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Abstract. This article shows a new procedure for the evaluation of nodal flux fields in heat transfer 

analyses. Although, in principle, the idea can be easily adapted to discretization procedures other than 

the Finite Element Method (FEM), the numerical properties observed herein cannot be taken as 

universal. In the FEM framework, the proposed method shows a behavior similar to the SPR method 

introduced by Zhu and Zienkiewicz, especially with respect to low mesh distortion sensitivity and   

high convergence rate. As an advantage, the present method is computationally more efficient. The 

method can also be applied to elasticity or thermoelasticity problems in order to recover stresses, in 

which case the enhanced efficiency is even more significant. The qualitative behavior of the proposed 

technique is discussed using 2D conduction problems with prescribed temperature and flux boundary 

conditions. 
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1 INTRODUCTION 

Derivative-based quantities in most finite element approximations present a discontinuous 

field at the element interfaces. To overcome this inconvenient, many strategies have been 

proposed over the last decades: averaged simple nodal evaluation, averaged extrapolation 

using a reduced polynomial (Barlow, 1976), local and global, continuous and discrete 

smoothing procedures (Hinton and Campbell, 1974) and recovery based on patches - SPR 

(Zienkiewicz and Zhu, 1992; Boroomand and Zienkiewicz, 1997), among others. 

This work presents a recovery method based on patches of nodal temperature so that 

computation of nodal heat flux is based upon the corresponding patch field derivatives 

combined with material properties evaluated directly at the nodal points. Such technique 

would avoid extrapolation errors when nonhomogeneous material properties are used. 

  This method presents improved computational efficiency due to a reduction on the number 

of linear systems to be solved and similar accuracy with respect to existing superconvergent 

methods, such as the classical SPR. The proposed heat flux recovery strategy presents 

excellent results regarding global convergence rate, mesh distortion and fluxes computed at 

boundary nodes. Both classical and proposed patch recovery techniques yield better results 

than strategies based on direct nodal computation, smoothing and extrapolation methods. 

2 MATHEMATICAL MODEL AND DISCRETIZATION 

Starting from the energy conservation law and the Fourier heat conduction equation, the 

2D steady state heat conduction problem in homogeneous isotropic media can be modeled by 

the differential equation 
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where Q is the rate of heat generation per unit volume, k is the thermal conductivity and T is 

the temperature. Temperature or flux boundary conditions can be appropriately imposed on 

parts of the boundary. In homogeneous isotropic media, flux in direction νννν  is given by 
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and l and m are the direction cosines of νννν , as depicted in Fig. 1. 

 

 

 

 

 

 

Figure 1. Outward surface-normal unit vector. 
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Equilibrium given by Eq.(1) can be alternatively found by the minimization of the 

associate functional 
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where ( ) ( ) xx ∂⋅∂=⋅ ,  and ( ) ( ) yy ∂⋅∂=⋅ , .   

2.1 Finite element formulation  

The temperature field can be expressed by an approximation in terms of element nodal 

temperatures { }eT  by 

 
[ ]{ }eT TN=

 
(5) 

where [ ]N  is the interpolation functions matrix. Similarly, the temperature gradient vector can 

be expressed  as 

  
{ } [ ]{ }eTBT =∂
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where 
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By replacing Eq.(6) in the functional given by Eq.(4), one gets 
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or 
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from which minimization provides the discretized element equilibrium equations 
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In order to obtain the equilibrium equations for the whole domain, element contributions 

must be added, yielding the assembled global discretized equilibrium equations 

  
[ ]{ } { }RT =K

 (17) 
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3 HEAT FLUX RECOVERY PROCEDURES 

3.1 Introduction 

Accurate nodal heat flux determination in finite elements is an issue of major concern in 

engineering practice. Thermal analysis often requires computation, not only of the 

temperature field, but also heat transfer characteristics. Examples of such situations are the 

simulation of heat treatment of materials, welding processes and machining operations 

amongst others.  

 In finite element computations heat flux values can be shown to be poor at the nodes and 

most accurate inside the elements, specifically at the so-called Barlow points (Barlow,1976). 

