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Abstract. In this work we solve numerically the conjugated heat transfer problem in steady state of a 
non-Newtonian fluid and solid walls in a microchannel under the influence of pressure and electro-
osmotic forces. The velocity field is determined taking into account a hydrodynamically fully-
developed flow and a constitutive relation based in a rheological power law model. The numerical 
process results in: velocity profiles of the flow and in the solid-fluid temperature distributions. It is 
shown the influence of nondimensional parameters involved in the analysis on the conjugated heat 
transfer problem: the Peclet number, a normalized power generation term being the ratio of heat flow 
from the external wall to the Joule heating, a conjugation term which determines the basic heat 
transfer regimes between fluid and solid sections in the microchannel. For the flow field: an indicator 
of non Newtonian behavior, an electrokinetic parameter and a ratio of pressure forces to the electro-
osmotic forces, the last acts on the flow as a drag reducer and drag increaser under favorable and 
adverse pressure gradients, respectively. An asymptotic solution was introduced to validate the 
numerical process. 
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1 INTRODUCTION 
 

The microfluidic devices are used in the handling of biomedical and chemical analysis. 
Thus, electrokinetic transport is widely used to control flow and for manipulate sample 
solutes, include injection, separation, mixing, dilution/concentration, and reaction. Originally, 
the electrokinetic transport operates a combination of two mechanisms drivers: 
electrophoresis and electro-osmosis. Electrophoresis is the migration of charged solutes in an 
electrolyte under an applied electric field; the electro-osmosis gives the movement of a 
volume of an aqueous solution adjacent to a solid charged surface when an external electric 
field is applied tangentially along the surface (Tang et al., 2007). Due to the rapid 
development of "Lab-on-a-Chip” technologies during recent years, electro-osmosis is being 
used extensively as a driving force for manipulating fluid flows for transport and control 
samples in nano volumes of fluids to biological, chemical and medical diagnostics. Advances 
in microfluidic devices make possible a complete analysis of fluids in the biochemistry area in 
a single fabricated chip; therefore, it is fundamental understand the characteristics of fluids 
flow in microchannels to have an optimum design and precise control of microfluidics devices 
(Zhao et al., 2008). 
 
 The physics of electrokinetic phenomena and specifically in the electro-osmotic and 
electrophoretic flow has been extensively reviewed in the literature (Masliyah, 2006; 
Karniadaski, 2005; Li, 2004). The heat transfer phenomena in microchannels has been studied 
by Xuan (2004a, b), and Tang (2004a, b; 2007), they analyze the coupled cases with 
temperature and conjugates problems in electro-osmotic flow, and is emphasized the 
inevitable effect of Joule heating in the flow. Such works in this paragraph are under 
consideration of Newtonian fluids, its only considers the part of the solvent in the flow, and 
some are in transient state. 
 
 So, with the advent of electrokinetics for the transport of chemical and biological fluids 
through biochips, it is necessary to mathematically characterize the transport mechanisms 
associated with the process for efficient design of microfluidic systems. Strategies for 
characterization are based on electro-osmotic transport of Newtonian fluids, however, that 
consideration may be somewhat inappropriate for some applications.  It´s clear that a model 
such as Newton's law of viscosity may be insufficient to fully describe the constitutive 
behavior of chemical and biological complex fluids. Although in the literature there are 
several models proposed to analyze the behavior of non Newtonian fluids, at present, still 
appear relevant implications on the transport of electrokinetic flows that have not been 
completely resolved by the scientific community (Das and Chakraborty, 2006). Studies by 
Zhao et al. (2008), Berli (2008) and Tang et al. (2009), in this regard consider the power law 
for non Newtonian fluids and only solve the hydrodynamics of electro-osmotic flow; Das and 
Chakraborty (2006) also uses the power law to solve analytically the distribution of velocity, 
temperature and concentration on electro-osmotic flows of non Newtonian biological fluids, 
but without consider the conjugate heat transfer problem in the microchannel wall; Park 
(2008) presents a numerical hydrodynamics investigation for electro-osmotic flow of non 
Newtonian fluids as blood and DNA through microchannels, where is adapted the concept of 
the Helmholtz-Smoluchowski velocity for viscoelastic fluids. An analytical solution for the 
fluid flow has been presented by Afonso (2009) for non Newtonian fluids in steady state and 
fully developed flow in microchannels of parallel plates and pipes, this work shows the 
combined effects of the rheology of the fluid and the gradients of electro-osmotic and pressure 
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forces on the velocity distribution; the viscoelastic fluids employees describe the constitutive 
Phan-Thien Thaner model, and is an approximation of studies of fluids such as blood, saliva, 
synovial and other biofluids. 

 
2 METHODOLOGY 

 
2.1 Physical model 

 

The Figure 1 shows a squematic view of the physical model, the fluid flow is through of a 
microchannel formed by two parallel flat plates of height 2H , length L , and width w , the 
wall thickness is wH . / 1L H ≫ , / 1wL H ≫ , / 1w H ≫ , / 1ww H ≫ . We considered a fluid 

with a rheological power law model. The driving forces are provided by an electric field xE  

and a pressure gradient xp  in the axial direction between inlet and outlet of microchannel. For 

analysis, properties are considered constant with the temperature; the heat transfer its in steady 
state and flow hydrodynamically developed. The fluid enters at a temperature eT

 
in 0x = . 

