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Abstract. Non-isothermal flow of a variable viscosity non-Newtonian fluid between a pair of 
counter-rotating cylinders with equal speed and equal size rolls is analyzed to study theoretically the 
effect of viscous dissipation on the exiting sheet thickness for the power law plastic fluid model. A 
regular perturbation method based on the lubrication approximation theory is used to uncouple the 
momentum and the energy equations to provide numerical results of the effects of temperature profiles 
on the final sheet thickness. The heat transfer analysis of Calendering Non-Newtonian fluids is an 
important area on polymer processing. Here, we are interested in studying the heat transfer phenomena 
on calendering Non-Newtonian process using the power law model. This model, takes into account the 
effects of temperature on the consistency index, also the viscous dissipation. In this study the 
important parameters are the Nahme-Griffith number as a perturbation parameter, this one relates the 
temperature gradient generated by viscous dissipation to the temperature gradient necessary to modify 
the viscosity. In general form, the pressure distribution is determined from the momentum equation, 
and then we can calculate the velocity profile, finally the energy equation is solved to estimate the 
influence of variable viscosity and viscous dissipation on the final sheet thickness. The order of 
magnitude for the Graetz and Nahme-Griffith numbers were 101 and 10-3, respectively. Finally the 
influence of power law index n  and the flow rate on pressure and temperature are obtained. 
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1 INTRODUCTION 

The heat transfer analysis on Calendering process is an important area for the design 
of calendar machines. The study of this class of heat transfer problems represents a 
fundamental branch that allows to obtain a better thermal design and control polymer 
processing performance. Here, we are interested in studying the calendaring process, in which 
the shear stress is represented by Herschel-Bulkley model; also the apparent viscosity of the 
fluid into this rheology model is variable on temperature. The process of calendering has been 
extensively studied by many researchers over the last 50 years. Starting with Ardichvili 
(1936), the work was extended to Newtonian and Bingham plastics by Gaskel (1950), to 
power law fluid by McKelvey (1962), Pearson (1966), to Herschel-Bulkley fluid by Souzanna 
Sofou and Evan Mitsoulis (2004) and recently a numerical simulation of calendering 
viscoplastic fluids was reported by Evan Mitsoulis (2008), and others. Non-Isothermal effects 
have been studied by Kiparissides and Vlachopoulos (1978), Ivan López Gómez, Omar 
Estrada and Tim Osswald (2006). 

 
Although the foregoing works are essential contributions to the study of Calendering 

phenomena, they were only reserved for those situations where the momentum equation is not 
coupled with energy equation, so the velocity and pressure fields are not affected by 
temperature (isothermal case). The main contribution in this study is to investigate the 
influenced of temperature on velocity and pressure fields in the limit when the Bingham tends 
to zero. In this case, the zone of interest is a viscous fluid that obeys the power law model. 

 

2 FORMULATION AND ORDER OF MAGNITUDE ANALYSIS 

 
The physical model under study is shown in figure 1. We begin with the plausible 

argument that the most important dynamic events occur in the region of the minimal roll 
separation-the nip region. A non-Newtonian fluid flowing non-isothermally between two 
cylinders of radius R, rotating at the same speed U is considered. The cylinder surface is 
maintained at constant temperature T0. The fluid can be represented by the power law model 
of consistency factor K0, and power law index n . The clearance between the rolls, 02H  is so 
small as to be negligible in comparison with length and radius of the cylinders. Then it is 
reasonable to assume that the flow is nearly parallel, so that the general movement of the fluid 
is mainly in the x  direction, the velocity of the fluid in the y  direction is small. The gradient 
in the x  direction of the velocity in the same direction is negligible compared to its gradient 
in the y  direction and the pressure gradient is a function of x  only. 
 
Due to the symmetry of the physical model, we consider only for convenience the upper side 
of this configuration. Therefore, we select as the origin of the coordinate system, whose y  
axis points up, i.e., in the opposite direction of the gravity vector, and the x  axis points in the 
direction of the flow. 
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Figure.-1. Physical model sketch 

 
The general governing equations in physical units are written in the following form, 
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From the momentum equation for the fluid in the longitudinal direction x, it can be shown 
that the pressure is of the order of, 
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Besides the orders of magnitude of the important variables on calendaring process are 
presented in the following form, 
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 3 MATHEMATICAL FORMULATION 

