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Abstract. In this work we solve numerically the conjugatesit transfer problem in steady state of a
non-Newtonian fluid and solid walls in a microchehaonder the influence of pressure and electro-
osmotic forces. The velocity field is determinedkitg into account a hydrodynamically fully-
developed flow and a constitutive relation baseé irheological power law model. The numerical
process results in: velocity profiles of the flowdain the solid-fluid temperature distributions.idt
shown the influence of nondimensional parameterslved in the analysis on the conjugated heat
transfer problem: the Peclet number, a normalizegep generation term being the ratio of heat flow
from the external wall to the Joule heating, a agajion term which determines the basic heat
transfer regimes between fluid and solid sectionthé microchannel. For the flow field: an indigato
of non Newtonian behavior, an electrokinetic partemand a ratio of pressure forces to the electro-
osmotic forces, the last acts on the flow as a deayicer and drag increaser under favorable and

adverse pressure gradients, respectively. An astmopsolution was introduced to validate the
numerical process.
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1 INTRODUCTION

The microfluidic devices are used in the handlimdiomedical and chemical analysis.
Thus, electrokinetic transport is widely used tatool flow and for manipulate sample
solutes, include injection, separation, mixingutidn/concentration, and reaction. Originally,
the electrokinetic transport operates a combinatioh two mechanisms drivers:
electrophoresis and electro-osmosis. Electropr®isghe migration of charged solutes in an
electrolyte under an applied electric field; theotlo-osmosis gives the movement of a
volume of an aqueous solution adjacent to a sdlarged surface when an external electric
field is applied tangentially along the surface n@aet al., 2007). Due to the rapid
development of "Lab-on-a-Chip” technologies duriegent years, electro-osmosis is being
used extensively as a driving force for manipulatftuid flows for transport and control
samples in nano volumes of fluids to biologicalemical and medical diagnostics. Advances
in microfluidic devices make possible a completalgsis of fluids in the biochemistry area in
a single fabricated chip; therefore, it is fundataémnderstand the characteristics of fluids
flow in microchannels to have an optimum design jarettise control of microfluidics devices
(Zhao et al., 2008).

The physics of electrokinetic phenomena and sigadlif in the electro-osmotic and
electrophoretic flow has been extensively reviewadthe literature (Masliyah, 2006;
Karniadaski, 2005; Li, 2004). The heat transfermqmmeena in microchannels has been studied
by Xuan (2004a, b), and Tang (2004a, b; 2007), theslyze the coupled cases with
temperature and conjugates problems in electro-bsnftow, and is emphasized the
inevitable effect of Joule heating in the flow. Buworks in this paragraph are under
consideration of Newtonian fluids, its only consgléhe part of the solvent in the flow, and
some are in transient state.

So, with the advent of electrokinetics for thensyort of chemical and biological fluids
through biochips, it is necessary to mathematiceligracterize the transport mechanisms
associated with the process for efficient designnmo€rofluidic systems. Strategies for
characterization are based on electro-osmotic pahf Newtonian fluids, however, that
consideration may be somewhat inappropriate foresapplications. It's clear that a model
such as Newton's law of viscosity may be insuffiti¢o fully describe the constitutive
behavior of chemical and biological complex fluidsthough in the literature there are
several models proposed to analyze the behavioroofNewtonian fluids, at present, still
appear relevant implications on the transport @ctebkinetic flows that have not been
completely resolved by the scientific community $Dend Chakraborty, 2006). Studies by
Zhao et al. (2008), Berli (2008) and Tang et ab0@), in this regard consider the power law
for non Newtonian fluids and only solve the hydnodmics of electro-osmotic flow; Das and
Chakraborty (2006) also uses the power law to sahadytically the distribution of velocity,
temperature and concentration on electro-osmatiwslof non Newtonian biological fluids,
but without consider the conjugate heat transfa@bl@m in the microchannel wall; Park
(2008) presents a numerical hydrodynamics investigafor electro-osmotic flow of non
Newtonian fluids as blood and DNA through microamels, where is adapted the concept of
the Helmholtz-Smoluchowski velocity for viscoelastiuids. An analytical solution for the
fluid flow has been presented by Afonso (2009)rfon Newtonian fluids in steady state and
fully developed flow in microchannels of paralldates and pipes, this work shows the
combined effects of the rheology of the fluid ahd gradients of electro-osmotic and pressure
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forces on the velocity distribution; the viscoeiastluids employees describe the constitutive
Phan-Thien Thaner model, and is an approximatiostuadies of fluids such as blood, saliva,
synovial and other biofluids.

2 METHODOLOGY

2.1 Physical model

The Figure 1 shows a squematic view of the physieadel, the fluid flow is through of a
microchannel formed by two parallel flat plateshefight 2H , length L, and widthw, the
wall thickness isH . L/H>1, L/H >1 w/H>1w/H >1 We considered a fluid
with a rheological power law model. The drivingdes are provided by an electric fielg,
and a pressure gradiept, in the axial direction between inlet and outleho€rochannel. For

analysis, properties are considered constant Wehedmperature; the heat transfer its in steady
state and flow hydrodynamically developed. Thedflenters at a temperatufig in X=0.