The wall has adiabatic conditions in 0x<  and x L> . To 0 x L≤ ≤  there is a constant heat 
flux 0q′′  in the external wall. 
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Figure 1. Schematic of mixed electro-osmotic and pressure driven flow between two parallel flat plates. 
 

2.2 Energy equations 
 

The energy equation for the fluid is given by 
 

22

2
2

,

2

pf f f x
T T T

C u k k E
x x y

σρ ∂ ∂ ∂= + +
∂ ∂ ∂

   (1) 

 

where ρ ,
pfC ,T ,

fk ,σ  and u  are the density, the specific heat, the temperature, the thermal 

conductivity, the electrical conductivity and the axial velocity component of the fluid 
respectively; x , y

 
are the axial and the transversal coordinate. The boundary conditions 
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associated with Eq. (1) are 
 

0: ,ex T T= =       (2a) 
 

: 0,Tx L
x

∂= =
∂       (2b) 

 

0 : 0,Ty
y

∂= =
∂       (2c) 

 

: ; ,w
w w f

T Ty H T T k k
y y

∂ ∂= = − = −
∂ ∂     

(2d) 

 

where wT , and wk  are the temperature and the thermal conductivity in the wall, respectively. 
 

The energy equation for the solid is given by 
 

2 2

2 2
0,w wT T

x y
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∂ ∂      

(3) 

 

with their boundary conditions associated  
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Defining the following dimensionless variables 
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where χ and η  are the dimensionless axial and the transversal coordinates respectively; u ,θ , 

wθ  and Z are the velocity, the temperature in the fluid, the temperature in the solid and the 
transversal coordinate to analyze the solid wall, dimensionless, respectively. 

( )
1 1n

n nxS mu n Eκ ∈ ζ
−

= −  is the generalized Soluchowski velocity for power law fluids (Zhao et 

al, 2008); ∈ ,ζ ,n ,m  and κ  are the dielectric constant of the fluid, the Zeta potential in the 
shear plane of the double electric layer (EDL), the flow consistency index, the flow behavior 
index and the inverse Debye length, respectively. By introduce the appropriate dimensionless 
variables from Eq. (5) in Eq. (1-2) is obtained the dimensionless energy equation to the fluid 
region into microchannel 

 

2 2
2

2 2
1,Peu θ θ θβ βχ χ η

∂ ∂ ∂= + +
∂ ∂ ∂     

(6) 

 

and their boundary conditions 
 

0: 0χ θ= =
      

(7a) 
 

1: 0
θχ
χ

∂
= =

∂       
(7b) 

 

0 : 0θη η
∂= =
∂       

(7c) 

 
1: wη θ θ= =       (7d) 

 

in addition to Eq. (7d) was considered the next boundary condition in the internal interface of 
microchannel from the Eq. (2d) 

  

         
2
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(8) 

 

Then, the energy equation in the fluid and their boundary conditions leaves the following 
dimensionless parameters 
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where β  and ε  are the aspect ratios in the fluid and solid region, respectively; Pe and α  are 
the Peclet number and the conjugation term which determines the basic heat transfer regimes 
between fluid and solid sections in the microchannel. 
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By the other hand, Eq. (6) implies the non Newtonian behavior of the fluid in the 
dimensionless model of the velocity; we take into account the rheological power law model. 
Zhao (2008) solved the velocity distributions to a slit microchannel whit an analytical solution 
considering only the electrokinetic forces of electro-osmotic flow of power law fluids for a 
steady and fully developed flow. This work included the pressure forces in the momentum 
equation where the velocity profile in physical variables is given by 
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we considering values for the electrokinetic parameter of 1Hκ κ= >> , then to solve the 
integral in the above equation can be used the follow approximation sinh( )y yκ κ≈  for 
0 1yκ≤ ≤  and ( ) ( )sinh( ) 1 2 expy yκ κ≈  for 1yκ > . So, the dimensionless model of velocity is 

given by two sections respectively to the velocity profile  
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where Γ , is the ratio of pressure forces on electro-osmotic forces. 
 

Now, from the appropriate dimensionless variables from Eq. (5) and (9) in Eq. (3-4) is 
obtained the dimensionless energy equation to the solid region in the microchannel  

 

     

2

2 2 2
0,w w

Z
θ θαα
χ ε

∂ ∂+ =
∂ ∂     

(13) 

 

and their boundary conditions 
 

         0: 0,wθχ χ
∂= =
∂      (14a) 
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      1: 0,wθχ χ
∂= =
∂      (14b) 

 

       0: ,wZ θ θ= =      (14c) 
 

in addition to Eq. (14c) was considered the boundary condition in the internal interface of 
microchannel from the Eq. (8). And, to complete the dimensionless energy equation in solid 
region was considered the next boundary condition in the external interface of microchannel 
wall 
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1
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ZZ
θ ε

α=

∂ = − Λ∂        
(15) 

 

where 
 

   
0
2

,
x

q

E Hσ
′′

Λ =       (16) 

 

Λ , is the normalized power generation term being the ratio of heat flux from the external wall 
to the Joule heating. 

