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Abstract. In this work a fast method for the numerical solution of time-domain boundaegial for-
mulations of transient problems governed by the heat equation is preskntieel formulation proposed,
the convolution quadrature method is adopted, i.e., the basic integral eqoiati@time-domain bound-
ary element method is numerically calculated by a quadrature formula whigetsvere computed using
the Laplace transform of the fundamental solution. In the case that thensss are required at a large
number of interior points, it was observed that the convolution performedltulate them is very time
consuming. In this work it is shown that the discrete convolution can be @utdig means of fast
Fourier transform techniques, hence reducing considerably the c¢atigmal complexity. To validate
the numerical techniques studied, results for some transient heat tiomde}amples are presented.
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1 INTRODUCTION

For heat transfer problems, the classical time-domain fdByulation of the Boundary Ele-
ment Method (BEM) presents convolution integrals with respethe time variable. One of the
recognized disadvantages of the classical TD-BEM approesim the high computational cost
concerning the calculation of the matrices and also theuatian of the convolution integrals.
Besides, in spite of the BEM requires only a surface mesh, whisrused for the analysis of
problems with complex-shaped domains, it must solve langaf systems of equations defined
by non-symmetric and fully populated matrices.

The BEM has been already used to solve transient heat condymrtoblems. In the litera-
ture, different BEM approaches have been used to addreswogics One approach is by us-
ing convolution schemes, where the TD fundamental solu§antroduced to state a transient
boundary integral equation mod&V(obel 2002. To make possible such procedures it is nec-
essary to know the TD fundamental solution. Other approsith define a time-stepping pro-
cedure. This approach requires domain integration whictheir turn, can be addressed using
the dual reciprocity technique, triple reciprocity teajuré or similar onesTanaka and Chen
2001 Kassab and Diva2006 Erhart et al.2006 Kassab and WrobgP00Q Divo et al, 2003
Ochiai et al, 2006 Divo and Kassahl1999.

Other alternative approaches to address transient helleprs consist of the use of the
Laplace transform and its inverse. Applying the Laplacadfarm to the TD governing equa-
tion it is possible to eliminate the time derivative and sailie problem in the Laplace domain
using a steady-state BEM approa&izzo and Shippy197Q Wrobel 2002. To recover the
real TD solution, the result obtained in the Laplace domsiinverted by means of the inverse
Laplace transform. However, due to the fact that the nurakmwersion is an ill-posed prob-
lem, special methods for the numerical Laplace inversierr@quired. Among these numerical
techniques of inversion, the most commonly used is the 8stldlgorithm Htehfest 1970
Kassab and Diva2006.

Recently, the Convolution Quadrature Method (CQM) has beemdfsuitable for the appli-
cation to TD-BEM approaches. This method evaluates the ¢othon integral of the TD-BEM
formulations by mean of a quadrature formula that uses thasmental solution in the Laplace
transformed domain. One of the advantages of using the CQNatsttmakes the BEM able
for problems where the analytical TD fundamental soluti®maot available or is difficult to
compute.

The CQM was firstly described in@bich, 1988ab; Lubich and Schneided 992 Lubich,
1994 and provides a direct procedure to obtain a stable BEM apprt®at uses the Laplace
transform of the TD fundamental solution. Applicationsiué CQM-Based BEM (a.k.a. CQM-
BEM or also convolution quadrature method) to elastodynamiiscoelasticity and poroelas-
ticity problems can be found irSchanz 1972 Messner and Schan2010 and for acoustics
in (Abreu et al, 2003 2006 2008 2009. Furthermore, with the aim to accelerate and im-
prove the computational efficiency, it was combined withidtipole method to formulate a
CQM-Based BEM for diffraction of waves problems &gitoh et al.2007ab, 2009.

