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Abstract. In this paper, the main features of a new elastoplastic constitutive formulation for concretes 
valid for a large spectrum of strengths, including normal to high strength concretes, are presented.  
The model, depending on the three stress invariants, has a non associative flow rule, a non uniform 
hardening law, and an isotropic softening law based on the fracture energy of modes I and II. It 
considers as material parameters the uniaxial compressive strength, which is a macroscopic property, 
as well as the performance parameter for concretes. The latter is an index defined by the authors in 
previous works which takes into account some properties of the concrete mixture. Moreover, the 
maximum aggregate size is considered in order to evaluate the concrete fracture energy. As result, a 
constitutive model capable to distinguish different mechanical behaviors of concretes of different 
qualities is obtained. 
Particularly, in this work a description of the constitutive model is presented, with focus on the 
hardening and softening laws, ending with the presentation of numerical experiments. 
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1 INTRODUCTION 

In what concerns to concrete constitutive formulations as well as failure criteria, usually no 
restriction about its type or quality is explicitly considered. Nevertheless, experimental 
evidence demonstrates that for increasing uniaxial compression strength (f’c), the mechanical 
properties gradually change but not proportionally to the strength increment. The different 
behaviors of normal (NSC) and high strength concretes (HSC) have been extensively detailed 
in the literature (See Xie et al. 1995, Imran and Pantazopoulou 1996; Rashid et al. 2002, 
Hussein and Marzouk 2000, etc.). HSC are achieved by the incorporation of chemical 
additives as well as mineral admixtures in the concrete mixture, which considerably change 
the microstructure of the cement past. 

A clear example of the non isotropic variation of the mechanical properties is represented 
by the ratio between the uniaxial tensile strength (f’t) and f’c: although f’t increases for a 
greater compressive strength, the ratio between these two strengths f’t /f’c decreases. 

Ductility is one of the concrete mechanical properties that most varies whit a variation of 
concrete quality and, therefore, the transition point from ductile to brittle failure modes.  

Most of the concrete constitutive laws in the literature were developed for NSC (Willam 
and Warnke 1974, Ohtani and Chen 1988, etc.). Some of them can be also used for HSC after 
an appropiate and complex calibration (Oller 1988, Etse and Willam 1994, Kang and Willam 
1999, Grassl et al. 2002). Nevertheless, contrarily to the case of NSC, the mechanical 
behavior of HSC has still many unknown aspects, which are the subject of several ongoing 
experimental and numerical studies by the international research community. The increasing 
demand of HSC in civil constructions and structures requires the development of reliable 
constitutive laws able to accurately predict the different behavior of these high performance 
concretes. 

The concrete constitutive model subject of this paper, so called Performance Dependent 
Model (PDM) covers the whole spectrum from NSC to HSC in the range 20 to 120 MPa. The 
main features of the model are described in the next section. Details of the hardening and 
softening laws and the corresponding plastic potential surface are presented. Finally, some 
numerical results are plotted and compared against experimental data.  

2 PDM MAIN FEATURES 

This model is based on the smeared crack approach and the elasto-plastic incremental flow 
theory enriched with fracture energy concepts in order to achieve a non local formulation. It 
depends on the three stress invariants. 

Only infinitesimal strains are considered. Elastic-plastic coupling is neglected, accepting 
the additive Prandtl-Reuss decomposition of the infinitesimal strain rate tensor into its elastic 
and plastic parts as 

 
e p

ij ij ij       (1) 

The elastic constitutive response is defined by the generalized Hooke law 

 ij ijkl kl  E  (2) 

In the above equation ij  is the Cauchy stress rate tensor, ijklE the fourth order elasticity 

tensor depending on the material Young’s modulus 
cE  and on the Poisson’s ratio υ. 

A yield surface denoted as  ; 0f   , limits the elastic range, which size and shape 
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depend on a set of state variables t .  
Inelastic material response is governed, by the following non associated flow rule 

 
p

ij ij  m  where  ij
ij

g



m  (3) 

Being  ; 0g    the plastic potential surface, which does not coincide with the yield 

surface f , and   the plastic parameter. For the determination of the latter, the consistency 
condition is applied. 

The evolution of the state variables t  is defined by the hardening/softening laws. 

2.1 The failure criterion and the performance parameter 

The failure criterion applied in this formulation is the performance dependent failure 
criterion (PDFC) for concretes of arbitrary strength previously proposed by the authors (See 
Folino et al. 2009), which covers the entire spectrum of concrete quality from NSC to HSC. It 
is defined in the Haigh Westergaard stress space in terms of the normalized stress coordinates 
(with respect to f’c )   ,  and  . The two first ones are functions of the first and second 
invariants to the stress and deviatoric tensors, respectively. The third coordinate is 
represented by the Lode angle   function of the third invariant of the deviatoric tensor.  