 
2.3 Numerical Solution 

 

The previous mathematical model was discretized in central finite differences and solved 
by the iterative method Successive-Over-Relaxation (SOR), (Hoffman, 2001). In the SOR 
method, the temperature is evaluated in successive iterations by 

 

1 1
, , , ,k k k

i j i j i jθ θ ϖ θ+ += + ∆
      

(17) 
 

where i , j  are the nodal positions in axial and transversal direction; k , ϖ  and 1
,
k
i jθ +∆  are the 

iteration number, the relaxation factor in the SOR method and the dimensionless temperature 
variation per iteration and node of the discretized mesh, respectively. Eq. (17) is applicable for 
the solid and fluid regions. 

 
Fluid region: The temperature 1

,
k
i jθ +  variation of the interiors nodes that not correspond to 

boundary nodes was determined by  
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∆ ∆
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∆ =
+ Ω     (18) 

 

where χ ηΩ = ∆ ∆  is the aspect ratio of the discretized mesh for the fluid region; χ∆ and η∆  
are the increments in the axial and transversal direction respectively. For the dimensionless 
velocity ju  in the Eq. (11), η  is replaced by

 
.j jη η= ∆   

 
The specified temperature in the inlet of microchannel, as boundary condition is from Eq. (7a) 
is 

 

    ( ), 0, for 0, 0 toi j i j jmax,θ = = =     (19) 
 

where jmax, is the maximum number of nodes in the transversal coordinate.  
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The boundary conditions in the fluid region which are not specified temperature were adapted 
to the SOR method as follows; at the outlet of microchannel from de Eq. (7b) gives 
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where ( )2 1
0xF χθ χ == ∂ ∂ = ; for ; 1 toi imax j jmax-1.= =  imax, is the maximum number of 

nodes in the axial coordinate. 
 

The boundary condition at the center of microchannel from the Eq. (7c) gives 
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where ( )1 0
0yF ηθ η == ∂ ∂ = , for 0; 1 toj i imax -1.= =  

 
The specified temperature in the internal interface of microchannel as boundary condition is 
from Eq. (7d) is 

 

    ( ) ( ), , , for , 0 toi j i j j jmax i imax.wθ θ= = =      (22) 
 

In addition to the internal interface of microchannel requires an equation to solve the 
boundary nodes, from Eq. (8) is obtained 
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0

w i j
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F
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θα
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∂
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for , 1toj jmax i imax -1.= =  

 
The boundary conditions for the corner node , 0,i imax j= =  were discretized from the Eqs. 
(7b, c) considering the outlet and the middle conditions of microchannel in these node, 
respectively, obtaining 
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∆ =
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In the same way, the boundary conditions for the corner node ,i imax j jmax,= =  were 
discretized from the Eqs. (7b) and (8) considering the outlet and the internal interface 
conditions of microchannel in these node, respectively, obtaining 
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Solid region: The temperature 1
, ,

k
w i jθ +  variation of the interiors nodes that not correspond to 

boundary nodes was determined by  
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where ZχΦ = ∆ ∆ , is the aspect ratio of the discretized mesh for the solid region; Z∆  is the 
increment in the transverse direction. 

 
The boundary conditions in the solid region which are not specified temperature were adapted 
to the SOR method as follows; at the left side of the microchannel wall from Eq. (14a) gives 
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where ( )1 0
0wwxF χθ χ == ∂ ∂ = , for 0; 1 toi j jmax -1.= =  

 
In the same way, the boundary condition at the right side of the microchannel wall from Eq. 
(14b) gives 
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where ( )2 1
0wwxF χθ χ == ∂ ∂ = , for ; 1to .i imax j jmax -1= =  

 
The specified temperature in the internal interface of the microchannel wall as boundary 
condition from Eq. (14c) is 

 

         ( ) ( ), , , for 0, 0 tow i j i j j i imax,θ θ= = =     (29) 
 

in addition to Eq. (14c) was considered the condition marked by the Eq. (8) in the internal 
interface of the microchannel wall, with help from Eq. (29) is evaluated the following 
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the previous equation is necessary to evaluate 2( , )y i jF  in the Eqs. (23) and (25) for the fluid 

region. 
 
Now, the boundary condition at the external interface of the microchannel wall from Eq. (15) 
gives 
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for , 1 toj jmax i imax -1.= =  
 
The boundary conditions for the corner node 0,i j jmax= =  were discretized from the Eqs. 
(14a) and (15) considering the left side wall condition and the external interface wall 
condition of microchannel in these node, obtaining 
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in the same way, the boundary conditions for the corner node ,i max j jmax= =  were 
discretized from the Eqs. (14b) and (15) considering the right side wall condition and the 
external interface wall condition of microchannel in these node, obtaining 

 

2
2 2

, ,, 1, , , 1 22 2
1

, , 2

2

.

