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Abstract. In this work a fast method for the numerical solution of time-domain boundary integral for-
mulations of transient problems governed by the heat equation is presented. In the formulation proposed,
the convolution quadrature method is adopted, i.e., the basic integral equationof the time-domain bound-
ary element method is numerically calculated by a quadrature formula whose weights are computed using
the Laplace transform of the fundamental solution. In the case that the responses are required at a large
number of interior points, it was observed that the convolution performed tocalculate them is very time
consuming. In this work it is shown that the discrete convolution can be obtained by means of fast
Fourier transform techniques, hence reducing considerably the computational complexity. To validate
the numerical techniques studied, results for some transient heat conduction examples are presented.
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1 INTRODUCTION

For heat transfer problems, the classical time-domain (TD)formulation of the Boundary Ele-
ment Method (BEM) presents convolution integrals with respect to the time variable. One of the
recognized disadvantages of the classical TD-BEM approach lies in the high computational cost
concerning the calculation of the matrices and also the evaluation of the convolution integrals.
Besides, in spite of the BEM requires only a surface mesh, when it is used for the analysis of
problems with complex-shaped domains, it must solve large linear systems of equations defined
by non-symmetric and fully populated matrices.

The BEM has been already used to solve transient heat conduction problems. In the litera-
ture, different BEM approaches have been used to address thistopic. One approach is by us-
ing convolution schemes, where the TD fundamental solutionis introduced to state a transient
boundary integral equation model (Wrobel, 2002). To make possible such procedures it is nec-
essary to know the TD fundamental solution. Other approach is to define a time-stepping pro-
cedure. This approach requires domain integration which, in their turn, can be addressed using
the dual reciprocity technique, triple reciprocity technique or similar ones (Tanaka and Chen,
2001; Kassab and Divo, 2006; Erhart et al., 2006; Kassab and Wrobel, 2000; Divo et al., 2003;
Ochiai et al., 2006; Divo and Kassab, 1998).

Other alternative approaches to address transient heat problems consist of the use of the
Laplace transform and its inverse. Applying the Laplace transform to the TD governing equa-
tion it is possible to eliminate the time derivative and solve the problem in the Laplace domain
using a steady-state BEM approach (Rizzo and Shippy, 1970; Wrobel, 2002). To recover the
real TD solution, the result obtained in the Laplace domain is inverted by means of the inverse
Laplace transform. However, due to the fact that the numerical inversion is an ill-posed prob-
lem, special methods for the numerical Laplace inversion are required. Among these numerical
techniques of inversion, the most commonly used is the Stehfest algorithm (Stehfest, 1970;
Kassab and Divo, 2006).

Recently, the Convolution Quadrature Method (CQM) has been found suitable for the appli-
cation to TD-BEM approaches. This method evaluates the convolution integral of the TD-BEM
formulations by mean of a quadrature formula that uses the fundamental solution in the Laplace
transformed domain. One of the advantages of using the CQM is that it makes the BEM able
for problems where the analytical TD fundamental solution is not available or is difficult to
compute.

The CQM was firstly described in (Lubich, 1988a,b; Lubich and Schneider, 1992; Lubich,
1994) and provides a direct procedure to obtain a stable BEM approach that uses the Laplace
transform of the TD fundamental solution. Applications of the CQM-Based BEM (a.k.a. CQM-
BEM or also convolution quadrature method) to elastodynamics, viscoelasticity and poroelas-
ticity problems can be found in (Schanz, 1972; Messner and Schanz, 2010) and for acoustics
in (Abreu et al., 2003, 2006, 2008, 2009). Furthermore, with the aim to accelerate and im-
prove the computational efficiency, it was combined with themultipole method to formulate a
CQM-Based BEM for diffraction of waves problems in (Saitoh et al., 2007a,b, 2009).