In the present work, a CQM-Based BEM is used for the TD solutiotlwofdimensional
transient heat conduction problems. In this work it is exmd how the discrete convolution
of the CQM-Based BEM can be implemented using fast Fourierfioams(FFT) technique to
reduce the computational cost of the numerical calculatiBesults for some transient heat
conduction examples are presented to validate the proposttbd.
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2 DEFINITIONS AND GOVERNING EQUATION

The continuity equation in heat conduction problemgJzgigik, 1993 Carslaw and Jaeger

1988 Crank 1979:
ou(X,t)
ot

whereu is the internal energy] is the flux of heat vectot' is the amount of heat per unit vol-
ume that is increased (or withdrawal) in the material b@dyf the two-dimensional Euclidean
space.

The Fourier law of heat conduction formulates a linear retesthip between the flux of heat
vector and the gradient of the temperature fiEldlrhis constitutive relation for isotropic mate-
rials is given by:

LV JX ) = F(X,1) inQ, 1)

J(X,t) = —K(X,)VT(X,1), )

where K > 0 is the thermal conductivity of the material. The relationspecific heat
expresses that the variation of internal energy is refleictéige local variation of temperature,
le.:

ou(X,t) oT(X,t)
ot ot ®)
wherec represents the specific heat of the mategats mass density. For a homogeneous
material of constant propertiés, c andp, Eqgs. () and @) applied on Eq.J) gives:
oT(X,t)

T - kva(Xa t) = f(X> t)a (4)

wherek is the thermal diffusivity given by = K/(cp) andf = F/(cp). Equation §) is known
as the heat equation and describes the evolution of the tamopel” inside a homogeneous and
isotropic material in the presence of sources of heat giyefi INote that, in this simple model
the material propertie&’, ¢ and p do not depend on the time. This assumption is usually
accurate when small variation of temperature arises.

The heat conduction problem consists to solve B fdr the unknown functiori’. The
function f is known, as well as the material properties, the initialditon 7'(X, ¢y) at the
initial time ¢, and the following boundary conditions:

=c(X,t)p(X,1)

T(X,t) =T(X,t) inTy, .
q(X,t) = q(X,t) inTy, (5)

whereq(X,t) = —k%E(X, t), [y andl, are the regions of the boundaryof (2 where Dirichlet
and Neumann boundary conditions are respectively apdlied)(’, = I'). 7" andg are known
functions and is the outward unit normal tb.

3 CQM-BASED BEM FORMULATION

Assuming a homogeneous initial condition, iB(X, t,) = 0, and null heat sources, Ed)(
can be formulated into a boundary integral equation of tine f@Vrobel 2002):

AT (E 1) = /F /t:fT*(r,t—T)q(X,T)deF— /F /t:fq*(r,t—T)T(X,T)deF, (6)
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In Eq. 6), T*(r,t — 7) is the TD fundamental solutiog; (r, ¢t — 7) = —kZ-(r, t — 7), with
r = |X — ¢|. The coefficient({) = 1 when the source poirdt belongs to the domaif and
c(&) = 0/(2m) when¢ € T', wheref is the internal angle formed by the left and right tangents
tol até.

To solve the boundary integral E)(it is required both space and time discretizations.
The BEM represent§ and the boundary values @f an ¢ by using piece-wise polynomial
functions. For this purpose the boundary is divided itelementd’; (j = 1,2,...J). The
time discretization consists in dividing the time spant ] into N time-steps of equal siz&t.

A discrete version of Eq6) using the CQM for a point sourgeand the time,, = to + nAt is
given by Cubich and Schneidef 992 Abreu et al, 2003 2006):

T(&,t,) = ZZgnmSZ,Atqm ZZh (& ADTE  n=0,1,...,N. (7)

7=1 m=0 7=1 m=0

The quadrature weighis, andh,, of Eq. (7) are given by:

n L1
gn(ga At L * T SE NJ )dr e—omZ, (8)
¢=0 7T
—n L-1
hi (&, At) L / (r,50)N?(X)dIl e, 9)
=0 YL

where the parameter = 27i/L (i = v/—1).
In the previous expression&y’(X) represents the matrix of interpolation functions of the
spatial discretization. The discrete parameter v(oe*)/At. The functiony is given by:

p

v(z):Z%(l—z)”, :ec, (10)

n=1

and it is the quotient of the characteristic polynomial gatexl by a linear multi-step method
that is usually a backward differentiation formula of orgd€tubich, 1988ab).