2 2 2 1 2 2

2 1

w i jw i j w i j wx
k
w i j

F Zααθ θ α θ α χ
ε εθ

α
ε

− −
+

 
 
 
 

 
 
 
 

Φ+ Φ − + + ∆ − ∆ ΛΦ
∆ =

Φ+

 

(33)
 

 

Equations (18), (20-21), (23-28) and (31-33) are replaced in an iterative process in Eq. (17) 
for each node of the discretized mesh that is not specified temperature. The SOR method ends 

the process when the temperature converges at each node until 1
,
k
i j tolerance tolθ +∆ ≤ = . For 

the conjugate problem, we solved firstly the temperature field in the solid region with an 
arbitrary specified temperature in the internal interface to initialize the problem, then the 
temperature gradient in the internal interface of solid wall was calculated by the Eq. (30), and 
after it was taken to calculate the temperature gradient of fluid region in same Eq. (30); so 
with this, the temperature field in the fluid region was calculated. Once that the solid and fluid 
region are solved, we compare the calculated interfacial temperature by 

( ) ( )
1 0

, , 0.001k k
w Z

i j i j
η

θ θ
= =

− ≤ , if the previous condition is not satisfied, then the cycle is 

repeated with the new calculated interfacial temperature in the solid 1 1
0 1

k k
w z η

θ θ+ +
= =

= . To 

implement the discretized mathematical model was used the programming software Fortran 
Power Station 4.0 and the following parameter values: ∆χ=0.005, ∆η=0.005, ∆Ζ=0.005, 
imax=200, jmax=200, tol=10-8. 
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2.4 Asymptotic Solution 
 

In order to validate the numerical results, we conduct an asymptotic solution for the Eqs. 
(6) and (13). So, to obtain the relevant dimensionless parameters and the working regimes, we 
introduce an order of magnitude analysis. Due to the adiabatic boundary conditions at both 
sides of the microchannel walls, the heat generated by Joule heating is transferred to the fluid. 
This means that the overall heat transfer from fluid to the microchannel wall have to be of the 
same order of magnitude 
 

          
2

0,f w
x wf

w

T T
E H k k q

H H
σ

∆ ∆ ′′∼ ∼ ∼

          
(34) 

 

where wT∆  and fT∆  are the characteristic temperature changes in the transverse direction for 

the wall and the fluid, respectively. On the other hand, the total temperature change in the 
system is then of order 
 

                    .wfT T T∆ ∆ + ∆∼

           
(35) 

 

Combining the Eq. (34) and (35), can be show that 
 

                    2
1 ,

1

fT

T ε
α

∆
∆

+
∼

           
(36) 

 

and 
 

                    

2

2
,

1

wT
T

ε
α
ε
α

∆
∆

+
∼

           
(37) 

 

therefore, the global temperature change must be then of the order 
 

               

2 2 2
1 .x

f

E H
T

k
σ ε

α
 
 
  

∆ +∼

           
(38) 

 

From Eqs. (36) y (37) we can obtain interesting asymptotic relevant limits, which dictate the 
different physical regimes of the conjugate heat transfer process. Basically, for electro-osmotic 
flows, typical limits for the dimensionless parameters are 2 1α ε ∼  and 2 1α ε ≫ , both with 

1.α ≪  
 

For values of 2 1α ε ∼ , from Eq. (36) and (37) we obtain 
 

                      1; 1,f w
T T
T T

∆ ∆
∆ ∆

∼ ∼

           
(39) 

 

thus, the transverse temperature variations in the wall as well as in the fluid (compared with 
the overall temperature drop, T∆ ), are of the same order. For values of 2 1α ε ≫ , we obtain 
from the same order of equations 

 

                    
2

1; ,f w
T T
T T

ε
α

∆ ∆
∆ ∆

∼ ∼

           
(40) 
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so, from Eq. (40), the transverse temperature drop in the fluid is of the same order that the 
overall temperature drop and the transverse temperature variations in the microchannel wall 
compared with overall temperature drop T∆  are very small, of order 2 1ε α ≫ at most.  
 

The asymptotic solution presented here validates the numerical solution, considering 
the asymptotic limit 2 1α ε ∼  with 1.α ≪  In this regime, we propose the next regular 
expansion series, in powers of α , for the dimensionless temperature in the fluid region 
 

          ( ) ( )0 1 , ...,θ θ χ αθ χ η= + +
          

(41) 
 

and for the solid wall temperature 
 

      ( ) ( )0 1, , ...,w w wZ Zθ θ χ αθ χ= + +    (42) 
 

where we have assumed that the temperature in the fluid is function of χ in a first 
approximation, and the temperature in the wall depends on χ  and Z . So, comparing in orders 
of magnitude the diffusive terms with the energy generation term in the Eq. (1) for the fluid 
region, is showed that the significant temperature variations occur in the axial coordinate. 
Substituting the Eq. (41) into (6) 
 

                     

2 2 2
20 01 1 1

2 2 2
... ... ... 1,Peu

θ θθ θ θβ α β α αχ χ χ χ η
    
    
       

∂ ∂∂ ∂ ∂+ + = + + + + +
∂ ∂ ∂ ∂ ∂    

(43) 

 

we can integrate the Eq. (43) in the transversal direction, is obtained 
 

                     

    

1 10 1
0 0

2 2 211 1 12 20 1 1
0 0 02 2 20

,

Pe ud Pe ud

d d d d

η η
η η

ηη η η
η η ηη

θ θβ η αβ ηχ χ
θ θ θβ η αβ η α η η

χ χ η

= =
= =

== = =
= = ==

 
 
 
 

∂ ∂+ =∫ ∫∂ ∂
∂ ∂ ∂+ + +∫ ∫ ∫∂ ∂ ∂∫

   

(44) 

 

but, in considering for cover the integral 1
0udη

η η=
=∫  from Eq. (11), for the dimensionless 

velocity, the Eq. (44) for the temperature fields are open at: first region for ( )0 1η κ≤ ≤  and 

considering that ( )1 0
0ηθ η =∂ ∂ =  

 

    