In the present work, a CQM-Based BEM is used for the TD solution oftwo-dimensional
transient heat conduction problems. In this work it is explained how the discrete convolution
of the CQM-Based BEM can be implemented using fast Fourier transform (FFT) technique to
reduce the computational cost of the numerical calculation. Results for some transient heat
conduction examples are presented to validate the proposedmethod.
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2 DEFINITIONS AND GOVERNING EQUATION

The continuity equation in heat conduction problems is (Özişik, 1993; Carslaw and Jaeger,
1988; Crank, 1975):

∂u(X, t)

∂t
+∇ · J(X, t) = F (X, t) in Ω , (1)

whereu is the internal energy,J is the flux of heat vector,F is the amount of heat per unit vol-
ume that is increased (or withdrawal) in the material bodyΩ of the two-dimensional Euclidean
space.

The Fourier law of heat conduction formulates a linear relationship between the flux of heat
vector and the gradient of the temperature fieldT . This constitutive relation for isotropic mate-
rials is given by:

J(X, t) = −K(X, t)∇T (X, t) , (2)

whereK > 0 is the thermal conductivity of the material. The relation ofspecific heat
expresses that the variation of internal energy is reflectedin the local variation of temperature,
i.e.:

∂u(X, t)

∂t
= c(X, t)ρ(X, t)

∂T (X, t)

∂t
, (3)

wherec represents the specific heat of the material,ρ its mass density. For a homogeneous
material of constant propertiesK, c andρ, Eqs. (1) and (2) applied on Eq. (3) gives:

∂T (X, t)

∂t
− k∇2T (X, t) = f(X, t) , (4)

wherek is the thermal diffusivity given byk = K/(cρ) andf = F/(cρ). Equation (4) is known
as the heat equation and describes the evolution of the temperatureT inside a homogeneous and
isotropic material in the presence of sources of heat given by f . Note that, in this simple model
the material propertiesK, c andρ do not depend on the time. This assumption is usually
accurate when small variation of temperature arises.

The heat conduction problem consists to solve Eq. (4) for the unknown functionT . The
function f is known, as well as the material properties, the initial condition T (X, t0) at the
initial time t0 and the following boundary conditions:

T (X, t) = T̄ (X, t) in ΓT ,
q(X, t) = q̄(X, t) in Γq ,

(5)

whereq(X, t) = −k ∂T
∂n
(X, t), ΓT andΓq are the regions of the boundaryΓ of Ω where Dirichlet

and Neumann boundary conditions are respectively applied (ΓT ∪ Γq = Γ). T̄ andq̄ are known
functions andn is the outward unit normal toΓ.

3 CQM-BASED BEM FORMULATION

Assuming a homogeneous initial condition, i.e.,T (X, t0) = 0, and null heat sources, Eq. (4)
can be formulated into a boundary integral equation of the form (Wrobel, 2002):

c(ξ)T (ξ, t) =

∫

Γ

∫ tf

t0

T ∗(r, t− τ)q(X, τ) dτ dΓ−
∫

Γ

∫ tf

t0

q∗(r, t− τ)T (X, τ) dτ dΓ , (6)
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In Eq. (6), T ∗(r, t− τ) is the TD fundamental solution,q∗(r, t− τ) = −k ∂T ∗

∂n
(r, t− τ), with

r = |X − ξ|. The coefficientc(ξ) = 1 when the source pointξ belongs to the domainΩ and
c(ξ) = θ/(2π) whenξ ∈ Γ, whereθ is the internal angle formed by the left and right tangents
to Γ at ξ.

To solve the boundary integral Eq. (6) it is required both space and time discretizations.
The BEM representsΓ and the boundary values ofT an q by using piece-wise polynomial
functions. For this purpose the boundary is divided intoJ elementsΓj (j = 1, 2, . . . J). The
time discretization consists in dividing the time span[t0, tf ] intoN time-steps of equal size∆t.
A discrete version of Eq. (6) using the CQM for a point sourceξ and the timetn = t0 + n∆t is
given by (Lubich and Schneider, 1992; Abreu et al., 2003, 2006):

c(ξi)T (ξi, tn) =
J
∑

j=1

n
∑

m=0

g
j
n−m(ξi,∆t)qj

m −
J
∑

j=1

n
∑

m=0

h
j
n−m(ξi,∆t)T j

m , n = 0, 1, . . . , N . (7)