The wall has adiabatic conditions <0 and X>L. To O< X< L there is a constant heat
flux gy in the external wall.
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Figure 1. Schematic of mixed electro-osmotic and pressurediflow between two parallel flat plates.

2.2 Energy equations

The energy equation for the fluid is given by

2 2
A L 2 (1)
X X ay?
where p ,C ,T.k;,0 andu are the density, the specific heat, the temperatheethermal
conductivity, the electrical conductivity and theia velocity component of the fluid
respectively; x,y are the axial and the transversal coordinate. Tdwendbary conditions

pCpf u
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associated with Eq. (1) are

x=0:T=Tg, (2a)
x:L:%—;E:O, (2b)
yz&%%za (2¢)
yzHﬂw:P—m%%z—Kggi (2d)

whereT,,, andk,, are the temperature and the thermal conductivitihenwall, respectively.

The energy equation for the solid is given by

0%Ty  0%Tw _q 3)
x> oy
with their boundary conditions associated
—n-9Tw _
X= O W - 0, (4a)
_ 0Ty _
X= L'W =0, (4b)
oT,
-k w = ", (40)
W ay y=H+Hy 00
“H:T,=T—k,Tw=_ 9T
y=H:T,=T, K"’ay = kfay' (4d)
Defining the following dimensionless variables
_X
T (5a)
=2 (5b)
—_u
o=—, (5¢)
Us
K (T-Te) (5d)
OoEZH?
kf (TW Te) (56)
oEZH?
=y—H
z ., (5
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where y and; are the dimensionless axial and the transversatiomates respectivelyj, 4,
6, andZ are the velocity, the temperature in the fluice temperature in the solid and the
transversal coordinate to analyze the solid wallimethsionless, respectively.

Ug :—n/(lfTn ¢ EX/m)% is the generalized Soluchowski velocity for povwev fluids (Zhao et

al, 2008);/7,{ ,n,m and x are the dielectric constant of the fluid, the Zetaential in the
shear plane of the double electric layer (EDL), ftbev consistency index, the flow behavior
index and the inverse Debye length, respectivelyinBoduce the appropriate dimensionless

variables from Eq. (5) in EqQ. (1-2) is obtained thmensionless energy equation to the fluid
region into microchannel

20 ;20%0 0%

Pel—— = +1, 6
pPeus Y o a2 (6)
and their boundary conditions
X=0:=0 (7a)
X= 1:% =0 (7b)
ox
_n.00 _
n=0 o 0 (7¢)
n=1.6=8y (7d)

in addition to Eq. (7d) was considered the nextriolauy condition in the internal interface of
microchannel from the Eq. (2d)

36,

a _oé
g2 0Z

Z=0 _W/Fl

(8)

Then, the energy equation in the fluid and theiurmary conditions leaves the following
dimensionless parameters

p=1. (9)

E=%, (9b)

Pe:w, (9¢)
f

where £ and £ are the aspect ratios in the fluid and solid regrespectively;Pe anda are

the Peclet number and the conjugation term whi¢hrdenes the basic heat transfer regimes
between fluid and solid sections in the microch&nne
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By the other hand, Eq. (6) implies the non Newtoniaehavior of the fluid in the
dimensionless model of the velocity; we take intoaant the rheological power law model.
Zhao (2008) solved the velocity distributions tsliamicrochannel whit an analytical solution
considering only the electrokinetic forces of eleatsmotic flow of power law fluids for a
steady and fully developed flow. This work includéd pressure forces in the momentum
equation where the velocity profile in physicaliabies is given by

n+l

Py n(KH)[ nwl_(“’)"]_K[”)(UZEx/m)%J
n+l - n+l kH cosi (kH)

u=-

/’((; sinf" (ky)d(k y); (10)

we considering values for the electrokinetic partemef «H =k >>1, then to solve the
integral in the above equation can be used theviolapproximationsinhky)=«y for

0<ky<1 and sinhky)=(1 3 exgpxy) for ky>1. So, the dimensionless model of velocity is
given by two sections respectively to the velopitgfile

first, to 0<p<(Vk),

et o ool

(11a)

,7n

and second t@l/x)>n<1,

2]]’;n|:ex%/§j_ exp{/?r?)} , (11b)

cosi" (k)
where

B nlxH)"™"
_ md™ ()

R ELC

(12)

m

wherer , is the ratio of pressure forces on electro-ostrfotices.