 
In this section, we present the non-dimensional governing equations needed to solve the 
calendering heat transfer problem. Based on the above order of magnitude analysis, we 
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introduce the following non-dimensional variables. 
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Replacing the non-dimensional variables into the momentum equation eq.(2), we obtain the 
non-dimensional form of this, 
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 Where the Non-dimensional parameters that appear in the above equation are the modified 
Reynolds, Nahme-Griffith, Graetz and Peclet numbers, defined respectively as: 
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Herein, the inertial, pressure and viscous terms are of order unit, while the Reynolds number 
is of order 10-4, in these processes, hence the left hand side of eq.(11) is negligible compared 
with the other ones. The relationship (11), can be reduced as, 
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With regard to energy equation, and making a change of transversal variable to get a 
rectangular computational domain, the non-dimensional energy equation for the fluids is, 
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Replacing the velocity and the viscous dissipation on the above equation we get, 
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The boundary conditions for the energy equation (22b) are, 
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The equation of energy was solved by a marching finite difference method of implicit type for 
the upper half of the flow field. The following finite difference approximations were used for 
the temperature derivatives. 
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Replacing the finite difference approximations on eq.(22), and applying the Crank-Nicolson 
method, we obtain the Crank-Nicolson finite difference equation for the internal nodes, 
defined as, 
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In the next section, we present the numerical results, on pressure and temperature fields to 
calendering non-newtonian fluids. 
 

4 RESULTS 

The characteristic values of the parameters involved on calendering process are presented in 
Table 1 
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41.25 10X −  0.0024 45 10X  0.16 2200 0.0006 0.05 0.30 0.50

 
Table 1.- Characteristics values on calendering 
 
In the figures 2-4, the non-dimensional axial pressure field on calendering process is shown 
for a viscoplastic fluid obeying the power law. In these figures we can see the power law 
index influence on pressure field for various dimensionless flow rate. 
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Figure 2. Non-dimensional axial pressure field for different power law index with 0.3λ =  

 
The extreme of the pressure distribution occur at fχ χ= − , and χ λ= ± . For a given 
dimensionless leave of distance χ λ= , corresponding to  a finite sheets,  integration  of the 
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momentum equation  is carried out  until the pressure passes  through  zero .  At this point is 
the entry to the domain and thus the value of fχ χ= − , is found since here ( ) 0.0fP χ χ= − =  
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Fig. 3.  Axial non-dimensional pressure distribution for different values of the power law 

index for a viscoplastic fluid with a dimensionless flow rate 0.444λ = . 
 

In figure 1, for 0.3λ =  and 1n =  the maximum pressure is located at 0.3χ = −  where 
P=4.58, while for the viscoplastic fluid P=24.11 with a power law index of 0.2n = , since the 
pressure in the last case is five times higher than the Newtonian case, we can find the 
influence of the parameter n, on the pressure field. 
 

In figures 2 and 3, we show the influence of the non-dimensionless flow rate on the non-
dimensionless pressure field, for n=0.1 the maximum pressure is shown on figure 2, where 
P=24.1115 while the maximum pressure on figure 3, is 1.56 times. 
 

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
0

5

10

15

20

25

30

35

40

45

  0.475λ =

χ

 P

 n=0.1
 n=0.2
 n=0.4
 n=0.5
 n=0.6
 n=0.8
 n=1.0

 
Fig. 4.  Axial non-dimensional pressure distribution for different values of the power law 

index for a viscoplastic fluid with a dimensionless flow rate 0.475λ = . 
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On the other hand, for χ → −∞  the pressure distribution 0P →  this is shown on figure 4. 
Under this assumption we get the maximum thickness value of the calendaring sheet, i.e. 
when 0.475λ∞ = . From figures 1-6, we can see that the pressure into the nip region, exactly 
on 0χ =  is the  half  value of the maximum pressure gets during the calendering process on 
χ λ= − . 
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Fig. 5.  Non-dimensional Axial pressure distribution for different values of 
nondimensionless flow rate for a viscoplastic fluid with a power law index 0.4n =  
In figures 5 and 6 we show the hard influence of the flow rate on axial dimensionless pressure 
distribution for a value of the power law index.  Two limits for λ  are shown in these graphics, 
for the first case 0.475λ ≤ , it is possible to determine exactly the point where the rolls bite for 
the first time the finite sheet, this point is at, fχ− . 
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Fig. 6. Non-dimensional Axial pressure distribution for different values of non-
dimensionless flow rate for a viscoplastic fluid with a power law index 0.8n =  

