
ADAPTIVE PRECISION BASED FAST ALGORITHMS

FOR ROBUST SURFACE INTERSECTIONS

Ricardo Marques
a
, André Pereira

a,b
, Luiz Fernando Martha

a
, Antonio Miranda

c
,

Marcelo Gattass
a

a
Tecgraf, Pontifical Catholic University, Rua Marques de Sao Vicente 225,

22451-900 Rio de Janeiro, Brazil, lfm@tecgraf.puc-rio.br, http://www.tecgraf.puc-rio.br

b
Department of Civil Engineering, Fluminense Federal University, Rua Passo da Patria 156,

24210-240 Niterói, Brazil, andrebrabo@vm.uff.br, http://www.tecgraf.puc-rio.br/~brabo

c
Department of Civil Engineering, University of Brasilia, Campus Darcy Ribeiro,

70910-900 Brasilia, Brazil, acmiranda@unb.br, http://www.tecgraf.puc-rio.br/~amiranda

Keywords: Surfaces, Intersections, Meshes, Domain Partition, Geometric Predicates, Exact

Arithmetic.

Abstract. Most available algorithms for performing surface intersections are very versatile and cover

a wide range of particular cases. However, the main problem of such algorithms arises already during

the implementations, since they involve geometric calculations that require high degree of accuracy

(i.e. most of these algorithms were not designed to work with special codes capable to deal with exact

computations). Therefore, such algorithms need to be reformulated in order to consider exact

computations, satisfying some error bound, which avoid possible crashes of the system. Thus, a set of

fast algorithms for robust surface intersections is proposed in this paper. Three different algorithms

are proposed, one which deals with intersections of a plane with a surface; the second algorithm

allows inserting a curve on a given surface; whereas the third one is responsible for performing

intersections between two surfaces. All the algorithms were adapted in order to allow adaptive

precision based fast computations by the direct use of robust and adaptive geometric predicate

algorithms. Examples are presented to validate and to demonstrate the capabilities of the proposed

algorithms.

Mecánica Computacional Vol XXIX, págs. 6065-6089 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

All science fields and engineering branches demand the construction of models in order to

analyze or solve a problem. The models may commonly have a geometric representation.

More realistic representations of the real world demand three-dimensional models. There are

several ways to represent 3D geometric models in the literature. One of the most used solid

representations is the well-known boundary representation. In such representation, the

boundaries of the models are keys of the solid representation, which are constituted of a set of

geometric entities called surfaces. In the geometric modeling of solids, the surfaces are usually

represented in two different fashions: with a parametric representation or with a set of

triangular facets (a triangulation).

The construction of complex solids requires several manipulations and operations with

surfaces, such as intersections of surfaces with other surfaces (surface-surface intersections),

intersections of surfaces with planes (surface-plane intersections), or still the insertion of a

curve on a surface or the tearing of a surface with a curve (curve-on-surface insertion). Any

procedure or algorithm which involves intersection of surfaces with other geometric entities

(e.g. surface, plane or curve) is referred in this paper as “surface intersections” algorithms.

Therefore, surface intersections are one of the most important tools which a 3D geometric

modeler must offer. Its robustness, however, is still a problem to be faced. As the model must

be consistent, the precision of the intersection computations is critical. This is required not

only to obtain, in the end, the exact position of points in space, but especially to, during the

intersection calculations, classify correctly relative position of points in space and properly

treat its intersection case. Moreover, a solution with a low computational cost and a high

performance is also desired.

In this paper, a set of three fast and robust surface intersections algorithms is proposed. The

first algorithm treats Surface-Plane Intersection problems, the second allows inserting

interactively a curve on a given surface and the third one solves Surface-Surface Intersection

problems. In the proposed approaches, surfaces are represented by triangular meshes and the

intersection curves are polygonal curves composed by all intersection points.

Basically, the implementations take advantage of two main features: the adaptive exact

arithmetic geometric predicates (Shewchuk 1996a, b) and an adjacency-walking mesh

structure. Since the predicates use exact arithmetic, they assure robustness of the calculations

and intersection cases classifications. Besides, they are calculated adaptively taking a short

amount of time. The employment of an adjacency-walking mesh structure facilitates the

search for mesh edges during the intersection computations, once that it is possible to walk on

the mesh edge by edge, as it were a graph. As a result, it is not necessary to check if all edges

are intersected, but just a few connected edges. In addition, the walk on this graph enables to

create the intersection curve with its points already sorted. In the end, the intersection curve

creation process is speed up.

2 TRIANGLE-PLANE VERSUS SEGMENT-PLANE

In all proposed algorithms, the computation of the intersection between a cutting plane and

an edge of the surface mesh is necessary. Some algorithms require few adaptations in the

procedure, but its basis is common for all algorithms. Nevertheless, in any case, a robust

Plane-Segment Intersection algorithm is needed.

Initially, the direct intersections between triangles and the cutting plane were also tested as

an alternative, but their computational cost was higher. In other words, calculating triangle-

plane intersections was slower than calculating the segment-plane intersections. This happens

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6066

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

because adjacent triangles have edges in common and when we calculate a triangle-plane

intersection, we obtain two intersection points at once. So two adjacent triangles when

intersected by the same plane will give us 4 intersection points, of which 2 are coincident. In

fact, there is only 3 intersection points. In a triangular mesh, where a triangle has many

adjacencies, these redundant calculations have a considerable cost. And, the worst, once that

we cannot assure the curve points are in the correct order only by walking on adjacent

intersected triangles, triangle-plane intersection requires that we check the orientation of every

pair of intersection points in the curve.