Now, from the appropriate dimensionless variablesnf Eq. (5) and (9) in Eq. (3-4) is
obtained the dimensionless energy equation todle iegion in the microchannel

08y, @ 0% _

a—4+ - W=, 13
x> £20z2 (13)
and their boundary conditions
_-96 _
x=0: oy =0, (14a)
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)(:1:%:0, (14b)

Z=0:6=8,, (14c)

in addition to Eq. (14c) was considered the boupdandition in the internal interface of
microchannel from the Eq. (8). And, to complete tiraensionless energy equation in solid
region was considered the next boundary conditiothé external interface of microchannel
wall

06, _ &2 15
@ (19)
where
A=—9_ (16)
oEZH

N\, is the normalized power generation term being#tie of heat flux from the external wall
to the Joule heating.

2.3 Numerical Solution

The previous mathematical model was discretizeckmtral finite differences and solved
by the iterative method Successive-Over-Relaxaf®@R), (Hoffman, 2001). In the SOR
method, the temperature is evaluated in succeishations by

=6y rangy, (17)

wherei, j are the nodal positions in axial and transversakton; k, @ and Aa'fj"l are the

iteration number, the relaxation factor in the S@Bthod and the dimensionless temperature
variation per iteration and node of the discretimezbh, respectively. Eq. (17) is applicable for
the solid and fluid regions.

Fluid region: The temperatur@.’a’,'fj+1 variation of the interiors nodes that not correspto
boundary nodes was determined by

k |:,82—AX,82Per:|3|+1’j +Q2Q’j +1+|:,82+AX'62P€HI:|Q—]; +ngj,—l_2(182+92)6|,j +AX2 1
Ag = 2(p?+Q7) 4o

where Q =Ay/An is the aspect ratio of the discretized mesh ferflind region; Ay and An

are the increments in the axial and transversalction respectively. For the dimensionless
velocity T; in the Eq. (11)/7 is replaced byy; = jAn.

The specified temperature in the inlet of microatenas boundary condition is from Eq. (7a)
is

6(i,j)=0, fori =0j = 0tgmax, (29)

where jmax, is the maximum number of nodes in the transversatdinate.
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The boundary conditions in the fluid region whiake aot specified temperature were adapted
to the SOR method as follows; at the outlet of mebannel from de Eq. (7b) gives

YBPeU

024 ;,,+26°6 4 +§226{J - 2(ﬁ2+92)6 +A)(2+{132 5

o7

where F,, :(66?/0)()|)(=l =0; fori=imax j=1to jmax-1 imax, is the maximum number of

] 2MXF,,

ngt= (20)

nodes in the axial coordinate.

The boundary condition at the center of microch&freen the Eq. (7¢) gives

{,82 A/Y,BPeu :|3|+1‘j +2qu,j +1+{ﬁ2 AxB Peljl:|q 5 2(ﬁ2+Q 2) +A/\/2—Z2 %”Fyl
5o

where F; = (69/617)| =0, for j =0j =1toimax-1.

.(21)

Aelkj+1 —

The specified temperature in the internal interfatenicrochannel as boundary condition is
from Eq. (7d) is

B(i,j)=8y(i,j), forj =jmaxj = 0 tamax. (22)

In addition to the internal interface of microchahmequires an equation to solve the
boundary nodes, from Eq. (8) is obtained

A Peu Ay Pé
{ﬂz Xﬁ }2+1,j+2926(,,--1+{ﬁ2 i ﬂ«? g ~2(B2+Q78,; +0x 2+ X DryFyy )
ad= (@3
whereF _ @ 96w for j = jmax i=1toimax-1
v =gz gz |, o IS

The boundary conditions for the corner nodeimax, j=0, were discretized from the Egs.

(7b, c) considering the outlet and the middle cbads of microchannel in these node,
respectively, obtaining

Ax[Pet;
287615 +20%G | .1~ 2 B2+ Q2)4 | +Lx 2~ DiQ ZFVL{/; 2—2‘1 DyF,,

oo

In the same way, the boundary conditions for then&o node i =imax, j= jmax were

discretized from the Egs. (7b) and (8) considerihg outlet and the internal interface
conditions of microchannel in these node, respelstiwbtaining

A£G = , (24)
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2376 + 2094 ;- 2(,32+QZ)49|,] +A)(2+{ﬁ2‘ DYFyo+ D DNF 5

o)

AxBPet, }
2 (25)

Aelkj-i-l —

Solid region: The temperatureﬂ,'f,I j Vvariation of the interiors nodes that not correspto
boundary nodes was determined by

_ a _
" 2{- Y +?¢2@v;‘,j+1*a@m—1} ‘D Qi j- 1 Za[ Ja/vl j
9 + —_

w,i,] — 2
267[1+(DJ

where ® =Ay/AZ , is the aspect ratio of the discretized meshHerdolid region,AZ is the
increment in the transverse direction.

