose from the two
possible directions, the one closer to the localization direction in the surrounding elements.

The solution of finer meshes showed that sometimes, after some band development has oc-
curred, there are steps in which all the active bands achieve convergence except for one. We
observe that the-value of the problematic element oscillates around a valae the conver-
gence tolerance. We resorted to closing the band of the oscillating element during the step, as
in D’hers and Dvorkin(2010). We find that this decision in most cases help convergenoee Si
this is an arbitrary decision, we investigated its impact and concluded that it has no measurable
influence on the overall response and that the modified elemenhdbesquire to be modified
again in the following steps. Also we observed that the elements that required this stabilization
were most of the times on the band borders.

The test case is a sheet with two symmetry planes and a central square notch to induce
the localization (Fig. 6). We use the QMITC elemenD{orkin and Vassolq1989) with
the localization mechanism included in its formulation. The use of a notch makes the defect
weakening effect constant regardless the mesh refinement. We use as indicators, the behavior
of the energy dissipated at the continuum scale, which is expected to decrease when the mesh
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is refined, and the behavior of the energy dissipated at the shear band scale, which is expected
to converge when the mesh is refined.

symmetry [LLLLITELTTERLLLLRELLY Imposed
Line Displacement
L
L/8
Notch i_ g Syr:ir::try

Figure 6: Notched sample for traction test

5000

40001

— 3000}

Z ——Mesh 1
B ——Mesh 2
3 2000} ——Mesh 3

1000}

0 0.05 0.1 015 02 025 03 035 04
Displacement [mm]

Figure 7: Response of a G-T-N material and an initial void content of 4%- QMITC Standard

The sample dimension is defined with = 8mm and the loading process is developed
imposing a uniform displacement on the upper boundary. The analyses are interrdpted if
plummets below 10% of initidlo, or’ f grows beyondfc,..i.;- The three mesh densities, listed
in Tablel, are analyzed. Material parameters affe= 200G Pa, v = 0.3 ando,, = 600M Pa.
Thehardening exponent is set o = 0, according to the results obtained in Figy.aiming to
trigger the localization while the small displacements hypothesis is still valid.

As a reference we plot the results obtained with standard QMITC elements and an initial
void volume fraction o’ f = 0.04 in Fig. 7. The void volume fraction and the equivalent
plastic strain for mesh 3 are shown in Fi§.There, the shear band formation can be seen in the
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Mesh | Horizontal Elem.| Vertical Elem.| Total Elem.
1 8 12 95
2 16 24 380
3 32 48 1520

Table 1: Regular meshes used to analyze the simple traction of a rectangular notched sheet

equivalent plastic strain and void content plots. Also mesh dependency is observed in the load
displacement curve.

The results obtained using the new formulation are shown in Bigad10for °f = 0.0 and
0f = 0.04 respectively. The void volume fraction and the equivalenstitastrain for mesh 3
and both initial void distributions are shown in Figél and12. The mesh independency is
evident from the load displacement plots. The difference in the triggering displacement is due
to the initial void content. In the plotted meshes two different shear band paths are found, both
being possible solutions.

For each,—value the results are almost mesh independent and the unjosidipe is con-
trolled by the lengthscale. Hence, an experimental technique for determining the lengthscale
for different materials and microstructures is available. It is important to recognize that the
lengthscale adoption implies that the energy is dissipated in an equivalent area,

h L= Alocalization

defined by thés.—parameter and, most important, that the parameter is not mggndent, that
is to say, the parameter does need to be modified when using different element sizes.
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Equivalent plastic strain Void content
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Figure 8: Equivalent plastic strain and void content for mesh 3 with 4% of initial void content - QMITC Standard
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Figure 9: Response of a G-T-N material with lengthscale h=0.10mm and no initial voids - QMITC Localized
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Figure 10: Response of a G-T-N material with lengthscale h=0.10mm and an initial void content of 4%- QMITC
Localized
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Figure 11: Equivalent plastic strain and void content for mesh 3 with no initial voids - QMITC Localized
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Equivalent plastic strain Equivalent plastic strain Void content
Continuum Band Band
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Figure 12: Equivalent plastic strain and void content for mesh 3 with 4% of initial voids - QMITC Localized

9 CONCLUSION

We extended the use of strong discontinuity modes to modeling strain localization phenom-
ena in the G-T-N material. The localization scale is introduced into the finite element formula-
tion embedding a strong discontinuity enhancement into the displacement field. The required
inter-scales connection is achieved using an equivalent dissipated work criteria.

The heuristic introduction of the lengthscale parametergarameter allows to model the
G-T-N material evolution inside the band. This-parameter controls the unloading behavior
andtherefore it can be determined from actual experimental data. The resulting formulation
provides mesh independent results and allows to control of the downslope part of the load-
displacement path.

The necessary and sufficient conditions for the localization inception have been found.
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