 (a) (b) (c) (d)

Figure 1: Triangle-Plane Intersection: (a) Curve Points Correctly Sorted (b) Two Last Curve Points Inverted

(c) Two First Curve Points Inverted (d) All Curve Points Incorrectly Sorted

Sorting curve points means to minimize the total length of the polygonal (sum of the

distances between every pair of consecutive points). The cost of this sorting is comparable to

finding the shortest path in a graph (as in the Travelling Salesman problem). If we are already

walking in a graph, we should be able to add points to the polygonal in the order they must be.

Using triangles, we could check which edge should have the first intersection point of that

triangle, but this would force us to walk on edges too. Thus, walking exclusively edge by edge

seems a good method.

However, a very simple data structure that implements this adjacency-walking mesh

structure does not offer a method that returns an adjacent edge given another edge.

Consequently, we will walk on a triangle edges and on these edges’ adjacent triangles edges.

As in a graph, we will mark the edges we had already visited. So, when we enter an unvisited

triangle, one of its edges was previously visited. Then, there will be only one more edge in

intersection, whose adjacent triangle is the next to be visited.

Figure 2: Walking on the Mesh. Visited Edges are in blue.

This way, we can add curve points without duplication and sorted. Now, we can build our

basic algorithm that searches for intersections (Figure 3). It follows the style of a recursive

depth search in a graph.

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6067

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 3: Basic Search Intersections

3 ROBUST PLANE-SEGMENT INTERSECTION

In this section, we will firstly introduce a classical solution for the Plane-Segment

Intersection and understand its robustness problem. Then, we will present the exact arithmetic

predicates and deeply explore their geometric meaning so that we can, finally, build an exact

arithmetic solution.

3.1 Plane-Segment Intersection

A plane π and a segment e, standing for an edge of a mesh, can be defined respectively as

 3{ / 0}dπ ππ = ∈ ℜ ⋅ + =X X n (1)

 3{ / ()}, / 0 1e t t t= ∈ ℜ = + − ∀ ∈ℜ ≤ ≤X X R S R (2)

where nπ is the normal vector to π, dπ is the fourth plane coefficient and R and S are the

vertices/endpoints of the edge/segment e. Therefore, an intersection point P must satisfy

()

0
, 0 1P

P

d
t

t

π π⋅ + =
≤ ≤

= + −

P n

P R S R
 (3)

Isolating tP, it yields

()P

d
t π π

π

⋅ +
=

− ⋅

R n

R S n
 , 10 ≤≤ Pt (4)

Finally, P may be calculated by replacing tP in the equation below

 ()
P

t= + −P R S R (5)

Note that if R belongs to plane, then the numerator of tP will be 0, tP will be 0 and P will be

equal to R. If S belongs to plane, then the numerator of tP will be equal to the denominator of

tP, so tP will be 1 and P will be equal to S. If R and S belong to plane, then the numerator and

the denominator of tP will be 0. If tP belongs to the interval [0,1], then there is one intersection

point between R and S in the segment. Otherwise (tP is out of the interval [0,1]) then the

segment e does not intersect the plane, although a line in RS direction does. In fact, if tP is

negative or greater than 1, the segment lies strictly over or strictly under the plane.

3.2 The Robustness Problem

However, in the computation of tP which precision becomes a problem. Suppose tP is an

extremely small positive number instead of 0, so the intersection point P will be very close to

Search_Intersections(T):
For each unvisited edge e of triangle T
 Mark e as visited
 If e is intersected then
 Calculate the Intersection Point
 Search for more intersections in T
 Search for more intersections in the triangles adjacent to e
 End If
End For

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6068

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

R, but won’t be properly R. Then, if the tolerance of the system is too low, P will be

mistakenly considered a different point from R. What is more, if we increase the tolerance of

the system to force P and R be coincident, others errors may occur because this tolerance may

be too high for other operations of the system. This problem will be called “Positive Zero”

problem. In spite of its name, mind that it also can happen when tP is a little lower than 1, but

not exactly 1, as a consequence that the numerator did not match precisely the denominator.

A greater problem appears if a tP that should be 0 is an extremely small negative number

(“Negative Zero” problem). If this tP lies in the tolerance range of the system, an intersection

point P will be calculated. In this case, P would be a point very close to R belonging to an

edge adjacent to R and parallel to e which may not even exist. Definitely, P would be

misplaced. On the other hand, if this tP lies outside the tolerance range of the system, the edge

e will be classified as not intersected and the intersection curve would miss one of its points.

Being so, a small piece of the curve could not fit the surface. A similar problem can happen if

a tP is slightly greater than 1.

Figure 4: The “Negative Zero” Problem: The Blue curve represents the ideal curve, passing through R (the gray

point). The red curve has a misplaced intersection point and the green curve has discarded an intersection point

(note that the red and the green curve have parts that do not fit the surface).

As we have seen before, if the numerator and the denominator of tP are 0, the intersection

points are R and S. (In truth, in this condition, all intermediate points in the segment e belong

to the plane, but we need only R and S as intersection points to build the curve.) Suppose that

the denominator and the numerator of tP are close to 0. If the denominator is considered as 0,

two situations may happen:

• If the numerator is also considered as 0, both R and S will be included in the curve

• If the numerator is not considered as 0, e will be classified as not intersected.

Otherwise, if the denominator is not considered as 0,

• If the numerator is considered as 0, only R will be included in the curve, which

would miss the point S.