(26)

The boundary conditions in the solid region whicé aot specified temperature were adapted
to the SOR method as follows; at the left sidenefmicrochannel wall from Eq. (14a) gives

P2 -
2a9W|+lj qJZQNJ J+l+ ZQNI, -1 20'[1+ jgw,i,j - 2:J'A/YFWX 1

NG = (27)

whereF,,q =(36/0x)|,, =0, for i=0;j =1tojmax-1.

In the same way, the boundary condition at thetrsgthe of the microchannel wall from Eq.
(14b) gives

op ~
2(]9 w,i 1] q)ze JJ+1 CDZQNI,] 1 20{1"' jgw,i,j + 2']A)(wa 2

2
20{1+CD J
g2

(28)

ndl =

whereF,,, =(36y/0x)|,, =0, for i =imax; j=1to jmax-1

The specified temperature in the internal interfate¢he microchannel wall as boundary
condition from Eq. (14c) is

Bu(i,])=6(.}), forj =0, = 0 tamax, (29)

in addition to Eq. (14c) was considered the cooditmarked by the Eq. (8) in the internal
interface of the microchannel wall, with help fr&tqg. (29) is evaluated the following

a aHWI j _a [ew,i,j+l_6w,i,j ]:03”- | (30)
=2 =2 ’
g2 0Z s & AZ on |,7:1
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the previous equation is necessary to evalllF@%lj) in the Egs. (23) and (25) for the fluid
region.

Now, the boundary condition at the external integfaf the microchannel wall from Eq. (15)
gives

_ a .- _ 2
aew,i+1,j +2?CD ewj,j—l NDAZ

_ [, ®?

NG =

w,i,j ~ CDZJ (31)

for j = jmaxi=1toimax-1

The boundary conditions for the corner node0, j = jmax were discretized from the Eqgs.
(14a) and (15) considering the left side wall ctiodi and the external interface wall
condition of microchannel in these node, obtaining
®2
z2
25(1+‘D2J - (32)

- a _
2aﬂw,iﬂ,j + Z?qudl\/j j-1" 20'[1"' jgw'i’j - DDXF, 1~ DZ DN

k+l —
Ats'w,i,j -

in the same way, the boundary conditions for theneo node i =max j= jmax were

discretized from the Egs. (14b) and (15) considetime right side wall condition and the
external interface wall condition of microchannethese node, obtaining

050 +29 02 ol P2 e+ BAYE. - DZAD?
w,i—1,] ? wij,j-1 ? Wi, | waz

25[1+‘1_’22J @9
&

k+l —
Aew,i,j =

Equations (18), (20-21), (23-28) and (31-33) a@aeed in an iterative process in Eq. (17)
for each node of the discretized mesh that is petified temperature. The SOR method ends
the process when the temperature converges atrexsiteh untiIAQ‘ff’lstolerance: to. For

the conjugate problem, we solved firstly the terapae field in the solid region with an
arbitrary specified temperature in the internakifdce to initialize the problem, then the
temperature gradient in the internal interfaceadidswall was calculated by the Eg. (30), and
after it was taken to calculate the temperatureigra of fluid region in same Eq. (30); so
with this, the temperature field in the fluid regiwas calculated. Once that the solid and fluid
region are solved, we compare the calculated &d&af temperature by

1), =050 )

repeated with the new calculated interfacial terapee in the solid0\5<v+1|z_0:0"”1”_l. To
implement the discretized mathematical model wasluke programming software Fortran
Power Station 4.0 and the following parameter v&ldgy=0.005, A;=0.005, AZ=0.005,

imax=200, jmax=200, tol=18.

<0.00y, if the previous condition is not satisfied, thére cycle is
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2.4 Asymptotic Solution

In order to validate the numerical results, we aatién asymptotic solution for the Egs.
(6) and (13). So, to obtain the relevant dimengsslparameters and the working regimes, we
introduce an order of magnitude analysis. Due @ atiabatic boundary conditions at both
sides of the microchannel walls, the heat generayetbule heating is transferred to the fluid.
This means that the overall heat transfer frondftoi the microchannel wall have to be of the
same order of magnitude

AT
OEZH ~ k; Tf~ KN%~ d, (34)
W

where AT,, and AT; are the characteristic temperature changes itrahsverse direction for

the wall and the fluid, respectively. On the othand, the total temperature change in the
system is then of order

AT ~ AT, +AT,, (35)

Combining the Eqg. (34) and (35), can be show that

AT
e T (36)
1+4
a
and
6—-2
ATy @ 37
AT g2’ (37)
1+=
a
therefore, the global temperature change mustdredhthe order
22 g2
AT - ZExH {1+‘é}. (38)
K¢ a

From Egs. (36) y (37) we can obtain interestingrgstptic relevant limits, which dictate the
different physical regimes of the conjugate hemtdfer process. Basically, for electro-osmotic
flows, typical limits for the dimensionless paraerstarea/g% ~1 and @/&2 > 1, both with

a1,

For values of/£2 ~ 1, from Eq. (36) and (37) we obtain
ATy ATy
AT "AT

thus, the transverse temperature variations invalé as well as in the fluid (compared with

the overall temperature dropT ), are of the same order. For valuesagE? > 1, we obtain
from the same order of equations

1, (39)

ATy AT, &2
AT VAT " (40)
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so, from Eg. (40), the transverse temperature drape fluid is of the same order that the
overall temperature drop and the transverse termper&ariations in the microchannel wall

compared with overall temperature draf are very small, of ordef?/a >1at most.