The quadrature weightsgn andhn of Eq. (7) are given by:

gj
n(ξ,∆t) =

σ−n

L

L−1
∑

ℓ=0

∫

Γj

T̂ ∗(r, sℓ)N
j(X) dΓ e−αnℓ , (8)

hj
n(ξ,∆t) =

σ−n

L

L−1
∑

ℓ=0

∫

Γj

q̂∗(r, sℓ)N
j(X) dΓ e−αnℓ , (9)

where the parameterα = 2πi/L
(

i =
√
−1

)

.
In the previous expressions,N j(X) represents the matrix of interpolation functions of the

spatial discretization. The discrete parametersℓ = γ(σeαℓ)/∆t. The functionγ is given by:

γ(z) =

p
∑

n=1

1

n
(1− z)n , z ∈ C , (10)

and it is the quotient of the characteristic polynomial generated by a linear multi-step method
that is usually a backward differentiation formula of orderp (Lubich, 1988a,b).

SettingL = N andσN =
√
ε in Eq. (8) and (9), the quadrature weightsgn andhn are com-

puted within an error of orderO(ε), whereε is the precision with whicĥT ∗(r, sℓ) andq̂∗(r, sℓ)
are calculated (Lubich and Schneider, 1992). T̂ ∗(r, ·) andq̂∗(r, ·) are the Laplace transform of
T ∗(r, ·) andq∗(r, ·), respectively. The expressions of these fundamental solutions for a heat
point source are given by (Morse and Feshbach, 1953; Wrobel, 2002):

T̂ ∗(r, s) =
1

2πk
K0

(
√

s

k
r

)

, (11)

q̂∗(r, s) =
∂T̂ ∗

∂r
(r, s)

∂r

∂n
= − 1

2πk

√

s

k
K1

(
√

s

k
r

)

∂r

∂n
, (12)

whereKν is the modified Bessel function of the second kind and orderν.
T j
m andqj

m of Eq. (7) represent, respectively, the prescribed or unknown nodalvalues ofT
andq defined at each elementj of the boundary, and are given by (m = 0, 1, . . . , N in the time):

T j
m = T j(tm) = T j(t0 +m∆t) , (13)

qj
m = qj(tm) = qj(t0 +m∆t) . (14)
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Equation (7) can be rewritten in matrix form as follows:

cT n =
n

∑

m=0

Gn−mqm −
n

∑

m=0

Hn−mTm . (15)

The responses on the boundary and at interior points are calculated from Eq. (15), whereG
andH are the BEM influence matrices andc is the diagonal matrix containing the coefficients
c(ξ). The indicesn andm correspond to the discrete timestn = t0 + n∆t andtm = t0 +m∆t,
respectively. To compute the responses on the boundary, theboundary conditions have to be
imposed into Eq. (15). The following general expression is obtained:

A0yn = fn +
n−1
∑

m=0

(

Gn−mqm −Hn−mTm
)

, (16)

whereA0 stores the columns ofc + H0 corresponding to the unknown values ofT and the
columns ofG corresponding to the unknowns values ofq. The unknown values ofT andq
at timetn are stored in the vectoryn. The known values ofT andq are multiplied for their
respective columns ofH andG to assemble the vectorfn.

From Eq. (16) it is possible to observe that the linear systems that the method solves to obtain
the unknown vectorsyn have all the same coefficient matrixA0. Thus, the method needs of
just one factorization. The other influence matrices are used only for the computation of the
independent terms.

3.1 Computation of the influent matrices

It was observed that most of the computational cost of solution is due to the computation
and storage of the influent matrices, and also due to the numerical convolution. These two tasks
can be studied separately. In this section it will be explained how to compute and assemble the
influent matrices in order to reduce the computational cost.