• If the numerator is not considered as 0, tP will be calculated. One of the previously

mentioned “Negative Zero” or “Positive Zero” problems may happen. Anyway, or

an intermediate point to segment RS will be included in the curve, or e will be

classified as not intersected.

Hence, to solve these potential problems, the need of exact arithmetic comes.

3.3 The Exact Arithmetic Predicates

Shewchuk (1996a, b) provides four geometric orientation predicates using adaptive exact

arithmetic:

• orient2d: determines if a point lies above, under or belongs to a line in 2D space

• orient3d: determines if a point lies above, under or belongs to a plane in 3D space

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6069

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

• incircle: determines if a point lies inside, outside or belongs to a circle in 2D space

• insphere: determines if a point lies inside,outside or belongs to a sphere in 3D space

In these predicates, all floating-point numbers are split in two components of non-

overlapping floating point numbers with different order of magnitudes. Arithmetic operations,

as sum, subtraction and multiplication, were redesigned deal with these components. Once

these operations always receive two components and produce two components, roundoff

errors are avoided. As a result, we have a higher degree of precision than the machine offers.

In addition, these predicates are calculated adaptively. This way, we speed up exact

arithmetic calculations, which would be, at first, very expensive. When a low degree of

precision is required, the calculations stop early, taking a minimal cost. And when more

precision is needed, approximations are continuously refined until they reach a trustable error

bound.

As we are interested in solving segment-plane intersections, we will focus on orient3d,

which is the most useful for us. Consider a point D in 3D space and a plane π containing the

points A, B and C.

Figure 5: The plane π defined by the points A, B and C and the point D to be oriented in relation to π

Then, orient3d calculates the following determinant

1

1
3 (, , ,)

1

1

x y z

x x y y z z

x y z

x x y y z z

x y z

x x y y z z

x Z z

A A A
A D A D A D

B B B
orient d B D B D B D

C C C
C D C D C D

D D D

− − −

= = − − −

− − −

A B C D (6)

The predicate’s sign allows us to classify the position of the point D in relation with the

plane π. If A, B and C are given clockwise, then

0

3 (, , ,) 0

0

if lies over

orient d if belongs to

if lies under

π

π

π

>


=
 <

D

A B C D D

D

 (7)

The predicate’s module can be also geometrically interpreted. Rewriting orient3d using the

mixed product notation

3 (, , ,) , , , ,

, , , ,

DA DB DC

AD AB AC

orient d = − − − =

= − − − =

A B C D A D B D C D r r r

D A B A C A r r r
 (8)

Figure 6: The vectors rAD, rAB and rAC

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6070

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Therefore, by a geometric interpretation of the mixed product, the predicate corresponds to

the signed volume of a parallelepiped with basis defined by rAB and rAC vectors and height

given by rAD vector. Or better, the module of orient3d is equal to 6 times the volume of the

tetrahedron defined by A, B, C and D.

Figure 7: The parallelepiped with basis rAB x rAC and height rAD

Alternatively, if rAB and rAC vectors are normalized, the predicate module is equivalent to

the distance from the point D to the plane π.

Figure 8: The vectors rAB and rAC normalized and the distance from the point D to the plane π.

Demonstration: To prove this statement, let’s see the classic formula of the distance from a

point to a plane. Given the four plane π coefficients a, b, c and d and one point D, the signed

distance from the point D to the plane π is:

2 2 2

(,)
x y z

a D b D c D d
dist

a b c
π

⋅ + ⋅ + ⋅ +
=

+ +
D (9)

As the vector (a,b,c) is the normal of the plane π, follows that

 (,)
d

dist π π

π

π
⋅ +

=
n D

D
n

, where dπ=d (10)

If the plane π is defined by the points A, B and C (or by the vectors rAB and rAC) one might

say that

AB ACπ = ×n r r (11)

In addition, we can determine dπ once A belongs to π

()

0

AB AC

d

d

d

π π

π π

π

⋅ + = ∴

= − ⋅ ∴

= − ⋅ ×

n A

A n

A r r

 (12)

Therefore

() () () () , , 3 (, , ,)
(,)

AD AB ACAB AC AB AC AB AC

AB AC AB AC AB AC AB AC

orient d
dist π

⋅ × − ⋅ × − ⋅ ×
= = = =

× × × ×

r r rD r r A r r D A r r A B C D
D

r r r r r r r r

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6071

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

For any rAB and rAC vectors

 3 (, , ,) (,)AB ACorient d dist π= × ⋅A B C D r r D (13)

This means that, if rAB and rAC are not normalized, orient3d will return a scaled signed

distance from D to the plane π. This scale factor is the area of the parallelogram given by rAB

and rAC vectors. So, as mentioned before, orient3d really calculates the volume of a

parallelogram, by multiplying its basis area (scale factor) for its height (distance to plane).

In Eq. (13), however, if rAB and rAC are unitary vectors, their norm is 1, so their cross

product will result in a vector of norm 1 and consequently

 3 (, , ,) (,)orient d dist π=A B C D D (14)

3.4 The Exact Arithmetic Solution

To build our exact arithmetic solution, first we will classify the intersection case of the

considered edge. Doing this, we can rapidly identify edges that are not in intersection with the

plane and avoid some calculations as well. For example, if we know that an endpoint is the

intersection point, we do not have to calculate tP (see Eq. (4)) to figure out it is 0 or 1 and

apply this tP to Eq. (5). In fact, tP needs to be calculated only if an intermediate point of the

segment intersects the plane.