According to this criterion, concrete failure occurs when the normalized 2nd Haigh 
Westergaard stress coordinate 

 
reaches the normalized shear strength *   

 1 0
*

F



    (4) 

In the deviatoric plane, the elliptic interpolation between the compressive *
c  and the 

tensile *
t  meridians by Willam & Warnke (1974) is followed  

 0 0

*

  0   60     * c

r

       (5) 

Being r the ellipticity factor  

 
2 2 2

2 2 2 2

4(1 )cos (2 1)

2(1 )cos (2 1) 4(1 )cos 5 4

e e
r

e e e e e



 

  


     
 (6) 

and e the eccentricity * */t c  . The failure surface is represented by the following equation 

 
22. . * . . * . 1 0cF Ar B r C        (7) 

In the previous equation the coefficients A, Bc, Bt, and C depend on four material 
parameters: the uniaxial compressive strength f’c, the uniaxial tensile strength f’t (through 
uniaxial strength ratio t= f’t / f’c), the biaxial compressive strength f’b (through the biaxial 
compressive strength ratio b= f’b / f’c), and a parameter m representing the friction defined as 
the tangent to the compressive meridian on the peak stress’s shear component corresponding 
to the uniaxial compression test. Therefore, contrary to other failure criteria, these coefficients 
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change when these four material material change, leading to different failure surfaces. This 
feature permits to adequately capture the failure of both NSC and HSC. (See Fig. 1) 

 

Figure 1: PDFC – Deviatoric views – Normalized plots for different concretes 
and for two different confinement levels 

Considering on one hand that three of the material properties needed to define the 
coefficients are obtained from non standard and complex experimental tests, and that those 
properties are defined by the concrete composition, a quality index so-called the performance 
parameter P was formulated for the purpose of the PDFC as 

 
 

'1
               '  in [ ]

1000 /
c

P c

f
f MPa

W B
   (8) 

where W/B is the water/binder ratio, considered as a fundamental property of the concrete 
mix controlling the material performance. Also, for the case where the W/B ratio is unknown, 
empirical functions of a maximum and a minimum value of P were proposed. With the 
performance parameter and f’c, the other three material properties considered in this failure 
criterion are evaluated by internal functions. Further details may be found in Folino et al. 
2009. 

Summarizing, this failure criterion depends on the three stress invariants, it has curve 
meridians and considers as material parameters the uniaxial compressive strength, which is a 
macroscopic property, as well as the performance parameter for concretes depending on some 
properties of the concrete mixture.  

2.2 The hardening 

The pre peak regime is described by a non uniform hardening. An intermediate hardening 
stage is represented by a loading surface that limits the actual elastic range. This surface is 
composed by two different surfaces. The first one, representing the cone, is the failure surface 
defined in Equation 7. The second one is a compressive cap. Both surfaces have a common 
deviatoric plane defined by the hydrostatic coordinate of a point denoted as “P1” where they 
present a C1 type continuity. During the hardening process, “P1” will continuously change. 
(See Folino and Etse 2008). Therefore, the yielding criterion of this model belongs to the type 
denoted as “cap-cone models”. 

Therefore, there exists a zone between the equitriaxial tension point and the deviatoric 
plane in correspondence with “P1” where no hardening takes place and the peak load is 
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reached without plastic strains. The first Haigh Westergaard coordinate of this point “P1” will 
depend on the concrete quality and on the hardening level.  

The compressive cap is represented in a meridian plane by ellipses centered over the 
hydrostatic axis and tangents to the failure surface at the first Haigh Westergaard coordinate 
of point “P1”. The semi-axes ratio remain constant. The loading surfaces result 

  

22
1( )

2 22
( )

( ) 1( )2 2
( ) ( )

. . * . . * . 1 0     if   

.
1 0   if   

cone k

cen k
cap k k

k k

cf Ar B r C

f x r
f

a b

    

   

      
  
     


 (9) 

 

 (a) Hardening regime (b) Softening regime 
Figure 2 

In the left side of Fig. 2, the corresponding yielding surfaces for a HSC may be observed. 
In the equations above, k indicates the hardening level parameter, which univocally defines 

each of the yielding surfaces. The initial hardening parameter ko is defined by the initial 
position of Point P1 as  

 1

2 / 3
cP o

ok


  (10) 

Analogously, the hardening level parameter k is defined by the successive positions of this 
Point P1, characterizing the successive ellipses by  

 1

2 / 3
cPk


  (11) 

It should be noted that the minimum value of k is ko, but its maximum value is not equal 
one (ko ≤  k  ≤ ∞) 

The actual hardening parameter is defined in terms of a normalized measure of the 
developed work hardening h  by an elliptic function varying between a minimum and a 

maximum value as follows  

     max 2o o h hk k k k     


 (12) 
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where  
maxk
 corresponds to the maximum possible hardening level associated with a certain 

level of confinement and the state variable is defined by 

 
: PP

t a
h P P

t tW W

  


 
 (13) 

In the above equation, the numerator is the actual developed work hardening since the 
initialization of the plastic process and the denominator is the total work hardening capacity 
for a given concrete quality and for the level of confinement under consideration. The 
definition of this parameter and its calibration, have resulted of crucial importance in the 
formulation of this model.  