In order to obtain high quality nodal flux values, different post-processing schemes have been 

proposed. The conception of such schemes is identical to procedures developed for nodal 

stress recovery in elasticity (the problems are analogous since both, fluxes and stresses are 

evaluated by differentiation of the primal field – temperature and displacements). In this 

Section some traditional nodal flux recovery procedures are briefly described and later used 

for comparison purposes. Details on the recovery strategy introduced in this work are 

presented in Section 4. 

Figure 2 presents typical 4 and 9 node elements emphasizing the position of their nodes 

and Gauss integration points (Wildemann and Muñoz-Rojas, 2005). These positions are 

mentioned throughout the text, since all the post-processing schemes studied evaluate fluxes 

on them.  

 

Figure 2. Parametric coordinates of the nodes and Gauss integration points for 4 and 9 node elements. 

3.2 Heat flux evaluation directly on the nodes 

Once the temperature field is determined via the solution of Eq.(17), the flux fields can be 

obtained using the discretized version of the Fourier law in each element,  

 
{ } [ ]{ }ek TBq −=ˆ  (18) 

Since global interpolation functions have only C0 continuity in temperature based finite 

elements, flux jumps occur in the interfaces between elements. Thus, when one node is shared 

by several surrounding elements, nodal flux values given by Eq.(18) provide different results 
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when calculated with reference to each of the elements. A common procedure in this case is to 

approximate the nodal result by the corresponding mean value. This method generally yields 

poor result because flux errors are normally large on the element edges. 

3.3 Extrapolation using a reduced order polynomial 

It can be shown that Barlow points are very close to Gauss integration points associated to 

reduced order polynomials. If the exact integration of Eq.(13) (in an undistorted mesh) 

requires n points in each direction, reduced integration is given by n-1 points in the associated 

Gauss locations. Flux values can be evaluated in these points and extrapolated to the nodes 

using the associated reduced order interpolation functions (Cook et al, 2001). This scheme 

usually renders improved results when compared to heat flux evaluation directly at the nodes. 

3.4 Global L2 smoothing 

This strategy assumes a global heat flux field continuous on the whole domain, including 

element interfaces. The field is interpolated within an element using the interpolation 

functions [ ]N : 
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q  are the smoothed nodal flux values. 

The difference between the smoothed and the raw (discontinuous) flux fields is given by 
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where { }q̂  is the raw  flux field. 

Minimization of the squared difference given in Eq.(20) with respect to { }q̂  provides the 

closest projection of the continuous field to the discontinuous one. The function to be 

minimized is 
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whose minimization yields 
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After some manipulation, Eq. (22) can be written as 

  [ ] [ ] { } [ ] [ ] { }{ }∫∫∫∫ =






e

TT

ddJkddJ TBNqNN ηξηξ
 

(23) 

where 
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is the global mass matrix and  
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is the pseudo-load vector. Equation (25) can be written as 
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which is a block uncoupled system and can be solved more efficiently as represented below. 
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The computational effort associated to this method is high; it can be noticed that the order 

of the linear system in Eq.(27) is equal to the number of nodes in the discretization (an 

iterative alternative has been presented in Wildemann e Muñoz-Rojas, 2005). In spite of this 

inconvenient, the procedure has the advantage of providing continuous flux results through 

the whole domain.  

3.5 Element based superconvergent patch recovery (SPR)  

In the reduced order polynomial strategy described in Section 3.3, high quality flux values 

sampled at corresponding reduced order Gauss locations are used for extrapolation purposes. 

Due to the low quantity of information, extrapolation to the nodes must be done using reduced 

order interpolation functions. If additional high quality flux values could be found and 

sampled, it would be possible to use higher order polynomials for extrapolation to the nodes, 

thus increasing accuracy. The idea can be implemented by defining a patch of elements 

surrounding either a particular node or a particular element, as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

                    (a)                                                                           (b) 

Figure 3. Examples of element patches: (a) centered on nodes; (b) centered on elements. 