SettingL = N ando = /¢ in Eq. @) and @), the quadrature weightg, andh,, are com-
puted within an error of ordad(¢), wheree is the precision with which™(r, s,) andg*(r, s,)
are calculatedL(ubich and Schneide992. 7*(r,-) andg*(r, -) are the Laplace transform of
T*(r,-) andg*(r, ), respectively. The expressions of these fundamentalisokifor a heat
point source are given byJorse and Feshbach953 Wrobel 2002):

T*(r,s) = ﬁKg (\/%T) : (11)

- B oT* or 1 s s or
q(r.s) = or (r, S)an 27k k:Kl (\/;7) on’ (12)

wherek, is the modified Bessel function of the second kind and order
T’ andgq’, of Eq. (7) represent, respectively, the prescribed or unknown neslaks of7T’
andq defined at each elemejpbf the boundary, and are given by.(= 0, 1, ..., N in the time):

T) = T'(t,) = T?(ty + mAt), (13)
@ =q (t,) = ¢ (to +mAt). (24)

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 5413-5428 (2010) 5417

Equation ) can be rewritten in matrix form as follows:

cT" = zn:OGn—mqm - zn:OH”‘me . (15)

The responses on the boundary and at interior points arelatdd from Eq. 15), whereG
and H are the BEM influence matrices ands the diagonal matrix containing the coefficients
c(£). The indices: andm correspond to the discrete timgs= t, + nAt andt,, = t, + mAt,
respectively. To compute the responses on the boundaryaatinedary conditions have to be
imposed into Eq.X5). The following general expression is obtained:

n—1
Ayt ="y (GTgt — HMTY (16)
m=0
where A° stores the columns af + H? corresponding to the unknown valuesBfand the
columns ofG corresponding to the unknowns valuesqof The unknown values dI" and g
at timet,, are stored in the vectay,,. The known values of” andq are multiplied for their
respective columns dfif andG to assemble the vectgf,.

From Eqg. (6) it is possible to observe that the linear systems that thbodesolves to obtain
the unknown vectorg,, have all the same coefficient matri&’. Thus, the method needs of
just one factorization. The other influence matrices arel usdy for the computation of the
independent terms.

3.1 Computation of the influent matrices

It was observed that most of the computational cost of swiuis due to the computation
and storage of the influent matrices, and also due to the necamheonvolution. These two tasks
can be studied separately. In this section it will be ex@dihow to compute and assemble the
influent matrices in order to reduce the computational cost.

The quadrature weightg, and h,, can be obtained efficiently using the FFT algorithm
(Cooley and Tukeyl965 Brigham 1988: examining the expressions of the quadrature weights
and, taking into consideration the definition of the disereburier transform (DFT), Eqs8)
and Q) can be rewritten in the following form:

~

-1

) o " i _om
g%(f,At) = T Zje * 67 (17)
=0
—
h (&AL = — ) 4/ e (18)
=0
whereT,” andq;’ are:
T = / T*(r, sg)N?(X)dI, (19)
¥
@’ = [ s)N ) (20)
r

J

Thus, to obtairg,, andh,, it is enough to calculate the FFT transformi}f andg; and mul-
tiply the results by the factas—" /L. Using the FFT algorithms one quadrature weight can be
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obtained with a number of operations the ordélog(/N), keeping in mind thatv = L. The
element integrals should be performed before the FFT inrdodeeduce the number of times
that the FFT routine is called; otherwise, when using thesSauwadrature formula one would
have to call the FFT routine once for each Gauss point.

3.2 Discrete convolution for interior points

As mentioned before, the numerical convolution is one ofrtiwst expensive tasks, if not
the most, of those performed by the CQM-Based BEM, mainly in #s2avhere the responses
at a large number of interior points are required. This sactlescribes how the numerical
convolution is implemented in order to reduce the comporati cost. Consider the following
notations:

J: Number of elements used to discretize the boundary;

Nnod: Number of nodes;

Nip: Number of interior points where the numerical responsalsutated;

N: Number of time-steps (that also represents the numberwidtacoefficients).