Latter, we will conclude that any intermediate point in the segment RS in intersection with

the plane π can be expressed using the predicates. And, finally, we will present a robust

algorithm for a segment-plane intersection using adaptive exact arithmetic.

3.4.1 Intersection Classification

For now, using the predicate’s sign (see Eq. (7)), we know how to classify whether a point

is over, under or exactly in a plane. Every segment whose endpoints lay both above or both

below the plane, surely does not intersect the plane. If a segment endpoint lies exactly in the

plane, then this endpoint is an intersection point.

 (a) (b) (c)

Figure 9: Some Segment-Plane Intersection cases: (a) Segment strictly over the plane. (b) Segment over the plane

with an endpoint in intersection (c) Segment contained in the plane

The unique case of segment-plane intersection which we cannot treat yet is when there is

an endpoint over the plane and another under the plane. This way the intersection point will be

a segment intermediate point.

Figure 10: Segment with an intermediate point in intersection with the plane

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6072

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

In short, Segment-Plane intersection cases are:

Classification
orient3d sign

of R

orient3d sign

of S
Intersection Point

Strictly Over + + None

Over with intersection
0 + R

+ 0 S

Contained 0 0 R and S

Under with

intersection

0 - R

- 0 S

Strictly Under - - None

Through
+ - Between R and S

- + Between R and S

Table 1: Segment-Plane Intersection Cases.

3.4.2 The Intermediate Point Hypotheses

If the intermediate point could also be calculated using some of the information provided

by the predicates, our algorithm would gain a lot in exactness and speed. In fact, we can raise

some hypotheses based on the geometric interpretations of the predicates.

Hypothesis I: (Interpolating Signed Volumes) When the predicates are applied to a plane

and each segment endpoint, we have the values of two signed parallelepipeds. A segment

which has an intermediate point as the intersection point has two orient3d values (applied to

its endpoints) with different signs. We know that for any point in the plane, its parallelepiped

has volume zero. Considering an intersection point given by the parametric equation of its

segment (see Eq. (2)), shouldn’t the parameter tP (see Eq. (4)) be proportional to these signed

volumes?

Figure 11: The hypothetic signed volumes interpolation function

Intuitively it seems so. Then, suppose a linear function f

 βα +=ℜ→ℜ∈ ttff)(/]1,0[: (15)

that correlates the parameter t with the signed volumes, as following:

(0) (,)

(1) (,)

f Vol

f Vol

π

π

=


=

R

S
 (16)

Let’s solve a system to find out the expression of f:

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6073

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

0 (,)

1 (,)

(,)

(,)

(,) (,)

(,)

Vol

Vol

Vol

Vol

Vol Vol

Vol

α β π

α β π

β π

α β π

α π π

β π

⋅ + =
∴

⋅ + =

=
∴

+ =

= −

=

R

S

R

S

S R

R

Therefore, f is

 ()() (,) (,) (,)f t Vol Vol t Volπ π π= − +S R R (17)

But if tP is the t of the intersection point P, which makes volume zero with the plane, then

 0)(=ptf (18)

So, we can find an expression for tP

()

() ∴=−

∴=+−

),(),(),(

0),(),(),(

RVoltSVolRVol

RVoltRVolSVol

p

p

πππ

πππ

),(),(

),(

SVolRVol

RVol
t p

ππ

π

−
= (19)

If the points A, B and C belong to π, then

),,,(3),,,(3

),,,(3

SCBAdorientRCBAdorient

RCBAdorient
t p

−
= (20)

Hypothesis II: (Interpolating Equally Scaled Signed Distances) When the predicates are

applied to a plane and each segment endpoint, we have the values of two equally scaled signed

distances from this plane to each segment endpoint. We know that these distances are equally

scaled because they refer to the same plane points, Eq. (13). Considering an intersection point

given by the parametric equation of its segment, as in Eq. (2), shouldn’t the parameter tP (see

Eq. (4)) be proportional to these scaled signed distances?

Again, it seems so. Considering λ as the common scale factor, we could interpolate these

scaled distances exactly as we did before.

 βα +=ℜ→ℜ∈ ttff)(/]1,0[: (21)

(0) (,)

(1) (,)

0 (,)

1 (,)

(,)

(,)

(,) (,)

(,)

f Dist R

f Dist S

Dist R

Dist S

Dist R

Dist S

Dist S Dist R

Dist R

λ π

λ π

α β λ π

α β λ π

β λ π

α β λ π

α λ π λ π

β λ π

= ⋅


= ⋅
⋅ + = ⋅

∴
⋅ + = ⋅
= ⋅

∴
+ = ⋅

= ⋅ − ⋅

= ⋅

 (22)

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6074

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

 ()),(),(),()(RDisttRDistSDisttf πλπλπλ ⋅+⋅−⋅= (23)

As the distance of the intersection point to the plane is 0,

 () 0),(),(),(=⋅+⋅−⋅ RDisttRDistSDist p πλπλπλ (24)

()

∴
⋅−⋅

⋅
=

∴⋅=⋅−⋅

),(),(

),(

),(),(),(

SDistRDist

RDist
t

RDisttSDistRDist

p

p

πλπλ

πλ

πλπλπλ

),(),(

),(

SDistRDist

RDist
t p

ππ

π

−
= (25)

If the points A, B and C belong to π, then

),,,(3),,,(3

),,,(3

SCBAdorientRCBAdorient

RCBAdorient
t p

−
= (26)

Note that as the distances were equally scaled, the scale factor had influence on the

interpolation. This non-scaled result also seems reasonable.