The quadrature weightsgn andhn can be obtained efficiently using the FFT algorithm
(Cooley and Tukey, 1965; Brigham, 1988): examining the expressions of the quadrature weights
and, taking into consideration the definition of the discrete Fourier transform (DFT), Eqs. (8)
and (9) can be rewritten in the following form:

gj
n(ξ,∆t) =

σ−n

L

L−1
∑

ℓ=0

T̂
∗j
ℓ e−αnℓ , (17)

hj
n(ξ,∆t) =

σ−n

L

L−1
∑

ℓ=0

q̂
∗j
ℓ e−αnℓ . (18)

whereT̂ ∗j
ℓ andq̂∗j

ℓ are:

T̂
∗j
ℓ =

∫

Γj

T̂ ∗(r, sℓ)N
j(X) dΓ , (19)

q̂
∗j
ℓ =

∫

Γj

q̂∗(r, sℓ)N
j(X) dΓ . (20)

Thus, to obtaingn andhn it is enough to calculate the FFT transform ofT̂ ∗

ℓ andq̂∗

ℓ and mul-
tiply the results by the factorσ−n/L. Using the FFT algorithms one quadrature weight can be
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obtained with a number of operations the orderN log(N), keeping in mind thatN = L. The
element integrals should be performed before the FFT in order to reduce the number of times
that the FFT routine is called; otherwise, when using the Gauss quadrature formula one would
have to call the FFT routine once for each Gauss point.

3.2 Discrete convolution for interior points

As mentioned before, the numerical convolution is one of themost expensive tasks, if not
the most, of those performed by the CQM-Based BEM, mainly in the case where the responses
at a large number of interior points are required. This section describes how the numerical
convolution is implemented in order to reduce the computational cost. Consider the following
notations:
J : Number of elements used to discretize the boundary;
Nnod: Number of nodes;
Nip: Number of interior points where the numerical response is calculated;
N : Number of time-steps (that also represents the number of Fourier coefficients).

It is ease to see that the right hand side of Eq. (15) results in a block triangular Toeplitz
matrix, i.e., a matrix in which each descending diagonal from left to right has constant values.
Consider the following equation:

yn =
N
∑

j=0

an−jxj , 0 ≤ n ≤ N , (21)

wherey ∈ R
N+1, a ∈ R

N+1, x ∈ R
N+1 andaj = aN+1+j for a negative indexj. Eq. (21) is

the expansion of the discrete convolutiony = a ∗ x. Alternatively,y can be calculated by the
producty = Ax where the circulant matrixA has coefficientsAij = ai−j. The convolution of
Eq. (21) can also be computed as (Brigham, 1988):

y = F−1 (F(a) ◦ F(x)) , (22)

where the notationF(·) means discrete Fourier transform,F−1(·) is the inverse discrete Fourier
transform and the symbol "◦" denotes the Hadamard product of vectors(a◦x)i = aibi. There-
fore, the vectory can be calculated efficiently using the FFT algorithm with a number of oper-
ations of order3N log(N) (three calls to the FFT algorithm).

Consider now the following equation:

yn =
n

∑

j=0

an−jxj , 0 ≤ n ≤ N . (23)

Equation (23) it is not a convolution in the form of Eq. (21) because the upper limit of the sum
is not equal than the upper limit of the sum of Eq. (21). However, if the vectorsa andx are
extended in the form:

{

aj = 0 , N + 1 ≤ j ≤ 2N ,
xj = 0 , N + 1 ≤ j ≤ 2N ,

(24)

then

yn =
2N
∑

j=0

an−jxj , 0 ≤ n ≤ N . (25)
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The vectory in its turn can be extended in order to obtain a convolution inthe form of Eq. (21):

yn =
2N
∑

j=0

an−jxj , 0 ≤ n ≤ 2N . (26)

Therefore, using the FFT algorithm,y can be obtained in(6N) log(2N) operations.
For interior points, Eq. (7) with c(ξ) = 1 gives:

T (ξ, tn) =
J
∑

j=1

n
∑

m=0

g
j
n−m(ξ,∆t)qj

m −
J
∑

j=1

n
∑

m=0

h
j
n−m(ξ,∆t)T j

m , n = 0, 1, . . . , N , (27)

which can be expressed as:

T (ξ, tn) =
J
∑

j=1

Gj
n −

J
∑

j=1

Hj
n , n = 0, 1, . . . , N , (28)

with Gj
n andHj

n defined as:

Gj
n =

n
∑

m=0

g
j
n−m(ξ,∆t)qj

m , (29)

Hj
n =

n
∑

m=0

h
j
n−m(ξ,∆t)T j

m . (30)

MatricesGj
n andHj

n can be obtained efficiently using the FFT algorithm in the same way as
yn of Eq. (23). Thus, each component ofGj

n andHj
n is obtained in(6N) log(2N) operations.