2 22 2
0 01 1 1

1 10 0 2 2
1 1

1

1 ,Pe u d Pe u dη η
η η

η

κ κ

κ

θ θθ θ θβ ββ η αβ η α αχ χ κ κ η κχ χ
= =
= =

=

∂ ∂∂ ∂ ∂+ = + + +∫ ∫∂ ∂ ∂∂ ∂
  

(45) 

 

after, for the region ( )1 1κ η> ≤  
 

1 10 1
2 2

2 2
2 20 1 1 1

2 2
1

1 1

1

1 1 11 1 1 ,

Pe u d Pe u dη η
η η

η η

κ κ

κ

θ θβ η αβ ηχ χ
θ θ θ θβ αβ ακ κ η η κχ χ

= =
= =

= =

                   

∂ ∂+ =∫ ∫∂ ∂

∂ ∂ ∂ ∂− + − + − + −
∂ ∂∂ ∂   

(46) 

 
Where respectively for the each velocity profile  
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( ) ( )

( )

( )

2 1 2 1

10 1

1 1

1
1 1 1 1 11

1

,

2 1 2 11 cosh

exp exp

2 cosh

n n
n n

n

n n

n n
n nu d

n nn

n n

η
η

κ κη κ κ κ κκ

κ

κ κ

+ +
=
=

   +
      =          

      

    
   
   

Γ − + − +∫ + ++

−
 (47a) 

 

and 
 

( )

2 1
1

2

1 1

1
1 11 1

2 1

1 1 11 exp exp exp .
2 cosh

n
n

n n

nu d
n

n
n n n

η
η κ η κ κ

κ κ
κ κκ

+
=
=

 
    =     
     

        
        

        

Γ−Γ − + − +∫ +

− − −

 (47b) 

 
Now, substituting the expansions from the Eqs. (41) and (42) into the boundary condition 
given by Eq. (8) and considering that the zero power of θ  only depend of ( )θ χ , then 

( )0 1
0ηθ η

=
∂ ∂ =  , and simplifying 

 

0 1 1
2

10 0

,
1 w w

Z Z
Z Z η

θ θ θ
α ηε == =

 
 
  

∂ ∂ ∂
+ =

∂ ∂ ∂
   

(48) 

 

for collecting the zero power of α  from Eq. (48), we get 
 

     
( )0 0 1

2
10

,
1: w

Z

O
Z η

θ θ
α ηε ==

∂ ∂
=

∂ ∂
    

(49) 

 

also, by considering the limit in 1α ≪  and 2 (1)Oα ε ∼  the temperature gradients in the 

microchannel wall from the Eq. (13) are a constant and then ( ) ( )01 0w wZ Z
Z Zθ θ= =

∂ ∂ = ∂ ∂ , 

in these conditions, substituting the Eq. (15) into (49) is obtained 
 

  

1

1

.
η

θ
η α=

∂ Λ= −
∂

     
(50) 

 

For values characteristics in microchannel applications, we can considering for this work  
1κ ≫ , so the Eq. (45) has influence in a very short region of the order of ( )0 1η κ≤ ≤ ; then, 

the distributions temperature fields are given mainly in a first approximation for the region 
( )1 1κ η> ≤  given for Eq. (46). By substituting the Eq. (50) into (46) and collecting the zero 

power of α , we get 
 

( )
2

10 20
2 21

0: 1,O Pe u dη
η κ

θθα β η βχ χ
=
=

∂∂ = − Λ +∫∂ ∂    
(51) 

 

where 1 1κ ≪ , with their corresponding boundary conditions 
 

    
0

0 : 0,χ θ= =
     

(52a) 
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01: 0.
θ

χ χ
∂

= =
∂

     
(52b) 

 

The solution in a first approximation to Eq. (51) is 
 

( ) ( )

( )
( ) ( )1 1

2 21 1
0 2 11 2121

,
1 1

exp 1 exp
Pe u d Pe u d

Pe u dPe u d

η η
η κ η κ

ηη η κη κ

η η χθ χ χβ β β ηη

= =
= =

== ==

    
    
    

        

Λ − − Λ∫ ∫= − − − +
∫∫

           

             (53) 
 

Now, by substituting Eq. (42) into (13) and considering the case of the solid region was 
considered the limit 1α ≪ , and 2 (1)Oα ε ∼ , and by collecting the zero power of α  

 

2
0

2
0,w

Z

θ∂ =
∂       

(54) 

 

with their corresponding boundary conditions  
 

        0 00: ,wZ θ θ= =      (55) 

  
and the condition market with Eq. (15). Therefore the analytical solution in a first 
approximation to the energy equation to the solid region is 

 

        
( ) ( )

2

0 0,w Z Zεθ χ θ χα= − Λ +
    

(56) 

 
3 RESULTS AND DISCUSSIONS 

 
In this study, we consider the order of magnitude of the following characteristic 

values: 410H m−
∼ , 510H mw

−
∼ , 210L m−

∼ ; 100κ ∼ , based in a 0.001 mM buffer solution 
and symmetrical electrolyte; thermal properties of materials were taken as 

0.61 0.7 /fk W m K= − ⋅ , 0.15 0.19 /wk W m K= − ⋅ , 1.38 /wk W m K= ⋅  for the fluid, PMMA 

polymer wall  and  fused silica wall, respectively; 3 210 10 /S mσ − −−∼ ; 4 310 10 /HSu m s− −−∼ , 

/C m V∈ −1010 ⋅∼ , 210 ,Vζ −≤  4 510 10 /xE V m−∼  and 3 4
0 10 10 Pa sη − −− ⋅∼ , 3 310 /kg mρ ∼ , 

4180 /pC J kg K= ⋅ . Therefore 0.01β ∼  and 0.001ε ∼ ; 6 52.5 10 2.5 10x xα − −−∼ ; 

0.1 1.0Pe −∼ . 1 1− ≤ Γ ≤ , 0.5 1.5n −∼  (Afonso, 2009); 1,0.75,0.5Λ =  (Das and Chakraborty, 
2006).  