Hypothesis III: (Triangles Similarity) Suppose that when the predicates are applied to a

plane and each segment endpoint, we have the values of two non-scaled signed distances from

this plane to each segment endpoint. Considering an intersection point given by the parametric

equation of its segment (see Eq. (2)), shouldn’t the parameter tP (see Eq. (4)) be proportional

to these signed distances?

Figure 12: Orthogonal View of the plane π intersected by RS segment with non-scaled signed distances

We can see that the triangle RPR’ is similar to the triangle RSO. Therefore

RO

RS

RR

RP

RSORPR

=

∴∆∆

'

~'

 (27)

Discarding the norm of the numerators to obtain a vectorial expression:

RO

RS

RR

RP

−

−
=

−

−

'
 (28)

),(),(),(SDistRDist

RS

RDist

RP

πππ +

−
=

−
 (29)

 ()RS
SDistRDist

RDist
RP −

+
+=

),(),(

),(

ππ

π
 (30)

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6075

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Matching Eq. (30) and Eq. (5), we conclude that

),(),(

),(

SDistRDist

RDist
t p

ππ

π

+
= (31)

But as Dist(π,R) and Dist(π,S) have opposite signs, we can say that

),(),(

),(

SDistRDist

RDist
t p

ππ

π

−
= (32)

which is same equation that we have obtained on Hypothesis II, Eq. (25). Again, if the points

A, B and C belong to π, then

),,,(3),,,(3

),,,(3

SCBAdorientRCBAdorient

RCBAdorient
t p

−
= (33)

Note that if orient3d returned two equally scaled signed distances instead of two non-

scaled signed distances, the scale factor would be eliminated and the result of tP would not be

affected. Actually, we would have another pair of similar triangles, but its hypotenuses would

still intersect the plane π in the point P. Assuming that λ is a scale factor, then we would have

the following situation

Figure 13: Orthogonal View of the plane π intersected by RS segment with a λ-scaled signed distances, 0<λ<1

Our old triangle similarity is still valid (notice the change of the points’ names):

RO

RS

RR

RP

RSORPR

=

∴∆∆

''

~''

 (34)

But we can see that

 '''''''' SSRRORRRRO +=+= (35)

By the common scale factor λ, we also know that

 λ==
'''

''

'''

''

SS

SS

RR

RR
 (36)

Therefore,

''''''

'''''

SSRRRO

RRRR

λλ

λ

+=

=
 (37)

Combining Eq. (33) with Eq. (36) and simplifying

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6076

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

' '' ' '' ' ''

' '' ' '' ' ''

' '' ' '' ' ''

' ''
()

' '' ' ''

' ''

' '' ' ''

3 (, , ,)

3 (, , ,) 3 (, , ,)

p

p

RP RS

R R R R S S

RP RS

R R R R S S

RP RS

R R R R S S

R R
P R S R

R R S S

R R
t

R R S S

orient d A B C R
t

orient d A B C R orient d A B C S

λ λ λ
= ∴

+

= ∴
+

= ∴
+

= + − ∴
+

= ∴
+

= ∴
+

 (38)

And, at last,

),,,(3),,,(3

),,,(3

SCBAdorientRCBAdorient

RCBAdorient
t p

−
= (39)

3.4.3 The Hypotheses Proof

So far, we have seen that all hypotheses have reached the same expression, see Eqs. (39),

(33), (26) and (20). But, does this expression really match the algebraic formula for tP (see Eq.

(4))? If it does, it is proven that tP can be expressed with predicates, and thus, any intermediate

point P in segment RS in intersection with a plane π can be expressed with predicates.

Proof: (Expressing an Intermediate point with predicates) We must simply prove that:

()),,,(3),,,(3

),,,(3

SCBAdorientRCBAdorient

RCBAdorient

nSR

dnR
t p

−
=

⋅−

+⋅
=

π

ππ (40)

With the Eq. (4) and Eq. (11),

() () π

ππ

π

ππ

nSR

nAnR

nSR

dnR
t p

⋅−

⋅−⋅
=

⋅−

+⋅
= (41)

Therefore

()
()

() () ()
() () ()

() ()

CABASACABARA

CABARA

ACABASACABAR

ACABAR

ACABASACABAR

ACABAR

ACABASAR

ACABAR

ACABSR

ACABAR

ACABSR

ACABAR

nSR

nAR
t p

,,,,

,,

,,,,

,,

,,,,

,,

,,

,,

,,

,,

−
=

−
=

−−−−−−−

−−−
=

−−−−−

−−−
=

−−−

−−−
=

−×−⋅−

−×−⋅−
=

⋅−

⋅−
=

π

π

 (42)

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6077

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

By the Eq. (8)

),,,(3),,,(3

),,,(3

,,,,

,,

RCBSdorientRCBAdorient

RCBAdorient

CABASACABARA

CABARA
t p

−
=

−
= (43)

3.4.4 The Robust Algorithm

Given 3 plane points and both segment endpoints, we calculate two predicates, each one

relative to one endpoint. Based on these predicates signs, we check in which intersection case

this segment is with this plane: if the segment is strictly under the plane, strictly over, over

with one intersection point, under with one intersection point, contained on the plane or if the

segment cuts the plane. In the latter case, we need to calculate tP as in Eq. (39) or Eq. (33), or

(26), or Eq. (20) and then calculate the intersection point P as in Eq. (5). In all the other cases

where there are intersection points, we do not have to calculate them, because they will be a

known endpoint. Finally, we present our robust Segment-Plane Intersection algorithm.