The asymptotic solution presented here validatesntiimerical solution, considering
the asymptotic limita/g2~1 with @ <«1. In this regime, we propose the next regular
expansion series, in powers @f, for the dimensionless temperature in the flugioe

6=6y(x)+ab,(x.n)+..., (41)
and for the solid wall temperature
By =Buo (X, Z)+a64(X.2)+..., (42)

where we have assumed that the temperature in ltheé i function of yin a first
approximation, and the temperature in the wall ddpeon y and Z. So, comparing in orders

of magnitude the diffusive terms with the energpeyation term in the Eq. (1) for the fluid
region, is showed that the significant temperatagations occur in the axial coordinate.
Substituting the Eq. (41) into (6)

2 2 2
ﬁpeu{aeomael _ }:,82 0 6?0+_6 6 l+g 0 01+ li1 (43)
ox ox ax? a)( an?
we can integrate the Eq. (43) in the transversakton, is obtained

06, - _
AP Ojn Sudy+ap Peﬁjg oug =

(44)
2a 60.[/7 dn + 0’,32 01 J"7 1[6 Hleﬂ ."//77 éch

but, in considering for cover the mtegr{ﬂ udp from Eqg. (11), for the dimensionless

velocity, the Eq. (44) for the temperature fields apen at: first region fob<s<(Jx) and
considering tha(aé?l/an)LFo =0

aeo DVR Y ot L n=Vk—, o _ B20%6,, 520G, 798 !
Pe— +a +=, (45
I,, ydy+ap I,, W= o2 TR oy Ton e (45)

after, for the regiorfyx)>n<1

‘950;'7_]/ T, oy + aﬁpeﬁj Ny E
(46)
20290 1 —2691 ~ 06| _06, _1
P (R 50l om0

Where respectively for the each velocity profile
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/7_1//( 1 1 AR
hdr =t n+1( ) K +(n+1)co:~7i3/”(/?) K+l (?j '

ool
2k cosi" (k)
and
_ 1), nr 1 o
o T = ‘r(l_?j * 2n+1[1_(?j ]+ (47b)

Froostl 1) 20 R 4 o)

Now, substituting the expansions from the Eqs. @add (42) into the boundary condition
given by Eq. (8) and considering that the zero poafed only depend off(y), then

(690/6/7)|,7:1 =0 , and simplifying

11%%%w0| 7% |04 (48)
g2\ 0Z |,_, 0Z |,_o| 07 =1
for collecting the zero power af from Eq. (48), we get
198, 08
Oo(a® —wo; =_1 (49)
( ) £2 aZ -0 0/7 =1

also, by considering the limit i <1 and ﬁ/§2~0(1) the temperature gradients in the
microchannel wall from the Eq. (13) are a constard then(aé?\,\,/az)|Z=1 :(69W0/6Z)‘Z:0,

in these conditions, substituting the Eq. (15) i@9) is obtained
06,

A
- == 50
), (50)

a

For values characteristics in microchannel appboat we can considering for this work
K >1, so the Eq. (45) has influence in a very short regibthe order of0<;<(¥x); then,

the distributions temperature fields are given nyain a first approximation for the region
(Vk)>n<1 given for Eq. (46). By substituting the Eq. (50)a (46) and collecting the zero

power of &, we get

0(a®): ,BPeago b= ,82 —A+1, (51)

wherel/k <« 1, with their corresponding boundary conditions

x=0:6 =0, (52a)
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X= i% =0. (52b)
The solution in a first approximation to Eq. (54) i
=1 -
& (x)= (A1) p[ef_]/—’(()(_]) - ex;E— Pglox Y "J L (- /\)/\’
(PEIS d7) A B J

(53)

Now, by substituting Eq. (42) into (13) and considg the case of the solid region was
considered the limitr <1, and@/£? ~ O(1), and by collecting the zero power @f

026,
0Z?2
with their corresponding boundary conditions

=0, (54)

2=0:6,=6,, (55)

and the condition market with Eqg. (15). Therefotee tanalytical solution in a first
approximation to the energy equation to the saglan is

°’)I

uolX.2) =~ AZ+Gy(¥) (56)

3 RESULTS AND DISCUSSIONS

In this study, we consider the order of magnitudetliee following characteristic
values:H ~10#m, Hy~10°m, L~10?m; kK ~100, based in a 0.001 mM buffer solution
and symmetrical electrolyte; thermal properties @haterials were taken as
k; =0.61- 0.W /m’K, k,=0.15-0.18V /MK, k, =1.38V /mIK for the fluid, PMMA
polymer wall and fused silica wall, respectivety-103-102S /m; Uys ~10%-103m/s,
[~107°C/mlV, {<10°%V, E,~10*-10V /m ands, ~103-10*Pals, p~10%kg/n?,
Cp,=4180J /kgK. Therefore B~0.01 and &-~0.001; &~2.5x10°- 2.5 10°;

Pe~0.1-1.C. -1<T <1, n~0.5-1.5 (Afonso, 2009);A =1,0.75,0.f (Das and Chakraborty,
2006).