Fluxes are sampled at the reduced integration points of all the elements in the patch, and an 

approximate flux surface valid on the patch can be adjusted using higher order polynomials. 

The smooth field obtained on the patch is represented by 

  [ ] { }aP=
*

iq  (28) 

where 
*

iq  stands for each of the flux vector components, [ ]P  contains polynomial terms and 

{ }a  contains generalized coordinates to be determined. 

t = +1 

( )urur yx ,  

( )llll yx ,  

s 

t 
s = -1 

x 

y s = +1 

t = -1 t = -1 

t 

t = +1 

s = -1 

x 

y s = +1 

s 

( )llll yx ,

 

( )urur yx ,  

P. MUNOZ-ROJAS, M. ODORCZYK, E. CARDOSO, M. VAZ JR.5710

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



In order to determine { }a  and find the smoothed flux fields, it is convenient to define a 

local reference system with coordinates ranging in the interval [-1,+1], which helps to avoid 

possible ill-conditioning difficulties. In this work the patches are centered in elements and, 

following Akin (2005), the local reference system was defined parallel to the global system 

but centered on a rectangular superelement, which contains the patch, as illustrated in Fig. 3.  

The global coordinates are related to the local ones (patch superelement) by 
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where (xll, yll) and (xur, yur) are the coordinates of the lower left and upper right corners of the 

superelement, respectively, as shown in Fig. 3. 

In a plane problems, some possibilities for the polynomial matrix are 

 

Linear using 3 terms (SPRE):            ts1=P    (30) 

Linear using 4 terms (SPRE4):       stts1=P
 (31) 

Quadratic using 6 terms (SPRE6):     221 tsstts=P
 (32) 

Quadratic using 8 terms (SPRE8):     22221 sttstsstts=P
 (33) 

Quadratic using 9 terms (SPRE9):     2222221 tssttstsstts=P
  (34) 

Flux values are sampled at the reduced polynomial locations within each finite element 

belonging to the patch. At each j-th sampling point ( )
jj yx , , the squared difference between 

the flux iq  and the still unknown 
*

iq  is evaluated. The squared terms are added, yielding 
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where nsp is the number of sampling points in the patch. The minimization of Eq.(35) with 

respect to { }a  results in 

 [ ]{ } { }baA =  (36) 

where 
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Vector { }a  is determined by the solution of Eq.(36), so that the fluxes can be evaluated 

everywhere in the patch, including nodal locations, by application of Eq.(28). Noting that 

each finite element in the domain mesh has its own surrounding patch, the nodes will 

accumulate different flux values. The final result is given by a simple average.  

4 FLUX RECOVERY BASED ON TEMPERATURE PATCHES  

The flux recovery strategy presented herein is a modification on the concept of the 
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superconvergent patch recovery (SPR) detailed in Section 3.5. In this case, a patch is used to 

generate a polynomial surface to approximate locally the temperature field, rather than the 

fluxes. Now the nodes are taken as sampling points, and the smoothed temperature field 

inside the patch is given by 

 [ ]{ }aP=T ,  (39) 

The procedure leads to the linear system 

 [ ]{ } { }baA =  (40) 

where 
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and the fluxes can be obtained by differentiation of Eq.(39), 
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Note that the derivatives in the Jacobian matrix in Eq.(45) can be obtained by differentiation of 

Eq.(29). As in the SPR procedure, different flux values will result for each node, depending on the 

patch considered. The result is given by simple average.  

It is worth remarking that this method has an important efficiency gain with respect to the SPR 

approach. While in the former the solution of Eq.(36) must be performed for each flux 

component, in the present case a similar linear problem must be solved only for the temperature 

field. This advantage increases for 3D problems and in applications to stress fields in elasticity 

problems. Although in small scale problems the difference might not be so relevant, application of 

this strategy to optimization problems, in which hundreds of evaluations might be necessary, can 

improve the overall efficiency significantly. 