Figure 14: Robust Segment-Plane Intersection

4 SURFACE-PLANE INTERSECTION

In the Surface-Plane intersection, the given plane is already the cut plane. So, given a

triangular mesh representing a surface and the four coefficients of the cut plane, the resultant

curve will be a polygonal composed by all intersection points between the cut plane and the

mesh edges. Particularly in the Surface-Plane intersection, once that our cut plane is the

infinite plane given, the intersection curves

• Or will traverse the surface from a boundary edge to another boundary edge

• Or will contour a peak

Segment_Plane_Intersection(e, ππππ):

If both endpoints of e are over ππππ then
 return false
End If

If both endpoints of e are under ππππ then
 return false
End If

If both endpoints do not belong to ππππ then
 Calculate tp

 If 0 ≤ tp ≤ 1 then
 Calculate P
 Add P to curve
 return true
 Else
 return false
 End If
End If

If first endpoint belongs to ππππ then
 Add first endpoint to curve

 If second endpoint belongs to π π π π then
 Add second endpoint to curve
 return true
 End If
End If

If second endpoint belong to ππππ then
 Add second endpoint to curve
 return true
End If
return false

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6078

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

If the given surface contains holes, the edges in the border of the hole will be handled as

boundary edges and our previous statement is still valid. Therefore, start looking for edges in

intersection from an intersected boundary edge is very suitable.

Initially, all edges of the mesh are unvisited. Thus, for every unvisited boundary edge in

intersection, we calculate the intersection point (see Figure 14), mark this edge as visited and

start the search for intersections (as in Figure 3) from this edge’s triangle. This method builds

an intersection curve end to end (finishing at another boundary edge), marking all the edges

this curve passes through as visited. So, all intersection points calculated after calling this

method must be inserted in a new intersection curve.

This way, we have built all curves that traverse the surface from a boundary edge to

another. After all intersected boundary edges were visited(and some other internal edges too),

if any other unvisited internal edge has an intersection, the curve to be built will be a closed

polyline, what means that this internal edge must be visited twice. In order to avoid a point

repetition in the intersection curve and avoid an eternal loop, unvisited edges can be traversed

just once and visited edges cannot be traversed at all. However, in this case we must be able to

revisit the same edge, otherwise, we will not close the polyline. So, the unvisited intersected

internal edge we have found will be marked as “to revisit”. These edges can be visited and

after its adjacent triangles where visited, the intersection point must be re-added to the curve,

which must have a break. Then, for every unvisited edge in intersection, we calculate the

intersection point, mark this edge as “to revisit” and start the search for intersection from this

edge’s triangle. Note that, to treat the peaks case, our algorithm has to visit all edges of the

mesh, so it is θ(ne).

An improvement can be made if, instead of calculating the predicates in the intersection

method, we calculate all predicates previously for each vertex (node) of the mesh. Doing this,

we avoid calculating the same predicate more than one time, as would happen in adjacent

edges. According to Jiménez et al(2009), Segura and Feito(1998, 2001) stored all triangle

normals and all signed volumes, being extremely fast, especially with static objects, as our

case is. To calculate the predicates, given the four plane coefficients, a,b,c and d, we calculate

3 trivial plane points:

 0 1 20,1, ; 0, 1, ; 1,0,
d b d b d a

P P P
c c c

+ − + +     
= = − =     
     

 (44)

Note that these points are oriented clockwise, as our predicates demand (see Eq. (7)).

Hence, we can describe our Surface-Plane Intersection Algorithm as bellow:

Figure 15: Surface-Plane Build Curves

Build_Curves():
For each edge e of the mesh
 Mark e as unvisited
End For
For each unvisited boundary edge e of the mesh
 If e is intersected then
 Calculate the Intersection Point
 Mark e as visited
 Search_Intersections(Triangle Adjacent to e)
 End If
End For
For each unvisited edge e of the mesh
 If e is intersected then
 Calculate the Intersection Point
 Mark e as “to revisit”
 Search_Intersections(Triangle Adjacent to e)
 End If
End For

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6079

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 16: Surface-Plane Search Intersections

With this algorithm, we can, for example, create isocurves of many levels as in the

following pictures.

Figure 17: Isocurves with peaks

Figure 18: Isocurves bypassing holes

Search_Intersections(T):
For each unvisited or “to revisit” edge e of triangle T
 Mark e as visited
 If e is intersected then
 Calculate the Intersection Point
 Search for more intersections in T
 Search for more intersections in the triangles adjacent to e
 If new points were not added to the curve and e is a Boundary Edge then
 End the current curve and start creating a new curve
 End If
 If e was “to revisit”
 Calculate the Intersection Point
 End the current curve and start creating a new curve
 End If
End If
End For

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6080

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

5 CURVE ON SURFACE

To insert interactively a curve on a surface, the user must, using a “Curve On Surface” tool,

click 2 or more times on the surface. All these points will be attracted to the surface (as pick

points) and then will be used as control points to build our curve on surface. For every pair of

consecutive control points, we will build a cut plane and two delimiter planes. Then, a curve

segment, starting with a control point and ending with the next control point, will be

generated. In the end all curve segments will compose our Curve On Surface.

Figure 19: Curve On Surface Build Curves

5.1 Building the Cut Plane

Once we use the predicates, building a plane, actually means, defining 3 of its points. The

cut plane must be orthogonal to the mesh and also contain both current control points. Let U

and V be two consecutive control points. Known in which mesh triangle these points are, we

can determine their normal vectors nU and nV. Supposing that the surface is continuous, a

good normal to this cut plane should be orthogonal to an average vector of nU and nV.