 
Figure 2 show the dimensionless velocity distributions for different values of the fluid 

behavior index, ( 0.5,0.8,1,1.2,1.5)n = , while keeping 100κ = ; is neglect the pressure effect 
0Γ = . The dimensionless velocity was obtained using the generalized Soluchowski velocity 

Su  for power law fluids. It be can see that the irrespective of value of the fluid behavior 

index, the velocity near of the center of the microchannel approaches to the generalized 
Soluchowski velocity; so, the velocity profiles becomes more plug-like as the fluid behavior 
index decrease. To 1n = , the Newtonian case is recovered. 

 

J. ESCANDON, O. BAUTISTA, F. MENDEZ, E. BAUTISTA5528

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



In the case that; it will be recovered de Newtonian case with 1n = , the Figure 3 show the 
influence of the ratio of pressure forces on electro-osmotic forces for different values 
to ( 1,0,1)Γ = − . For negative and positive values of Γ , its acts as a drag increaser and drag 
reducer on the flow, respectively. For 0Γ =  the velocity profiles correspond to a plug-like 
flow, due to the solely action of electro-osmotic forces. 

 

 

Figure 2. Dimensionless velocity distributions for 
different values of the fluid behavior index, n, while 

keeping 100κ =  and 0.Γ =  
 
 
 

 
Figure 3. Dimensionless velocity distributions for 

different values of the ratio of pressure forces  
on electro-osmotic forces, Γ , while keeping  

100κ =  and 1.n =

 
The mixed effect of the pressure and electro-osmotic forces in the velocity profiles of flow 

is showed in the Figure 4 when 1Γ = −  acts as drag increaser, for different values of 
( 0.5,1,1.5)n =  and a fixed value of 100κ = . We can see, that for values of 1n<  

(pseudoplastic liquids) the velocity profile tends to increase in the flow direction upper 
Newtonian case ( )1n = , while the electro-osmotic effect is clearly marked having the larger 

values of velocity near of the microchannel wall, because this kind of fluids has smaller wall 
dynamic viscosity (Zhao, 2008). For values of 1n >  (dilatants liquids) the velocity profile 
tends to decrease in the flow direction below Newtonian case, while the electro-osmotic effect 
is less in the wall, having the smaller values of velocity near of the microchannel wall, 
because this kind of fluids has higher wall dynamic viscosity, having a less influence of the 
external electric field (Zhao, 2008).  

 
The Figure 5 show the mixed effect of the pressure and electro-osmotic forces in the 

velocity profiles of flow when 1Γ =  acts as drag decreaser, for different values of 
( 0.5,1,1.5)n =  and a fixed value of 100κ = . The effect of n over the velocity profiles near of 

the microchannel wall is very similar to mentioned in Figure 4. But, the viscosity effect over 
the velocity profiles toward the center of microchannel in a pseudoplastic liquids ( 1n< ) with 
an adverse pressure gradient makes the velocity profiles are below that Newtonian case 
(contrary to established with a favorable pressure gradient in Figure 4). While for dilatants 
liquids ( )1n >  with an adverse pressure gradient makes the velocity profiles are upper that 

Newtonian case (contrary to established with a favorable pressure gradient in Figure 4). 
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Figure 4. Dimensionless velocity distributions for 
different values of the fluid behavior index, n, while 

keeping 100κ =  and 1.Γ = −  

Figure 5. Dimensionless velocity distributions for 
different values of the fluid behavior index, n, while 

keeping 100κ =  and 1.Γ =

Figure 6 and 7, shows the dimensionless velocity distributions for different values of the 
electrokinetic parameter ( 10,50,100)κ = , while keeping 0Γ = . Then is neglect the pressure 
effect. It can be see that for an irrespective value of the fluid behavior index, the velocity near 
of the center of the microchannel approaches to the generalized Soluchowski velocity. The 
velocity profile becomes more plug-like as the fluid behavior index decrease ( )1n< , as 

shown by the Figure 6. While for values for ( )1n >  the effect by the electric field near of the 

wall of microchannel is less, away the plug-like pattern in the velocity profiles, as shown by 
the Figure 7. The influence of the electrokinetic parameter κ  is clear in the Figures 6-7, for 
small values of ( 10)κ <  indicates a big size of the EDL respect the size of microchannel 
(tending to overlap of EDLs) and therefore a low influence for the external electric field near 
of the microchannel wall, leaving a parabolic pattern in the velocity profiles. By other hand, 
for values of ( 10)κ ≫  indicates a small size of the EDL respect to the size of microchannel 
and therefore a high influence for the external electric field near of the microchannel wall; 
leaving a plug –like pattern in the velocity profiles. 