In order to have a procedure able to approximate the flux fields consistently with the SPR 

approach (so that both methods can be compared), we always adopt a matrix [ ]P  containing  

polynomials one degree higher than the ones considered in the former. After differentiation 

present in Eqs.(43-44) the fluxes are represented by polynomials of equal order. 

In addition to the quadratic polynomials, considered in the SPR approach (to be applied in 

the case of linear finite elements), the following cubic polynomials have been studied (applied 

in the case of quadratic finite elements):  
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Cubic using 13 terms (PT13): 

 [ ] [ ]33332222221 tsttsststststststs=P   (46) 

Cubic using 15 terms (PT15): 

 [ ] [ ]322333332222221 tstststtsstssttstststs=P    (47) 

Cubic using 16 terms (PT16): 

 
[ ] [ ]33322333332222221 tststststtsstssttstststs=P

 (48) 

5 NUMERICAL EXAMPLES  

Three examples were selected in order to show some characteristics of the proposed flux 

recovery scheme (patch on temperature field - PT). The first test case aims to verify the 

sensitivity to mesh distortion at a selected node, the second example analyzes the convergence 

rate in a smooth problem and the third one assesses the heat flux on the boundary. In all the 

cases, the results are compared with those provided by the additional methods discussed in 

Section 3. Aiming at a concise notation, these methods are referenced as: D - Direct 

evaluation at nodes, E – Extrapolation, S – Global smoothing, and SPR – Superconvergent 

patch recovery. 

5.1 Flux sensitivity to mesh distortion  

In order to analyze the influence of mesh distortion on the accuracy of different flux post-

processing methods, including the temperature patch strategy described in Section 4, a 

classical heat transfer problem with known analytical solution was studied (Kreith and Bohn, 

2010). The problem consists of a rectangular 2D domain, with prescribed temperature 

boundary conditions on the edges. Figure 4 depicts the geometry, where the length and the 

height are L = 3m and W = 1m, respectively. Thermal conductivity is given by k = 1.0 W/mK 

and the prescribed temperatures are T1 = 0 
o
C and T2 = 1 

o
C.  

 

 

 

 

 

 

 

 

 

                                

 

 

 

The analytical solutions for temperature and fluxes are given by  
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Figure 4. Beam subjected to Temperature field 
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which were evaluated using 100 non-zero terms in the series. 

A finite element mesh of 30x10 elements was used in the analyses, which were performed 

adopting 4, 8 and 9 node elements. The distortion effects were evaluated by applying two 

distortion patterns to the set of 4 elements highlighted in Fig.4. These patterns are shown in 

Fig. 5 particularized for the 9 nodes element. Extension to 4 and 8 node elements is 

straightforward.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   (a)                                                                            (b) 

Figure 5. Distortion patterns for the 9 node element. 

In the first pattern, Fig. 5(a), the node located at the center of the 4 elements set is 

simultaneously displaced horizontally and vertically and all the surrounding nodes keep their 

parametric positions, i.e. midside nodes are reallocated to stay at the midside. This is the 

situation that generally occurs when unstructured mesh generators are employed. In the 

y∆ y∆
 

x∆
x∆

Displacement of central and 
 surrounding nodes on x axis 

 

Displacement of central node on x axis 

 

Displacement of central and 
 surrounding nodes on y axis 

 

Displacement of central node on y axis 

 

P. MUNOZ-ROJAS, M. ODORCZYK, E. CARDOSO, M. VAZ JR.5714

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



second pattern, Fig. 5(b), a more aggressive distortion pattern is imposed: the node at the 

center of the set is displaced and all the surrounding nodes keep their original positions. When 

large deformations occur or shape optimization is performed, the nodes can be subject to 

arbitrary displacements (not maintaining parametric positions) and severe distortion 

conditions like the ones simulated by this pattern can take place. 