It is ease to see that the right hand side of Hdp) fesults in a block triangular Toeplitz
matrix, i.e., a matrix in which each descending diagonafifleft to right has constant values.
Consider the following equation:

N

J=0

wherey € R¥*! a € RV, ¢ € R¥*! anda; = ay,14; for a negative indey. Eq. Q1) is
the expansion of the discrete convolutigr= a * . Alternatively,y can be calculated by the
producty = Ax where the circulant matriX has coefficients!;; = a,_;. The convolution of
Eg. 21) can also be computed aBr{gham 1988

y=7F " (Fla)o F(x)) . (22)

where the notatiotF (-) means discrete Fourier transforf; ! (-) is the inverse discrete Fourier
transform and the symbob" denotes the Hadamard product of vect@rs x); = a;b;. There-
fore, the vectow can be calculated efficiently using the FFT algorithm withuanber of oper-
ations of ordeBN log(V) (three calls to the FFT algorithm).

Consider now the following equation:

yn:Zan,jwj, 0<n<N. (23)

Jj=0

Equation 23) it is not a convolution in the form of Eq2() because the upper limit of the sum
Is not equal than the upper limit of the sum of ERLY However, if the vectorg andx are
extended in the form:

a’=0, N+1<j<2N,
{:cj:O, N+1<j<2N, (24)
then
2N
yn:Zan_ja:j, 0<n<N. (25)
j=0
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The vectory in its turn can be extended in order to obtain a convolutiahéiform of Eq. 21):

2N

j=0

Therefore, using the FFT algorithm,can be obtained if(6 V) log(2/N') operations.
For interior points, Eq.q) with ¢(¢) = 1 gives:

Zzgnmgmqm ZZh AT n=0,1,....N, (27)

Jj=1 m=0 7j=1 m=0

which can be expressed as:

J J
:Z Z =0,1,...,N, (28)

with GY and H/ defined as:

— Z gn(&, A, (29)

HI = Zh (& ADT (30)

MatricesG?, and H/ can be obtained efficiently using the FFT algorithm in thesaray as
Yy, Of EQ. 23). Thus, each component 6/ and H? is obtained inN6N) log(2N) operations.
Therefore, for the interior poing, 7'(¢,t,,) of Eq. 7) can be obtained if12JN) log(2N)
operations. Then, the total number of operations to obtenésponses aiip interior points
is of the order(12JN Nip)log(2N) plus the operations required to compute all the element
matricesg’ andh/’.

4 NUMERICAL EXAMPLES

To validate the proposed method, some examples considémiag different domains are
analyzed. The numerical responses of transient heat cbadywroblems for these examples
were compared to the analytical respons@arglaw and Jaeget988 Ozisik, 1993 Crank
1979. All the examples share the following characteristics:

e Itwas takenl = N ando? = /e with e = 107,

e The time-step\t is fixed (it is an inherent feature of the CQM).

e It was takemny(z) = % —2z+ %zQ (corresponding to a backward differentiation formula
of orderp = 2).

e Lineal elements were used for the spatial discretization.

e Uniform initial condition, i.e..T'(X, ty) = Ty. The particular solutio’( X, t) = T, was
used to solve zero initial condition examples.

e Zero heat sources (homogeneous equation).
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4.1 Circular region

In this example the transient heat conduction analysigiénaicircular region of radiug =
1.0 mm is considered. A constant Dirichlet boundary conditiDBC) 7'(r,t)|,—r = 0.0°C,
is prescribed. The initial condition i5(X, ty) = Ty, with T, = 1.0°C. The geometry of the
region of this example is depicted in Fil.