 
The Figure 8 shows the spatial development of the Joule heating induced to the fluid and 

the wall temperature profiles in the microchannel, along the transversal direction in the middle 
axial position for different values of ( 0.5,1,1.5)n =  and 0Γ = . The temperature distributions 
in the fluid region exhibit a parabolic-like pattern while the solid wall exhibits a linear 
behavior (Tang, 2004b). It also shows that the highest temperature occurs at the microchannel 
centerline; for that is clear that the heat generated by Joule heating is transferred from the 
central region to wall by convection and conduction in the fluid, and dissipated through the 
microchannel wall by conduction, finally the heat is transferred to the exterior by the0q′′ . For 

the parameters shown in the Figure 8 we can see that for values of the fluid behavior 
index, 1n > , with 0Γ =  the velocity profiles decrease causing an increment of the temperature 
profiles (respect to Newtonian case) reducing the convective effect. And, for 1n < , with 0Γ =  
the velocity profiles increase causing a decrement of the temperature profiles (respect to 
Newtonian case) increasing the convective effect. 
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For the parameters shown in the Figure 9, we show the spatial development of the fluid 
and de wall temperature profiles en the microchannel, along the transversal direction in the 
middle axial position for different values of ( 1,0,1)Γ = −  and 0.5n = . The influence of the 
ratio of pressure forces on electro-osmotic forces, Γ , is relevant, because for negative values 
of ( 1)Γ =−  acts a drag increaser on the flow, decreasing the temperature profiles of system by 
increasing the convective effects. On the other hand, for positive values of ( 1)Γ = , its acts a 
drag reducer on the flow therefore causing an increase of temperature profiles by decreasing 
the convective effects. Then 0Γ <  and 0Γ >  correspond to Poiseuille electro-osmotic flows 
with favorable and adverse pressure gradients, respectively. For 0Γ =  the velocity profiles 
correspond to a plug-like flow, due to the solely action of electro-osmotic forces and their 
temperature profiles are showed in Figure 9. 

 

 

Figure 6. Dimensionless velocity distributions for 
different values of the electrokinetic parameter, κ , 

while keeping 0Γ =  and 0.5.n =  

 

Figure 7. Dimensionless velocity distributions for 
different values of the electrokinetic parameter, κ , 

while keeping 0Γ =  and 1.5.n =
 

 

Figure 8. Dimensionless temperature profile as a 
function of dimensionless transversal coordinate  

in the fluid and solid region, at 0.5χ =  for different 

values of the flow consistency index, n ,  

while keeping 0.Γ =  

 

Figure 9. Dimensionless temperature profile as a 
function of dimensionless transversal coordinate  

in the fluid and solid region, at 0.5χ =  for different 

values of the ratio of pressure forces on electro-
osmotic forces, Γ , while keeping 0.5.n =  
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For the parameters shown in the Figure 10, show the spatial development of the fluid and 
de wall temperature fields en the microchannel along transversal direction for different values 
of ( 0.1,0.5,1)χ = , 0.5,n =  and 0Γ = . We can see a constant increase of Joule heating toward 
the outlet of the microchannel, practically a linear increment of the temperature in the 
longitudinal coordinate. 

 
The Figure 11 shows that for decrease of Pe number the convection effect decrease also, 

over the conduction effect, increasing the temperature profiles significantly. So the Pe number 
is an indicator of the convection velocity in the system.  

  

 

Figure 10. Dimensionless temperature profile as a 
function of dimensionless transversal coordinate  

in the fluid and solid region, for different values of the 
axial coordinate,χ , while keeping  

0Γ =  and 0.5.n =  
 

 

Figure 11. Dimensionless temperature profile as a 
function of dimensionless transversal coordinate  
in the fluid and solid region, for different values  

of the Peclet number,Pe, while keeping  

0Γ =  and 0.5.n =

The Figure 12 depicts the temperature profiles across transversal direction of microchannel in 
the middle axial length for the fluid and solid region, for ( 1,0.75,0.5)Λ = , 0.5,n =  and 0Γ = . 

In all cases the value of 0q′′  is considered as a constant extraction of heat from the channel 

walls. Is important recall here that the temperature rises in electro-osmotic flows under 
constant wall heat flux boundary conditions, this may attributed to the combined mechanism 
of Joule heating and heat transfer in the walls. For the cases studied in the Figure 12, the Joule 
heating seems to be a dominant mechanism behind temperature increments within the system. 
In general, for increase the value of Joule heating, the transversal temperature tends to 
increase. So, from the different temperature profiles we can see that the lower value of Λ , 
higher is the temperature rise at a given axial location of the microchannel, (Das and 
Chakraborty, 2006).  

 
The Figure 13 exhibit the influence of the thermal properties in the heat transfer 

phenomena because by comparing the material of fused silica solid wall with 52.5 10xα −
∼  

versus PMMA polymer wall with 62.5 10xα −
∼ , we can find the thermal conductivity of 

PMMA is much lower than that of silica glass. This mean the heat dissipation trough the 
PMMA wall is more difficult than through the glass wall, leaving an important temperature 
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changes in solid region, (Tang, 2004b). Then for decrease the value of α  the temperature 
gradient in the solid region tend to increase, consequently reducing of the conduction effect. 