2

vu

m

nn
n

+
= (45)

and orthogonal to the vector UV. So, the normal of the cut plane π is:

 mnUVn ×=π (46)

Thus, 3 simple points that define π are:

VP

nUP

UP

m

=

+=

=

2

1

0

 (47)

Note that these points are oriented clockwise, as our predicates demand (see Eq. (7)).

Figure 20: Defining the cut plane

Then, we calculate the predicate value for each vertex (node) of the mesh in relation with

this cut plane and store them.

Build_Curves():
Add the first Control Point to the Curve
For each pair of consecutive Control Points
 Build the new Cut Plane
 Build the new Delimiter Planes
 Generate Curve Segment
 Add the next Control Point
End For

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6081

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

5.2 Building the Delimiter Planes

The delimiter planes are important because our cut plane is infinite and only intersection

points between our control points must be added to the curve. In other words, intersection

points before our first control point or after our second control point shall be rejected.

Otherwise, we would have a full Plane-Surface intersection per each pair of consecutive

control points.

Figure 21: A non-delimited a Curve on Surface segment and a delimited one

There will be two delimiter planes: the left delimiter plane will discard intersection points

before our first control point and the right delimiter plane will discard intersection points after

our second control point.

The Delimiter planes must be orthogonal to the cut plane and must contain a control point.

So, three left delimiter plane points can be:

πnUL

nUL

UL

m

+=

+=

=

2

1

0

 (48)

And three right delimiter plane points can be:

mnVR

nVR

VR

−=

−=

=

2

1

0

π (49)

Note that the left delimiter points are given counterclockwise and the right delimiter points

are given clockwise.

Figure 22: The Delimiter Plane Points

So, an intersection point D inside the limits (between the delimiter planes) must satisfy:





≥

≥

0),,,(3

0),,,(3

210

210

DRRRdorient

DLLLdorient
 (50)

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6082

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Thus, our basic Segment-Plane Intersection methods changes a little.

Figure 23: Segment-Plane Intersection for Curve On Surface

5.3 Building the Curve Segment

When we start building a new Curve segment, all edges of the mesh are unvisited. Then, if

we know the triangles where our control points are, we just have to start searching for

intersections in the mesh from this triangle (as in Figure 3). The last point of this segment will

be at an edge of the triangle where the next control point is. So, add the next control point to

the curve, get the next pair of consecutive control points, update all planes and build the next

curve segment (as in Figure Figure 19)

Sadly, if the mesh contains a hole and our cut planes passes though it, our search would

end in the border of the hole, once that no more connected edges would be in intersection.

However, the edges that are in the border of the hole are considered boundary edges of the

mesh. So, when our search reaches a boundary edge and no more intersection points were

added, probably, we have found a hole. We skirt this hole by running along this edge’s

adjacent boundary edges (marked as skirted). When we find a boundary edge in intersection,

we mark it as visited, calculate its intersection point, add this point to a new curve and restart

our search from this edge’s triangle. Note that, if our mesh is too irregular, we may have many

intersection curves. In this case, our curves would split, not in holes, but in the border of the

mesh, which are boundary edges anyway. So, this strategy would also work.

Segment_Plane_Intersection(e, ππππ):

If both endpoints of e are over ππππ then
 return false
End If

If both endpoints of e are under ππππ then
 return false
End If

If both endpoints do not belong to ππππ then
 Calculate tp

 If 0 ≤ tp ≤ 1 then
 Calculate P
 If P lies between delimiter planes then
 Add P to curve
 return true
 Else
 return false
 End If
 Else
 return false
 End If
End If

If first endpoint belongs to ππππ and
 first endpoint lies between delimiter planes then
 Add first endpoint to curve

 If second endpoint belongs to π π π π and
 second endpoint lies between delimiter planes then
 Add second endpoint to curve
 return true
 End If
End If

If second endpoint belong to ππππ and
 second endpoint lies between delimiter planes then
 Add second endpoint to curve
 return true
End If
return false

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6083

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 24: Curve On Surface Search Intersections

Figure 25: Curve On Surface Skirt Hole

Figure 26: Creating a Curve On Surface

Skirt_Hole(T):
For each unvisited edge e of triangle T
 Mark e as skirted
 If e is a boundary edge and e is intersected then
 Calculate the Intersection Point
 Add the intersection point to the curve
 Search_Intersections(T)
 return
 End If
 If e is an edge with 1 or 2 boundary nodes then
 Skirt_Hole(Triangle Adjacent to e)
 End If
End For

Search_Intersections(T):
For each unvisited or skirted edge e of triangle T
 If e is intersected then
 Mark e as visited
 Calculate the Intersection Point
 Search for more intersections in T
 Search for more intersections in the triangles adjacent to e
 If new points were not added to the curve and e is a Boundary Edge then
 End the current curve and start creating a new curve
 Skirt_Hole(T)
 End If
End If
End For

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6084

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 27: Curve On Surface attracted to the surface

Figure 28: Curve On Surface attracted to peaks

Figure 29: Curve On Surface bypassing holes

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6085

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

6 SURFACE-SURFACE INTERSECTION

Surface-Surface Intersection involves intersecting triangles. To keep our strategy of

walking by edges, we will intersect segments with triangles. Segura and Feito(1998, 2001)

have developed a fast algorithm for testing them which uses signed volumes. However, the

point has to be calculated using a classical segment-plane intersection algorithm. Jiménez et

al(2009), using barycentric coordinates and signed volumes have built an algorithm which

calculates segment-triangle intersection points even faster than Segura and Feito(1998, 2001).