Y

T(t)

R

Figure 1: Circular region: geometry and boundary condition

The thermal diffusivity isk = 1.0 mm?/s. A boundary mesh of = 48 elements was used.
A time interval fromt, = 0.0s tot; = 0.5s is analyzed. For the time discretization, two
cases were tested. The first case corresponds time-steps ofAt = 0.0156s. The second
case corresponds @24 time-steps ofAt = 0.0005s. Figure2 shows the evolution of the
temperature at pointl located in the center of the circular region. The figure shtivas the
responses are accurate when compared with the exact solttle temperature field on the
horizontal diameter of the circular region for the time 0.25 s is shown in Fig3.

1.0 fecu -
% Analytical

—o— CQM-BEM: At=0.0005 s
—=— CQM-BEM: At=0.0156 s

08 | -
0
Ov 06 -
=
=]
=
5 041 -
=
g
o
=
02 | -
0.0 1 1 1 1 1 1 1 1 1 1
0.0 0.1 02 03 0.4 05

Time (s)

Figure 2: Evolution of the temperature at poihbf the circular region with DBC.
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Figure 3: Temperature at time= 0.25 s on the horizontal diameter of the circular region with DBC.

Figures4 and5 show the results obtained for the same circular region stilgpeNeumann
boundary conditions (NBC) corresponding to a fiiix, t)|,—r = —1.0°Cmm/s.

Q E
o
o _
2
< 4
—
[
Q.
= 4
= Analytical N
—o— CQM-BEM: At=0.0005 s
-0.8 -
L | L | L | L | L |
0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

Figure 4: Evolution of the temperature at poihbf the circular region with NBC.
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0.2 T T T T T T T T

-03

-05

-0.6 - Analytical

—o— CQM-BEM: At=0.0005 s

Temperature ( °c )

0.8 L . 1 . 1 . 1 . 1
-1.0 -0.5 0.0 0.5 1.0

r (mm)

Figure 5: Temperature at tinie= 0.25 s on the horizontal diameter of the circular region with NBC.

The next example considers a circular region of radtus 10.0 mm. The initial condition
isT(X,ty) = 0.0°C. The thermal diffusivity isc = 4.0mm?/s. A boundary mesh of = 48
elements was used. A time interval fram = 0.0s tot; = 20.0s is analyzed. The time
discretization consists df048 time-steps ofA¢ = 0.00977s. Dirichlet harmonic boundary
condition (DHBC) was prescribed. The expression of this bamndondition is given by:

T(r,t)|,=r = To(1 — cos(wt)), (31)

with 75 = 10.0°C andw = 7/2 rad/s.

Figure6 shows the evolution of the temperature at two interior oaficoordinatesz, y) =
(0.0,0.0) and (z,y) = (8.0,0.0). Figure7 shows the temperature at timme= 10.0s on the
horizontal diameter of the circular region.

16.0 T T T T T T T T T T
12.0 - B
O
o
g
5 80 4
=
8
e,
g
o
=
40 .
Analytical
CQM-BEM: At=0.00977 s
——r=(00), —=—r=(80
0.0 ki . 1 . 1 . 1 . 1
0.0 4.0 8.0 12.0 16.0 20.0

Time (s)

Figure 6: Evolution of the temperature at two interior psiat the circular region with DHBC.
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8.0 = —
" 1 " 1 " 1 " 1 " 1
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Figure 7: Temperature at time= 10.0 s on the horizontal diameter of the circular region with DHBC

4.2 One-dimensional rod

This example considers the transient heat conduction @robiside a one-dimensional rod
of size L x L/2, whereL, = 2.0 mm, as depicted in Fig8. The example considers mixed
Dirichlet and Neumann boundary conditions: the sides oftler, are thermally isolated, the
lateral sides of lengtli /2 are subject to the temperatufét) = 0.0°C. The initial condition is
T(X,ty) = Ty, with T, = 1.0°C.

The thermal diffusivityk = 1.0 mm?/s was assumed. A boundary mesh/of 76 elements
was used. A time interval fronty = 0.0s tot; = 0.5s is analyzed. The time discretization
consist 0f1024 time-steps of lengti\t = 0.0005 s.

y
oT(t)/on = 0 (isulation)
(@)
S \ _
- K.p,c ()
oT(t)/on = 0 (isulation) X
L

Figure 8: One-dimensional rod: geometry and mixed boundangitions.