 
For the parameters shown, in order to validate the numerical solution from the Eqs. (6-8) 

the Figure 14 compares the behavior of the axial temperature profile in the fluid region with 
the asymptotic solution given by Eq. (53); we can see that, in the first approximation for the 
asymptotic solution is near to the predictions of the axial temperature profile for the fluid 
region in the numerical solution for three different values of ( )1,0,1Γ = −  and a value of 

( )0.5n = , along the microchannel. In the same way, the Figure 15 shows a zoom with a 

comparison of numerical an asymptotic solution for the axial temperature profiles for the fluid 
region for three different values of the flow consistency index ( )0.5,1,1.5n =  and a value of 

( )1Γ = − . The Figure 16 compares the behavior of the transversal temperature profile in the 

solid region given from the Eq. (8, 13-15) with the asymptotic solution given by Eq. (56); we 
can see the first approximation for the asymptotic solution of the temperature profile for the 
solid region with the numerical solution in the middle axial position in the microchannel wall. 

 

 
Figure 12. Dimensionless temperature profile as a   
function of dimensionless transversal coordinate 

 in the fluid and solid region, for different values of the 
normalized power generation term,Λ , while keeping 

0Γ =  and 0.5.n =  
 

 

Figure 13. Dimensionless temperature profile as a 
function of dimensionless transversal coordinate 

 in the fluid and solid region, for different values of the 
conjugation term,α , while keeping 

0Γ =  and 0.5.n =

 
4 CONCLUSIONS 

 
The present work analyzed different transport characteristics of mixed electro-osmotic 

and pressure driven flows of non Newtonian fluids, at the same time helps to understand the 
consequences of the interaction between the applied electric field within the EDL and the 
result of temperature increase by Joule heating, which has important effects of practical 
significance. Such Joule heating effects can be significant consequences in low column 
separation efficiency, reduction of analysis resolution, or even loss of injected samples in 
biomedical applications. So, the present model can act as a tool towards understanding of the 
different interconnected transport mechanisms in the efficient design of microfluidic systems. 
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Figure 14. Comparison of the numerical and analytical 
solution for the spatial development of the temperature 
profiles in the fluid, along axial direction, for different 

values of the ratio of pressure forces on electro-
osmotic forces, Γ , while keeping  

0.75Λ =  and 0.5.n =  
 

 

Figure 15. Comparison of the numerical and analytical 
solution for the spatial development of the temperature 
profiles in the fluid, along axial direction, for different 

values of the flow consistency index, n ,  while 

keeping 1Γ = −  and 0.75.Λ =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Comparison of the numerical and analytical solution for the spatial 
development of the temperature profiles in the solid, along transversal direction. 
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6 NOMENCLATURE 
 

p
C  Specific heat [J/kg K] 

xE  Electric field along the axis of the microchannel [V/m] 
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1wxF  Temperature gradient in the left side of microchannel wall 

2wxF  Temperature gradient in the right side of microchannel wall 

2xF  Temperature gradient in the outlet of microchannel 

1yF  Temperature gradient in the center of microchannel 

2( , )y i jF  Temperature gradient in the internal interface of microchannel
 

H  Half of microchannel [m] 

w
H  Wall thickness of the microchannel [m] 

imax Maximum numbers of nodes in the axial coordinate 
jmax Maximum numbers of nodes in the transversal coordinate 
k  Thermal conductivity [W/m-K] 
L  Length of microchannel [m] 
m Flow behavior index [Pa·sn] 
n  Flow consistency index  

xp  Pressure gradient in axial direction [N/m2] 

Pe Peclet number  

0
q′′  Heat flux at the wall in the region 0 x L≤ ≤  [W/m2] 

T  Temperature [K] 

e
T  Microchannel inlet temperature [K] 

u  Fluid axial velocity [m/s] 
u  Dimensionless fluid axial velocity 

S
u  Generalized Soluchowski velocity for power law fluids [m/s] 

w  Depth of the microchannel [m] 
x  Axial coordinate [m] 
y  Transversal coordinate [m] 
 
Greek symbols 
α  Conjugation term 
β  Aspect ratio of the fluid region 
Γ  Ratio of pressure forces on electro-osmotic forces 

η∆  Increment in the transversal direction of fluid 
θ∆  Dimensionless temperature variation in the fluid region 

w
θ∆  Dimensionless temperature variation in the solid region 

χ∆  Increment in the axial direction of fluid and solid 

Z∆  Increment in the transversal direction of solid 
ε  Aspect ratio of the solid region  
Z  Dimensionless transversal coordinate of the solid wall 
ζ  Zeta potential in the shear plane of the EDL [V] 
η  Dimensionless transversal coordinate of the fluid region 

θ  Dimensionless fluid temperature 

w
θ  Dimensionless solid temperature 

κ  Inverse Debye length [m-1] 
κ  Electrokinetic parameter 
Λ  Ratio of heat flux from the external wall to the Joule heating 
ρ  Fluid density [kg/m3] 
σ  Electrical conductivity of the fluid [S/m] 
Φ  Aspect ratio of the mesh in the solid 
χ  Dimensionless axial coordinate 
Ω Aspect ratio of the mesh in the fluid 
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ϖ  Relaxation factor of SOR method 
Other symbols 
∈  Dielectric constant [C/V-m] 
Subscripts  
f  Fluid 

i  Nodal position in the axial direction 
j  Nodal position in the transversal direction 

w  Wall  
superscripts 
k  Iteration 
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