Figure 2 show the dimensionless velocity distribogi for different values of the fluid
behavior index,n(=0.5,0.8,1,1.2,1.5, while keeping kK =100; is neglect the pressure effect

I =0. The dimensionless velocity was obtained usinggéeeralized Soluchowski velocity
ug for power law fluids. It be can see that the iredjve of value of the fluid behavior
index, the velocity near of the center of the mitrannel approaches to the generalized

Soluchowski velocity; so, the velocity profiles betes more plug-like as the fluid behavior
index decrease. Tm =1, the Newtonian case is recovered.
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In the case that; it will be recovered de Newtordase withn=1, the Figure 3 show the

influence of the ratio of pressure forces on etecsmotic forces for different values
toN'(=-1,0,1). For negative and positive values bf, its acts as a drag increaser and drag

reducer on the flow, respectively. For=0 the velocity profiles correspond to a plug-like
flow, due to the solely action of electro-osmoticces.
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0.6
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Figure 2. Dimensionless velocity distributions for Figure 3. Dimensionless velocity distributions for
different values of the fluid behavior index,while different values of the ratio of pressure forces
keeping Kk =100 and I' =0. on electro-osmotic forced, , while keeping

Kk =100 and n=1.

The mixed effect of the pressure and electro-osrotces in the velocity profiles of flow
is showed in the Figure 4 whef =-1 acts as drag increaser, for different values of

n(=0.5,1,1.5 and a fixed value ofkx=100. We can see, that for values afi<l
(pseudoplastic liquids) the velocity profile tentis increase in the flow direction upper
Newtonian case(n=1), while the electro-osmotic effect is clearly matkeaving the larger
values of velocity near of the microchannel wadichuse this kind of fluids has smaller wall
dynamic viscosity (Zhao, 2008). For values nt1 (dilatants liquids) the velocity profile

tends to decrease in the flow direction below Newao case, while the electro-osmotic effect
is less in the wall, having the smaller values efoeity near of the microchannel wall,

because this kind of fluids has higher wall dynawigrosity, having a less influence of the
external electric field (Zhao, 2008).

The Figure 5 show the mixed effect of the pressmd electro-osmotic forces in the
velocity profiles of flow when I'=1 acts as drag decreaser, for different values of

n(=0.5,1,1.5 and a fixed value ofk =100. The effect oh over the velocity profiles near of

the microchannel wall is very similar to mentioriad~igure 4. But, the viscosity effect over
the velocity profiles toward the center of microchal in a pseudoplastic liquidsi<1) with

an adverse pressure gradient makes the velocitffigsrare below that Newtonian case
(contrary to established with a favorable presgreglient in Figure 4). While for dilatants
liquids (n>1) with an adverse pressure gradient makes the velpoifiles are upper that

Newtonian case (contrary to established with arfavie pressure gradient in Figure 4).
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Figure 4. Dimensionless velocity distributions for Figure 5. Dimensionless velocity distributions for
different values of the fluid behavior index,while different values of the fluid behavior index,while
keeping Kk =100 and I' = -1. keeping Kk =100 and I' =1.

Figure 6 and 7, shows the dimensionless velocggridutions for different values of the
electrokinetic parametek(=10,50,100, while keepingl =0. Then is neglect the pressure
effect. It can be see that for an irrespective eaftithe fluid behavior index, the velocity near
of the center of the microchannel approaches togdreeralized Soluchowski velocity. The
velocity profile becomes more plug-like as the dlliehavior index decreasgn<1), as

shown by the Figure 6. While for values ffm>1) the effect by the electric field near of the

wall of microchannel is less, away the plug-liketgan in the velocity profiles, as shown by
the Figure 7. The influence of the electrokinetizgmeter K is clear in the Figures 6-7, for
small values of k(<10) indicates a big size of the EDL respect the sizenafrochannel
(tending to overlap of EDLS) and therefore a lofuence for the external electric field near
of the microchannel wall, leaving a parabolic patte the velocity profiles. By other hand,
for values of K(>>10) indicates a small size of the EDL respect to iae ef microchannel
and therefore a high influence for the externatteile field near of the microchannel wall;
leaving a plug —like pattern in the velocity presl