Therefore, for the interior pointξ, T (ξ, tn) of Eq. (27) can be obtained in(12JN) log(2N)
operations. Then, the total number of operations to obtain the responses atNip interior points
is of the order(12JNNip) log(2N) plus the operations required to compute all the element
matricesgj

n andhj
n.

4 NUMERICAL EXAMPLES

To validate the proposed method, some examples consideringthree different domains are
analyzed. The numerical responses of transient heat conduction problems for these examples
were compared to the analytical responses (Carslaw and Jaeger, 1988; Özişik, 1993; Crank,
1975). All the examples share the following characteristics:

• It was takenL = N andσN =
√
ε with ε = 10−4.

• The time-step∆t is fixed (it is an inherent feature of the CQM).
• It was takenγ(z) = 3

2
− 2z + 1

2
z2 (corresponding to a backward differentiation formula

of orderp = 2).
• Lineal elements were used for the spatial discretization.
• Uniform initial condition, i.e.,T (X, t0) = T0. The particular solutionT (X, t) = T0 was

used to solve zero initial condition examples.
• Zero heat sources (homogeneous equation).
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4.1 Circular region

In this example the transient heat conduction analysis inside a circular region of radiusR =
1.0 mm is considered. A constant Dirichlet boundary condition (DBC) T̄ (r, t)|r=R = 0.0 ◦C,
is prescribed. The initial condition isT (X, t0) = T0, with T0 = 1.0 ◦C. The geometry of the
region of this example is depicted in Fig.1.

Figure 1: Circular region: geometry and boundary condition.

The thermal diffusivity isk = 1.0mm2/s. A boundary mesh ofJ = 48 elements was used.
A time interval fromt0 = 0.0 s to tf = 0.5 s is analyzed. For the time discretization, two
cases were tested. The first case corresponds to32 time-steps of∆t = 0.0156 s. The second
case corresponds to1024 time-steps of∆t = 0.0005 s. Figure2 shows the evolution of the
temperature at pointA located in the center of the circular region. The figure showsthat the
responses are accurate when compared with the exact solution. The temperature field on the
horizontal diameter of the circular region for the timet = 0.25 s is shown in Fig.3.
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Figure 2: Evolution of the temperature at pointA of the circular region with DBC.
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Figure 3: Temperature at timet = 0.25 s on the horizontal diameter of the circular region with DBC.

Figures4 and5 show the results obtained for the same circular region subject to Neumann
boundary conditions (NBC) corresponding to a fluxq̄(r, t)|r=R = −1.0 ◦Cmm/s.
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Figure 4: Evolution of the temperature at pointA of the circular region with NBC.
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Figure 5: Temperature at timet = 0.25 s on the horizontal diameter of the circular region with NBC.

The next example considers a circular region of radiusR = 10.0 mm. The initial condition
is T (X, t0) = 0.0 ◦C. The thermal diffusivity isk = 4.0mm2/s. A boundary mesh ofJ = 48
elements was used. A time interval fromt0 = 0.0 s to tf = 20.0 s is analyzed. The time
discretization consists of2048 time-steps of∆t = 0.00977 s. Dirichlet harmonic boundary
condition (DHBC) was prescribed. The expression of this boundary condition is given by:

T (r, t)|r=R = T0(1− cos(ωt)) , (31)

with T0 = 10.0◦C andω = π/2 rad/s.
Figure6 shows the evolution of the temperature at two interior points of coordinates(x, y) =

(0.0, 0.0) and (x, y) = (8.0, 0.0). Figure7 shows the temperature at timet = 10.0 s on the
horizontal diameter of the circular region.
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Figure 6: Evolution of the temperature at two interior points of the circular region with DHBC.
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Figure 7: Temperature at timet = 10.0 s on the horizontal diameter of the circular region with DHBC.