The distortion error is measured by 

                                  =
nodal

e
2,,,, )()(

LANALITNDEFNDANALITDEFD qqqq −−−     (52) 

where nodal
e  is the L2 norm measured at the central node, EFNDq ,  is the finite element flux 

vector evaluated in the undistorted mesh, ANALITNDq ,  is the analytical flux vector evaluated in 

the undistorted mesh location, EFDq ,  is the finite element flux vector evaluated in the distorted 

mesh and ANALITDq ,  is the analytical flux vector evaluated in the distorted mesh location. The 

flux nodal error at the undistorted condition was removed in order to place all the distortion 

graphs at the same origin. The graphs displaying the error levels for the distortions are shown 

in Figs. 6-7 for 4 node elements, Figs. 8-11 for 8 node elements and Figs. 12-15 for 9 node 

elements. Table 1 shows the heat flux error at the central node in the undistorted 4 node 

element mesh for all recovery methods. Table 2 shows the same information for undistorted 8 

and 9 node element mesh.  

Figs. 6-7 show that the SPRE and temperature patch schemes are clearly superior to the 

other schemes. In 4 node elements, evidently there is no difference between both distortion 

patterns proposed (there are no midside nodes). 

In Figs. 8-9 it is clear that, when there is no relocation of the surrounding nodes, the error 

level can become very high with a relatively low distortion. This is expected, since as the 

displaced node approaches the midside one, the Jacobian becomes singular. However, SPRE 

and temperature patch schemes provide errors similar to the ones reported for 4 node 

elements, which are large but “controlled”.  

When relocation is applied to surrounding nodes, Figs. 10-11 show that 8 node elements 

provide errors one order of magnitude lower than without relocation and larger distortions can 

take place. Note that SPR and temperature patch recovery schemes are always better when 

compared to the other approaches. The same qualitative behavior is observed when 9 node 

elements are used, as depicted in Figs. 12-15.  

 

 

nodes D E S PD6 PD8 PD9 SPRE SPRE4 

4 2.04E-03 4.61E-04 8.26E-04 1.10E-03 1.55E-03 1.62E-03 9.46E-04 2.88E-04 

Table  1.  Flux error of  undistorted meshs for 4 nodes element.  
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 (a) (b) 

              Figure 6. (a) Distortion flux error (L2 norm) for 4 node element mesh under central node displacement 

on x direction. (b) Detail. 

 

 

 

 

           
 (a) (b) 

              Figure 7. (a) Distortion flux error (L2 norm) on 4 nodes element mesh under central node displacement 

on y direction. (b) Detail. 
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Table  2.  Flux error of  undistorted meshes for 8 and 9 nodes element 

 

         
 (a) (b) 

                    Figure 8. (a) Distortion flux error (L2 norm) on 8 nodes element mesh under central node 

displacement on x direction. (b) Detail.  

 

 

 

         
 (a) (b) 

              Figure 9. (a) Distortion flux error (L2 norm) on 8 nodes element mesh under central node displacement 

on y direction. (b) Detail. 

 

nodes D E S PD13 PD15 PD16 SPRE6 SPRE8 SPRE9 

8 6.30E-04 1.76E-05 6.28E-04 1.34E-04 7.79E-05 8.00E-05 1.99E-04 1.87E-04 1.45E-04 

9 6.34E-04 1.77E-05 6.28E-04 1.35E-04 7.80E-05 8.05E-05 1.99E-04 1.87E-04 1.45E-04 
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 (a) (b) 

Figure 10. (a) Distortion flux error (L2 norm) on 8 nodes element mesh under central and surrounding nodes 

displacement on x direction. (b) Detail.  

 

 

 

       
 (a) (b) 

Figure 11. (a) Distortion flux error (L2 norm) on 8 nodes element mesh under central and surrounding nodes 

displacement on y direction. (b) Detail. 
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 (a) (b) 

Figure 12. (a) Distortion flux error (L2 norm) on 9 nodes element mesh under central node displacement on x 

direction. (b) Detail. 

 

 

 

         
 (a) (b) 

Figure 13. (a) Distortion flux error (L2 norm) on 9 nodes element mesh under central node displacement on y 

direction. (b) Detail. 
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 (a) (b) 

Figure 14. (a) Distortion flux error (L2 norm) on 9 nodes element mesh under central and surrounding nodes 

displacement on x direction. (b) Detail.  