The Figure 8 shows the spatial development of thekeJheating induced to the fluid and
the wall temperature profiles in the microchanaking the transversal direction in the middle
axial position for different values oh(=0.5,1,1.5 and ' =0. The temperature distributions
in the fluid region exhibit a parabolic-like pattewhile the solid wall exhibits a linear
behavior (Tang, 2004b). It also shows that the ésgjtemperature occurs at the microchannel
centerline; for that is clear that the heat gemerdly Joule heating is transferred from the
central region to wall by convection and conductiorthe fluid, and dissipated through the
microchannel wall by conduction, finally the hesttiansferred to the exterior by tfe For

the parameters shown in the Figure 8 we can sdefdhavalues of the fluid behavior
index,n>1, with ' =0 the velocity profiles decrease causing an incréroéthe temperature
profiles (respect to Newtonian case) reducing tirevective effect. And, fon<1, with ' =0
the velocity profiles increase causing a decrenodnthe temperature profiles (respect to
Newtonian case) increasing the convective effect.
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For the parameters shown in the Figure 9, we sl@ispatial development of the fluid
and de wall temperature profiles en the microchlraleng the transversal direction in the
middle axial position for different values df(=-1,0,1) and n=0.5. The influence of the
ratio of pressure forces on electro-osmotic fordesis relevant, because for negative values
of '(=—1) acts a drag increaser on the flow, decreasingetin@erature profiles of system by
increasing the convective effects. On the othedhéor positive values of (=1), its acts a
drag reducer on the flow therefore causing an asweof temperature profiles by decreasing
the convective effects. Then<0 and ' >0 correspond to Poiseuille electro-osmotic flows
with favorable and adverse pressure gradientseotisgly. For[" =0 the velocity profiles

correspond to a plug-like flow, due to the soletyi@n of electro-osmotic forces and their
temperature profiles are showed in Figure 9.
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Figure 6. Dimensionless velocity distributions for
different values of the electrokinetic parametg,

while keepingl™ =0 and n=0.5.

Figure 7. Dimensionless velocity distributions for
different values of the electrokinetic parametat,

while keepingl" =0 and n=1.5.
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Figure 8. Dimensionless temperature profile as a
function of dimensionless transversal coordinate
in the fluid and solid region, ay = 0.5 for different

values of the flow consistency inder,,
while keeping ' =0.

Figure 9. Dimensionless temperature profile as a
function of dimensionless transversal coordinate
in the fluid and solid region, ajy = 0.5 for different

values of the ratio of pressure forces on electro-
osmotic forces,I” , while keepingn=0.5.
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For the parameters shown in the Figure 10, showlagal development of the fluid and
de wall temperature fields en the microchannel glvansversal direction for different values
of x(=0.1,0.5,1,n=0.5 andI =0. We can see a constant increase of Joule heativaydo

the outlet of the microchannel, practically a lineacrement of the temperature in the
longitudinal coordinate.

The Figure 11 shows that for decreas®ehumber the convection effect decrease also,
over the conduction effect, increasing the tempeegprofiles significantly. So thee number
is an indicator of the convection velocity in thystem.
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Figure 11.Dimensionless temperature profile as a
function of dimensionless transversal coordinate
in the fluid and solid region, for different values

of the Peclet numbeRe, while keeping

=0 and n=0.5.

Figure 10. Dimensionless temperature profile as a
function of dimensionless transversal coordinate
in the fluid and solid region, for different valuekthe
axial coordinate,y , while keeping

=0 and n=0.5.

The Figure 12 depicts the temperature profilessactansversal direction of microchannel in
the middle axial length for the fluid and solid i@y for A(=1,0.75,0.5,n=0.5, and " =0.

In all cases the value af is considered as a constant extraction of heat fitte channel

walls. Is important recall here that the tempemtuses in electro-osmotic flows under
constant wall heat flux boundary conditions, thigynattributed to the combined mechanism
of Joule heating and heat transfer in the walls.tke cases studied in the Figure 12, the Joule
heating seems to be a dominant mechanism behingktatare increments within the system.
In general, for increase the value of Joule heatthg transversal temperature tends to
increase. So, from the different temperature prsfive can see that the lower value/of
higher is the temperature rise at a given axiahtioo of the microchannel, (Das and
Chakraborty, 2006).

The Figure 13 exhibit the influence of the thernmmbperties in the heat transfer
phenomena because by comparing the material ofl fsidiea solid wall witha ~ 2.5x107
versus PMMA polymer wall witlir ~ 2.5x10%, we can find the thermal conductivity of

PMMA is much lower than that of silica glass. Thiean the heat dissipation trough the
PMMA wall is more difficult than through the glassll, leaving an important temperature
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changes in solid region, (Tang, 2004b). Then fare&se the value off the temperature
gradient in the solid region tend to increase, eqaoently reducing of the conduction effect.