A curious fact is that Jiménez et al(2009), in search of robustness, have minimized the number

of arithmetic operations that would be performed in the determinants calculations. Besides,

they have avoided divisions, which is a relatively slow and imprecise operation, and used a

tolerance range in their comparisons.

Definitely, exact arithmetic could be introduced in these algorithms. However, developing

a new Robust Segment-Triangle Intersection Algorithm would be very interesting for study

purposes. Once we have a Robust Segment-Plane Intersection Algorithm, all we have to do is

assure that this intersection point lies inside the triangle borders. So, we will have 3 delimiter

planes for each triangle we are intersecting.

Figure 30: A Triangle Delimiter Planes ρ, σ, and τ

If π is the plane defined by the 3 vertexes of a triangle, we can define the points

π

π

nBB

nAA

+=

+=

'

'
 (51)

Then, our delimiter planes ρ, σ and τ will be defined by the points









=

=

=









=

=

=









=

=

=

BT

AT

AT

AS

AS

CS

CR

BR

BR

2

1

0

2

1

0

2

1

0

':,':,': τσρ (52)

Once these points are given counterclockwise, any point D inside these delimiter planes

will satisfy:









≤

≤

≤

0),,,(3

0),,,(3

0),,,(3

210

210

210

DTTTdorient

DSSSdorient

DRRRdorient

 (53)

Bellow, we present our Robust Segment-Triangle Intersection Algorithm.

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6086

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 31: Segment-Plane Intersection for Curve On Surface

Whenever a triangle edge intersects another triangle, the edges adjacent to this edge may

also intersect this triangle. Besides, the triangles adjacent to the intersected triangles probably

will intersect. Our search for intersections is based on these facts.

Segment_Triangle_Intersection(e, T):

Build the plane ππππ containing all T vertexes
Using the normal of T, build 3 delimiter planes

If both endpoints of e are over ππππ then
 return false
End If

If both endpoints of e are under ππππ then
 return false
End If

If both endpoints do not belong to ππππ then
 Calculate tp

 If 0 ≤ tp ≤ 1 then
 Calculate P
 If P lies between delimiter planes then
 Add P to curve
 return true
 Else
 return false
 End If
 Else
 return false
 End If
End If

If first endpoint belongs to ππππ and
 first endpoint lies between delimiter planes then
 Add first endpoint to curve

 If second endpoint belongs to π π π π and
 second endpoint lies between delimiter planes then
 Add second endpoint to curve
 return true
 End If
End If

If second endpoint belong to ππππ and
 second endpoint lies between delimiter planes then
 Add second endpoint to curve
 return true
End If

return false

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6087

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 32: Surface-Surface Search Intersections

For Surface-Surface Intersections, a good heuristic to start our search for intersections is

similar to the used on Surface-Plane Intersection. First, we check all intersected boundary

triangles, because two intersecting surfaces may result in a curve which starts and ends at

boundary of a surface, which may be the same surface or not. At worst, the peaks of two

surfaces may be in intersection and, then, the intersection curve is a closed polyline. So,

checking the internal triangles and allowing revisiting is also required.

Figure 33: Two Quarter Cylinders Intersecting

Search_Intersections(TA, TB):
For each unvisited edge eA of triangle TA

 Mark eA as visited
 If eA is intersected with TB then
 Calculate the Intersection Point
 Search for more intersections between TA and TB
 Search for more intersections between the triangles adjacent to eA and TB

 Search for more intersections between TA and the triangles adjacent to TB

 Search for more intersections between the triangles adjacent to TA and the triangles adjacent to
TB
 End If
End For

For each unvisited edge eB of triangle TB

 Mark eB as visited
 If eB is intersected with TA then
 Calculate the Intersection Point
 Search for more intersections between TB and TA
 Search for more intersections between the triangles adjacent to eB and TA

 Search for more intersections between TB and the triangles adjacent to TA

 Search for more intersections between the triangles adjacent to TB and the triangles adjacent to
TA

R. MARQUES, A. PEREIRA, L. MARTHA, A. MIRANDA, M. GATTASS6088

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 34: Sigmoidal Surface and a Triangle Intersecting

7 CONCLUSIONS

In this paper we have proposed three algorithms for fast and robust surface intersections.

The first algorithm deals with intersections of a plane with a surface; the second algorithm

allows inserting a curve on a given surface; whereas the third one is responsible for

performing intersections between two surfaces. We show that all the algorithms were adapted

in order to allow adaptive precision based fast computations by the direct use of robust and

adaptive geometric predicate algorithms. Examples were presented to validate and to

demonstrate the capabilities of the proposed algorithms.

REFERENCES

Jiménez, J.J., Segura, R.J., Feito, F.R., A Robust Segment-Triangle Intersection Algorithm for

Interference Tests. Efficiency Study. Computational Geometry Volume 43, Issue 5,

Pages474-492, 2009

Segura, R.J., Feito, F.R., Algorithms to Test Ray-Triangle Intersection. Comparative Study.

Journal of WSCG, 2001

Segura, R.J., Feito, F.R., An Algorithm for Determining Intersection Segment-Polygon in 3D.

Computer & Graphics. 1998

Shewchuk, J.R., Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric

Predicates, 1996a

Shewchuk, J.R., Robust Adaptive Floating-Point Geometric Predicates, Twelfth Annual

Symposium on Computational Geometry, May 1996b

Mecánica Computacional Vol XXIX, págs. 6065-6089 (2010) 6089

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