 

 

 

      
  (a) (b) 

Figure 15. (a) Distortion flux error (L2 norm) on 9 nodes element mesh under central and surrounding nodes 

displacement on y direction. (b) Detail. 

5.2 Convergence rate in a smooth problem 

In order to evaluate the convergence rate of the global heat flux error (L2 norm), the 

Temperature Patch flux recovery scheme (PT) is compared to different flux post-processing 

schemes: (D, E, S and SPRE). A smooth heat transfer problem (no singularities) with known 

analytical solution is chosen, which consists of a 2D square plate, with 20x20 m
2
 area and unit 

width, subjected to prescribed temperature in all boundaries, as shown in Fig. 16. The 

material has isotropic properties and the thermal conductivity is k = 1 W/mK . 
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The prescribed temperatures at the right, left and bottom surfaces are 0 
o
C. The upper 

boundary surface is subjected to ( )LxT πsin=  in order to avoid singularity points at the right 

and left top corners.
    For the numerical solution, square quadrilateral 4 node and 9 node element meshes are 

used, with element size h ranging from 100 =h  m to 15625.06 =h  m  according to 

   21 ii hh =+  (53) 

where 100 =h  m  and  i=1 to 6  

 

 

 

 

 

 

 

 

 

 

Figure 16. 2D plate with prescribed temperature boundary conditions. 

The error in flux vector (L2 norm) is calculated according to 

                                            =
2L

e ( ) ( )
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where  EFq  is the recovered nodal heat flux and ANALITq  is the analytical heat solution as  
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The convergence rate of each flux recovery method is given by the slope of the curve of 

the global heat flux error versus the element size h, both in log scale. The convergence rate 

results for the 4 node elements are displayed in Fig. 17(a) and Table 3, whereas results for 9 

node elements are presented in Fig.17(b) and Table 4. 

Note that for both element types the error level for all flux recovery schemes decreases 

with mesh refinement. Also in both element cases, the patch recovery procedures (PT’s and 

SPRE’s) present smaller errors and higher convergence rate for the heat flux errors (L2 norm) 

than the Direct, Smoothed and Extrapolated Methods (D, S, E). 

For 4 node element meshes, the patch procedures (SPRE’s and PT’s) present a higher order 

of convergence rate than D, E, S methods that have first order. For 9 node element meshes 

w = 20 m 
T= 0°C 

h 

T = 0°C 

h 

T= 0°C 

L= 20 m 

( )LxT πsin=
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this behavior is more pronounced and show cubic order for SPRE and PT patch procedures 

and quadratic order for D, E and S techniques. 

 

            
 (a) (b) 

Figure 17. Convergence rate of the flux error measured in L2 norm: (a) 4 node element and (b) 9 node element. 

 

 

 
Table 3. Convergence rate of the flux error in the L2 norm for  4 node element. 

 

 

 

 
Table 4. Convergence rate of the flux error in the L2 norm for  9  node element. 

5.3 Assessment of the flux recovery on the boundary 

This example discusses the quality of the heat flux on the boundary provided by the 

recovery techniques described in Sections 3 and 4. A heat transfer problem with prescribed 

heat flux is analyzed. The proposed example consists of a 2D flat plate with 10x10 m
2
 area 

and unit width, subjected to prescribed temperature in three surfaces and prescribed heat flux 

on the top boundary, as presented in Fig. 18. The material has isotropic properties and the 

thermal conductivity is k = 1.0 W/mK. The prescribed temperatures at the right, left and 

bottom surfaces are 0.0 
o
C. The top boundary is subjected to a heat flux qy = 10 W. For the 

numerical solution, quadrilateral 4, 8 and 9 node element meshes are used with element size h 

ranging from 5.0=h m to  0.1=h m. 