For the parameters shown, in order to validatentimaerical solution from the Eqgs. (6-8)
the Figure 14 compares the behavior of the axmaptrature profile in the fluid region with
the asymptotic solution given by Eq. (53); we cana that, in the first approximation for the
asymptotic solution is near to the predictions lé axial temperature profile for the fluid
region in the numerical solution for three diffeararalues of '(=-1,0,) and a value of

n(=0.5, along the microchannel. In the same way, the r€igilb shows a zoom with a

comparison of numerical an asymptotic solutiontf@r axial temperature profiles for the fluid
region for three different values of the flow catency indexn(=0.5,1,1.5 and a value of

M(=-1). The Figure 16 compares the behavior of the treenss¥ temperature profile in the
solid region given from the Eq. (8, 13-15) with #ymptotic solution given by Eq. (56); we
can see the first approximation for the asymptstilution of the temperature profile for the
solid region with the numerical solution in the wfiiel axial position in the microchannel wall.
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Figure 12. Dimensionless temperature profile as a

function of dimensionless transversal coordinate
in the fluid and solid region, for different vakief the
normalized power generation term,, while keeping

Figure 13.Dimensionless temperature profile as a
function of dimensionless transversal coordinate
in the fluid and solid region, for different vakief the
conjugation termg , while keeping

=0 and n=0.5. =0 and n=0.5.

4 CONCLUSIONS

The present work analyzed different transport attarastics of mixed electro-osmotic
and pressure driven flows of non Newtonian fluigisthe same time helps to understand the
consequences of the interaction between the appliectric field within the EDL and the
result of temperature increase by Joule heatingctwhas important effects of practical
significance. Such Joule heating effects can baifstignt consequences in low column
separation efficiency, reduction of analysis regofy or even loss of injected samples in
biomedical applications. So, the present modelamdras a tool towards understanding of the
different interconnected transport mechanismseretificient design of microfluidic systems.
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Figure 14. Comparison of the numerical and analyticafigure 15. Comparison of the numerical and analytical
solution for the spatial development of the tempeea  solution for the spatial development of the tempeea

profiles in the fluid, along axial direction, foifigérent
values of the ratio of pressure forces on electro-

profiles in the fluid, along axial direction, foifiérent
values of the flow consistency index,, while

osmotic forces,I” , while keeping keeping ' =-1 and A =0.75.
A =0.75and n=0.5.
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Figure 16. Comparison of the numerical and analytical sotufar the spatial
development of the temperature profiles in theds@liong transversal direction.
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6 NOMENCLATURE

C
p

E

X

Specific heat [J/kg K]

Electric field along the axis of the microchanpém]

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 5515-5536 (2010)

Fuxa  Temperature gradient in the left side of microctemwall
Fuxe  Temperature gradient in the right side of microcie wall
F,, ~ Temperature gradient in the outlet of microchannel
Temperature gradient in the center of microchannel

yl
Fy2i,j) Temperature gradient in the internal interfacen@rochannel
H Half of microchannel [m]
H Wall thickness of the microchannel [m]

imax Maximum numbers of nodes in the axial coordinate
jmax  Maximum numbers of nodes in the transversal coatdi

k Thermal conductivity [W/m-K]

L Length of microchannel [m]

m Flow behavior index [Pd]

n Flow consistency index

Py Pressure gradient in axial direction [NJm

Pe Peclet number

qg Heat flux at the wall in the regioB< x < L [W/m?]
T Temperature [K]

'I; Microchannel inlet temperature [K]

u Fluid axial velocity [m/s]

u Dimensionless fluid axial velocity

ug Generalized Soluchowski velocity for power lawidi[m/s]
w Depth of the microchannel [m]

X Axial coordinate [m]

y Transversal coordinate [m]

Greek symbols

Conjugation term

Aspect ratio of the fluid region

Ratio of pressure forces on electro-osmotic forces
Increment in the transversal directioffluid

Dimensionless temperature variation in the fl@dion

Dimensionless temperature variation in the saigion

=

Increment in the axial direction of fluid and sbli

Increment in the transversal directiohsolid

Aspect ratio of the solid region

Dimensionless transversal coordinate of the sedi
Zeta potential in the shear plane of the EDL [V]
Dimensionless transversal coordinate of the fiaigion

Dimensionless fluid temperature
Dimensionless solid temperature

Inverse Debye length [

Electrokinetic parameter

Ratio of heat flux from the external wall to theule heating
Fluid density [kg/r]

Electrical conductivity of the fluid [S/m]

Aspect ratio of the mesh in the solid

Dimensionless axial coordinate

Aspect ratio of the mesh in the fluid

I X S NN M) -
VXS89V >X D D Rg%%g = N
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@ Relaxation factor of SOR method
Other symbols

o Dielectric constant [C/V-m]
Subscripts

f Fluid

i Nodal position in the axial direction
] Nodal position in the transversal direction
w Wall

superscripts

k Iteration
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