With the purpose of the calibration of the main parameter in the hardening law described 
above, the pre peak energy resulting from different experimental test results available in the 
literature has been analyzed, considering different levels of confinement and different 
concretes. This energy varies with the confinement level and with the concrete quality. It 
presents a strong rate of increment of the energy as a function of the first invariant from the 
beginning of hardening to approximately 1    and a medium increment rate for greater 
levels of confinement.  The current internal function that evaluates this parameter is the 
following, where fi are variable coefficients depending on concrete quality (See Fig. 3) 

 
   '

6

1 1 lim1 2( , )

2

lim3 4 5

        

                                           

P c

wpt
P o P ofP

t

E f f
W

f f f
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   

         
   

  (14) 

 

Figure 3: Internal Function of the Prepeak Energy (Wp
t) for different concretes 

2.3 The softening 

After the maximum strength is reached, a progressive softening is defined in terms of the 
softening level parameter denoted as c which constitutes the state variable in softening and 
represents the de-cohesion. In the right side of Fig. 2, the corresponding isotropic softening 
surfaces for a HSC may be observed. 

This softening parameter level c defines the degradation of the tensile strength during 
softening. 
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 
 (15) 

This parameter is defined in terms of the softening state variable, represented by the crack 
opening displacement fu . The index d determines the shape of the decay function, and in this 

constitutive model, it is not a constant value and depends on the maximum size of the coarse 
aggregates, which is an input datum. The parameter ur represents the rupture displacement 
and in this model it is derived once the fracture energy is determined. The softening state 
variable is represented by 

    s f c f cu l l       m  (16) 

where t
f  is the equivalent tensile fracture strain, involving only the tensile components of 

the plastic potential gradient, and lc is an internal characteristic length regularizing the 
softening behavior. This last parameter may be interpreted as the crack spacing in tension ht 
factored by the actual ratio of the fracture energies in mode I and II depending on the 
confinement level.  

 
I
f

c tII
f

G
l h

G
  (17) 

In the implementation of the PDM, an internal function evaluates the fracture energy in 
mode I in terms of the performance parameter P and the maximum size of the coarse 
aggregates. Another internal function calibrates lc according to the concrete quality, defined 
by f’c and P and in terms of the confinement level.  

An example of the resulting degradation of the decohesion parameter c for f’c =70MPa 
may be observed in Fig. 4. 

 

Figure 4: Decohesion for f’c =70MPa and different confinement levels 

2.4 The non associative factor 

The limitation of the volumetric dilatancy during plastic range, mainly in low confinement, 
is introduced by affecting the maximum strength surface by a non associative factor which 
acts over the volumetric term. Departing from this reduced maximum strength surface, the 
plastic potential surfaces during hardening and softening are derived. In Fig. 5 this process 
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may be observed for a f’c =30 MPa concrete. 

 

 (a) Associative (b) Non associative 

Figure 5: Plastic Potential – Compressive meridian -  f’c =30MPa 

3 NUMERICAL RESULTS 

The Performance Dependent Model for concretes of arbitrary strength focus of this paper, 
has been implemented in a finite element code, entirely developed at the LMNI, laboratory of 
numerical methods in engineering at the Buenos Aires University. 

The main features of the implementation may be summarized as follows: developed in 
fortran, backward Euler method followed, direct scheme leading to a single iteration level, 
full consistency was used for the determination of the plastic multiplier and consistent tangent 
operator was determined. 

First, in Fig. 6 the numerical predictions obtained with the PDM for uniaxial compression 
and uniaxial tensile tests are presented. It may be observed that the model is able to capture 
the different behaviors of both NSC and HSC.  

 

 (a) Uniaxial Compression (b) Uniaxial Tensile 
Figure 6 

In Fig. 7 two numerical predictions obtained with the PDM are compared with 
experimental test results performed by Lu (2005). It may be observed that it is able to 
adequately capture the pre and post peak behavior, as well as to predict the peak itself. 
Currently, the model is still being calibrated and optimized. 
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 (a) Uniaxial Compression (b) Medium Confinement 

Figure 7: Comparison of numerical experiments versus Lu (2005) experimental results 

4 CONCLUSIONS 

In this work, the main features of the Performance Dependent Model for Concretes of 
Arbitrary Strengths are presented. This model, based on the mathematical framework of the 
flow theory of plasticity has the following particularities: Depends on the three stress 
invariants, considers as failure criterion the performance dependent failure criterion 
previously developed by the authors which is sensitive to the concrete quality, based on the 
definition and application of the performance parameter for concretes, presents a non uniform 
hardening represented by cap-cone surfaces with 1C -continuity, presents isotropic softening, 
non-associated flow rule, and softening formulation includes fracture mechanics concepts 
incorporating a characteristic length allowing regularization of post-peak behavior.  

The constitutive formulation has been implemented in a finite element code. The numerical 
experiments presented in this paper may conclude that it is capable of capturing the different 
behaviors of both normal and high strength concretes, as well as the increment in ductility 
with increasing confinement. 
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