The accuracy of the each heat flux recovery method is evaluated by the relative error of the 

numerical result compared to the heat flux prescribed in the y direction, as  

 

[%]100












 −
=

yprescr

prescrnum

y
q

qq
e

yy

 

(57) 

where ye  is the relative error of heat flux in the y direction, y
numq  is the numerical nodal 

D E S SPRE SPRE+ PT6 PT8 PT9 

1.4023 1.401 1.4134 2.3417 2.2241 2.2488 1.8368 1.7833 

D E S SPRE SPRE8 SPRE9 PT13 PT15 PT16 

 1.9966 1.987 1.9512 3.2566 3.2172 3.1753 3.3593 3.2639 3.2639 
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result obtained by each flux recovery method and  yprescrq  is the prescribed heat flux. Both 

flux quantities are considered in the y direction at the top surface.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. 2D body under Temperature and Flux Field  

The relative error results for the 4 node elements are presented in Figs. 19-20, for the 8 

node elements are displayed in Figs. 20-21, and for the 9 node elements the results are shown 

in Figs. 22-23.  

Note that the error level of all flux recovery schemes decreases drastically when the 

number of nodes per element increases and also with mesh refinement. At the corners the 

result for all methods is very poor and must not be considered. Observation of the results in 

the interval between 1 to 9 [m] on the upper edge leads to the considerations described in the 

following paragraphs. 

For the 4 nodes mesh in Figs 19-20, the general results of a 400 elements mesh are better 

then the results for 100 elements mesh. For both mesh sizes the patch procedures 

(superconvergent SPRE’s and Temperature Patch PT’s) have similar results and clearly 

superior than the Direct, Smoothed and Extrapolated Methods (D, S, E) both at the corners 

and near the center of upper edge. 

 As shown in Figs. 21-24, the results for 8 and 9 node elements present similar behavior as 

the 4 nodes mesh with respect to mesh size and total number of nodes. The Temperature 

Patch method shows similar results as the superconvergent and D, E, S methods.  

In special, the Temperature Patch method with 8 terms (PT8) applied to a 4 node finite 

element mesh and the Temperature Patch with 15 terms (PT15) applied to a 8 or 9 node 

element show, for the present study case, better accuracy with respect to the level (not taking 

into account peak values) of relative error in heat flux at the upper edge. 

In all cases the Temperature Patch method shows similar results compared to 

superconvergent methods and, especially for 4 nodes element, they are superior than D, E, S 

methods. For 8 and 9 element nodes with coarse meshes, the D, E, S methods improve their 

performance but are still far less accurate than patch procedures. For 8 and 9 element nodes 

with refined meshes, the D, E and S  methods increase accuracy and  present  results 

comparable to patch procedures.  

 

 

w = 10 m 
T= 0°C T = 0°C 

T= 0°C 

L= 10 m 

Wqy 10=  
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 (a) (b) 

Figure 19. (a) Assessment of flux recovery methods in y direction for quadrilateral 4 nodes element, 

mesh 10x10. (b) Detail. 

 

 

 

 

            
 (a) (b) 

Figure 20. (a) Assessment of flux recovery methods in y direction for quadrilateral 4 nodes element, 

mesh 20x20. (b) Detail. 
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 (a) (b) 

Figure 21. (a) Assessment of flux recovery methods in y direction for quadrilateral 8 nodes element, 

mesh 10x10. (b) Detail. 

 

 

                  
 (a) (b) 

Figure 22. (a) Assessment of flux recovery methods in y direction for quadrilateral 8 nodes element, 

mesh 20x20. (b) Detail. 
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 (a) (b) 

Figure 23. (a) Assessment of flux recovery methods in y direction for quadrilateral 9 nodes element, 

mesh 10x10. (b) Detail 

 

 

 

            
 (a) (b) 

Figure 24. (a) Assessment of flux recovery methods in y direction for quadrilateral 9 nodes element, 

mesh 20x20. (b) Detail. 
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6 CONCLUSIONS 

The proposed method for heat flux recovery based on Temperature Patch (PT) presents 

similar results when compared to the superconvergent method with an advantage on 

computational time reduction. The recovery scheme based on temperature patches is superior 

to Direct, Smoothed and Extrapolated Methods in all points analyzed regarding mesh 

distortion, convergence rate and accuracy of results. 
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