4.2 One-dimensional rod

This example considers the transient heat conduction problem inside a one-dimensional rod
of sizeL × L/2, whereL = 2.0 mm, as depicted in Fig.8. The example considers mixed
Dirichlet and Neumann boundary conditions: the sides of lengthL are thermally isolated, the
lateral sides of lengthL/2 are subject to the temperaturēT (t) = 0.0◦C. The initial condition is
T (X, t0) = T0, with T0 = 1.0 ◦C.

The thermal diffusivityk = 1.0 mm2/s was assumed. A boundary mesh ofJ = 76 elements
was used. A time interval fromt0 = 0.0 s to tf = 0.5 s is analyzed. The time discretization
consist of1024 time-steps of length∆t = 0.0005 s.

Figure 8: One-dimensional rod: geometry and mixed boundaryconditions.

The evolution of the temperature at the center pointC = (1.0, 0.5) is shown in Fig.9. The
figure shows that the numerical responses obtained using theCQM-based BEM are in good
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agreement with the exact solution. The temperature at timet = 0.25 s on the horizontal axis of
the rod is shown in Fig.10.
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Figure 9: Evolution of the temperature at nodeC of the one-dimensional rod.
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Figure 10: Temperature at timet = 0.25 s on the horizontal axis of the one-dimensional rod.

4.3 Square region

This example considers the analysis of the transient heat conduction inside a square region
of dimensionL × L, whereL = 100.0 mm as specified in Fig.11. The horizontal sides are
thermally isolated and the right side is subject to the temperatureT̄ (t) = 0.0◦C. The left side
considers DHBC given by Eq. (31), with T0 = 10.0 ◦C andω = π/100 rad/s. The initial
condition isT (X, t0) = 0.0 ◦C and the thermal diffusivity isk = 16.0 mm2/s.
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Figure 11: Square region: geometry and boundary conditions.

A boundary mesh ofJ = 76 elements was used. A time interval fromt0 = 0.0 s to
tf = 400.0 s is analyzed. The time discretization consists of1024 time-steps of∆t = 0.39 s.
Figure12 shows the evolution of the temperature at two interior points of coordinates(x, y) =
(9.0, 50.0) and(x, y) = (49.0, 50.0). Figure13 shows the temperature at timet = 200.0 s on
the horizontal axis of the square.
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Figure 12: Evolution of the temperature at interior points of the square region with DHBC.
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Figure 13: Temperature at timet = 200.0 s on the horizontal axis of the square region with DHBC.

5 CONCLUSIONS

A CQM-based BEM formulation was proposed with the purpose of analyzing two-dimen-
sional problems governed by the heat equation. The CQM is an attractive method for the time
discretization of the convolution integrals of the time-domain BEM. Interesting characteristics
of this approach are: first, the fundamental solution in the Laplace domain is used instead of
the fundamental solution in the time-domain; second, the CQMrequires the definition of the
time-step size∆t only. Other methods that work directly in the Laplace transformed domain
need a carefully definition of several parameters to obtain accurate results.

Regarding to the computation cost of the implementation, twoimportant conclusions are
achieved:

1. When computing the influent matrices of the BEM the FFT algorithm can be used to
reduce the number of operations. Unfortunately, to solve the boundary problem, the cost of the
convolution and the cost of storage is high: the FFT cannot beused and a complete storage of
the influent matrices is required.

2. For the numerical responses at interior points the methodis cheap in the number of opera-
tions and storage: the convolution can be computed by using the FFT, and the memory required
is related to the element matrices for just one interior point, since the computations for different
interior points are complete independent.

The examples analyzed shown that the proposed formulation is accurate and exhibits a stable
behavior with respect to the parameter∆t, thus the CQM-Based BEM is well suited for general
problems of transient heat conduction.
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