The evolution of the temperature at the center p6int (1.0,0.5) is shown in Fig9. The
figure shows that the numerical responses obtained usinG@id-based BEM are in good
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agreement with the exact solution. The temperature attim@.25 s on the horizontal axis of
the rod is shown in FiglO.

T T T T T T T T T
1.0 g, Analytical -
—o— CQM-BEM: At=0.0005 s
O 0.8 - -
]
g
=
=
& 0.6 - -
=
o
H
0.4 - -
L | L | L | L | L |
0.0 0.1 0.2 0.3 0.4 0.5

Time (s)

Figure 9: Evolution of the temperature at nadef the one-dimensional rod.

T T
0.6 |- -
S 04 -
ot
=
g
& 02| .
g0
(]
F
Analytical
0.0 —o— CQM-BEM: At=0.0005 s 7
1 L 1 L 1 L 1 L 1
0.0 0.5 1.0 1.5 2.0
L (mm)

Figure 10: Temperature at timte= 0.25 s on the horizontal axis of the one-dimensional rod.

4.3 Square region

This example considers the analysis of the transient hewtumtion inside a square region
of dimensionL x L, whereL = 100.0 mm as specified in Figll. The horizontal sides are
thermally isolated and the right side is subject to the tenatpee 7 (t) = 0.0°C. The left side
considers DHBC given by Eq3(), with 7, = 10.0°C andw = 7/100 rad/s. The initial
condition isT' (X, ty) = 0.0 °C and the thermal diffusivity i% = 16.0 mn/s.
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0T (t)/on = 0 (isulation)

- K,p,c (1)

0T (t)/0n = 0 (isulation) X

L

Figure 11: Square region: geometry and boundary conditions

A boundary mesh of/ = 76 elements was used. A time interval frofp = 0.0s to
t; = 400.0s is analyzed. The time discretization consist3@f4 time-steps ofAt = 0.39s.
Figure12 shows the evolution of the temperature at two interior goaftcoordinatesz, y) =
(9.0,50.0) and(z,y) = (49.0,50.0). Figurel3 shows the temperature at time= 200.0s on
the horizontal axis of the square.

24.0 T T T T T T : T
Analytical
20.0 CQM-BEM: At=0.39 s -
—o— X =(9,50), —— X = (49,50)
~ 16.0 N
@)
o
g 120 .
=
IS
[}
2,
g 80 i
(]
H
4.0 E
0.0 ; : :
0.0 100.0 200.0 300.0 400.0

Time (s)

Figure 12: Evolution of the temperature at interior poirftthe square region with DHBC.
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Figure 13: Temperature at tinte= 200.0 s on the horizontal axis of the square region with DHBC.

5 CONCLUSIONS

A CQM-based BEM formulation was proposed with the purpose afyang two-dimen-
sional problems governed by the heat equation. The CQM isteacte method for the time
discretization of the convolution integrals of the timestin BEM. Interesting characteristics
of this approach are: first, the fundamental solution in taplace domain is used instead of
the fundamental solution in the time-domain; second, the Q@diires the definition of the
time-step sizeAt only. Other methods that work directly in the Laplace transfed domain
need a carefully definition of several parameters to obtedui@te results.

Regarding to the computation cost of the implementation, itwmgortant conclusions are
achieved:

1. When computing the influent matrices of the BEM the FFT atbarican be used to
reduce the number of operations. Unfortunately, to soleedtbundary problem, the cost of the
convolution and the cost of storage is high: the FFT cannatdeel and a complete storage of
the influent matrices is required.

2. For the numerical responses at interior points the mathddeap in the number of opera-
tions and storage: the convolution can be computed by usa§ET, and the memory required
is related to the element matrices for just one interior f@imce the computations for different
interior points are complete independent.

The examples analyzed shown that the proposed formulati@accurate and exhibits a stable
behavior with respect to the paramefer, thus the CQM-Based BEM is well suited for general
problems of transient heat conduction.
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