 
The second limit is when 0.475λ > , because of the pressure distribution there is a backflow 
component which is superimposed onto the drag flow component. In this case there is a 
negative flow along the axis , and a circulation pattern  develops in this case it was assumed 
that the calender was fed with a mass of fluid so large that an infinite reservoir of fluid existed 
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upstream from the nip, these can be seen on figures 5 and 6. The development of the 
temperature profile is schematically shown in figures 7-8. The amount of shear is greater near 
the roll surfaces, hence the two maximum in the vicinity of these surfaces. 
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Figure 7. Transversal Temperature profile for the calendaring process with a power law 
index 0.5n = and Graetzt number 10Gz =  with a non-dimensionless flow rate 0.3λ = in the 

case of Newtonian fluid 
In figures 7 and 8, we can see the hard influence of the power law index on the temperature 
profiles for the calendaring process, where in the case of Non-Newtonian fluid the 
temperature profiles is smaller than in the Newtonian case. The increase of temperature due to 
the viscous dissipation is more important on the vicinity of the rolls because of the movement 
of the rolls, and the temperature decreases as we approach the center of the nip, because of the 
influence of the drag in this zone is negligible. 
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Figure 8.  Transversal Temperature profile for the calendaring process with a power 

law index 0.25n = and Graetzt number 10Gz =  with a non-dimensionless flow rate 
0.3λ =  in the case of Non-Newtonian fluid 
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In the figure 8, we can see the influence of the non-dimensionless flow rate on the 
temperature profile for a Non-Newtonian fluid. When the flow rate decreases, the temperature 
decrease, because the velocity decrease too. 
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Figure 9. Calendering Thickness, in terms of λ , as a function of 0/fH H  for a power 

law index 0.5n = . 
 
From the previous figures it is apparent that under certain operating conditions the 
temperature rise due to viscous dissipation can be high enough to be detrimental for such 
temperature sensitive materials as PVC and robbers. It is important to note that the maximum 
exit temperature at the exit plane can be substantially smaller than the absolute maximum 
temperature throughout the whole flow field. 
 
In the present study we can see the influence of the power law index n , on the exiting sheet 
thickness and temperature profiles at non-Newtonian fluids, how was predicted by a note on 
the text book by Middleman, he developed an order of magnitude of the sensitivity of 
calendered thickness to temperature fluctuations, where a 3° variation in temperature will 
cause more than a 20 percent variation in calendered thickness, this can be shown on figure 9. 
Since the λ  increases the value of the fχ− , increases too, so the viscous dissipation is less 
than the Newtonian case, i.e., the Newtonian material are heated more than a pseudoplastic 
material, and then, the material will exit before than the Isothermal case. On the other hand, 
we determine the point where the rolls bite the sheet for some values of the non-
dimensionless flow rateλ . The pseudoplastic pressure profiles are higher than for the 
Newtonian fluid. 
 

5 CONCLUSIONS 

 
In this work we have obtained the pressure and temperature profiles on calendaring process 
on a non-Newtonian fluid. The pressure profiles were influenced by the power law index. For 
the Non-Newtonian fluid the thickness sheet at the outlet was higher than in the Newtonian 
case. In the upstream of the pseudoplastic material, the point where the roll bites the material 
for the first is before in comparison to Newtonian fluids. The point of the maximum pressure 
is located in χ λ= − . 
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NOMENCLATURE 
 
B   Geometry parameter 

pc   Heat capacity 
0h   Distance between rolls (nip) 

eH   Inlet thickness 
( )h x   Roll variable curvature length  

K   Consistency index 
k   Thermal conductivity 
n   Power law index 
p   Pressure in physical units  
P   Non-dimensionless pressure 
Q   Volumetric flow in physical units 

*Q   Non-dimensionless volumetric flow 
cQ   Characteristic volumetric flow 

R   Roll radius  
T   Temperature in the fluid in physical units 

0T   Temperature at the inlet of the fluid, in physical units 
wT   Roll temperature 

U   Roll velocity 
u   Axial velocity of the fluid in physical units  
u   Non-dimensionless axial velocity of the fluid in physical units 
v   Transversal velocity of the fluid in physical units 
v   Non-dimensionless transversal velocity of the fluid 
x   Axial coordinate in physical units 
y   Transversal coordinate in physical units 
Y   Non-dimensionless computational transversal coordinates 
 
Greek letters 
 
χ   Non-dimensionless axial coordinate 

fχ   Non-dimensionless axial coordinate at the inlet 
fρ   Density of the fluid 

xyτ   Shear stress 
λ   Non-dimensionless flow rate 
η   Non-dimensionless transversal coordinate 
θ   Non-dimensionless temperature 
 
Non-dimensional numbers 
Gz  Graetz number 
Pe   Peclet number 
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*Re   Modified Reynolds number 
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