
TWO ALTERNATIVE PARALLEL IMPLEMENTATIONS FOR RAY
TRACING: OPENMP AND MPI

Alexandre S. Nerya, Nadia Nedjahb and Felipe M.G. Françaa

aLAM – Computer Architecture and Microeletronics Laboratory, Systems Engineering and Computer
Science Program, COPPE, Universidade Federal do Rio de Janeiro, {alexandre.solon@gmail.com,

felipe@cos.ufrj.br},http://www.coppe.ufrj.br~felipe

bDepartamento de Engenharia de Sistemas e Computação, Faculdade de Engenharia, Universidade do
Estado do Rio de Janeiro, nadia@eng.uerj.br,http://www.eng.uerj.br~nadia

Keywords: 3D rendering, ray tracing, uniform grid.

Abstract. In computer graphics, rendering scenes into high-quality images efficiently is critical, es-
pecially if some interactivity is required. However, it is hard to satisfy both speed and interactivity
requirements for most existing rendering algorithms. Ray Tracing is an algorithm for three-dimensional
scene rendering, but it needs massive heavy floating-point computations. Nevertheless, the algorithm
can be very well parallelized, making it ideal for parallel mutli-core architectures. In this paper, we pre-
sent a structured model for parallel Ray Tracing together with two software implementations in OpenMP
and MPI. The model is based on theUniform Grid spatial subdivision of the scene, which allows for
intersection test reduction. Furthermore, we show that a parallel implementation improves the algorithm
performance when the rendered scenes are large and sparse.

Mecánica Computacional Vol XXIX, págs. 6295-6302 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1 INTRODUCTION

Rather than a simple rendering algorithm, Ray Tracing is a powerful simulation of light
interaction within a three dimensional scene. Such interaction is determined through costly
intersection computations between each light ray and the scene. Each intersection test may
generate more rays and lead to even more computation, increasing the level of details in the
synthesized image, which includes: shadows, transparencyand mirror effects.

Tracing the path of each light ray is a computing intensive task. For a naive ray tracing
implementation, in which every ray is intersected against the whole scene, the rendering time
is proportional to the number of objects. Furthermore, acceleration data structures based on
spatial subdivision of the scene can greatly reduce the number of intersection tests, since only
the objects that are in the direction of a given ray are testedfor intersection. Even thought, a
frame rate above 60 fps (frames per second) is usually unachievable in ray tracing, which makes
the algorithm unsuitable for real time rendering.

The algorithm is well-known for its parallelism, as every ray may be processed independen-
tly. Generally, a parallel ray tracer scales almost linearly to the number of available processors
Cameron(2007). Thus, parallel architectures have been enabling real-time performance in Ray
Tracing, such as multi-core processorsHurley (2005), GPGPUPurcell et al.(2005)(General-
Purpose Graphics Processing Unit) and custom parallel designs in FPGA. In the latter, it has
been possible to render scenes between 20 and 60 fps, at frequencies up to 90 MHzWoop et al.
(2005).

In this paper, we present a parallel ray tracing model, alongwith two parallel algorithms
based on that model. The architecture, called GridRTNery et al.(2009), has been developed in
FPGA, while the algorithm has been developed in OpenMP and MPI. The model exploits the
Uniform Grid Fujimoto et al.(1988) spatial subdivision of the scene to reduce the amount of
intersection tests as well as performing them in advance, asdescribed in Section3.

The rest of this paper is organized as follows: in Section2, we briefly introduce the ray
tracing sequential algorithm. Then, in Section3, we present the parallel model. Thereafter, in
Section4, we sketch two parallel algorithms, the corresponding implementations and yielded
results. Finally, in Section5, we draw some conclusions and point out some directions for future
work.

2 THE RAY TRACING ALGORITHM

The Ray Tracing algorithm is briefly introduced in this section, while more details are best
described in textbooks on the subjectSuffern (2007). Thus, given aVirtual Camerapointed
towards the scene, the idea is to launch a view ray (a.k.a.primary ray) that passes through a
pixel of theviewplane, according to Fig.1.

Beyond the viewplane, lies the scene to be rendered. Therefore, intersection tests are per-
formed against each ray and, if and intersection is found, asecondary raymay be generated
heading towards a new direction. Also, at each intersectionpoint, the intersected object pro-
perties are stored in order to merge the results into a singlepixel color. This idea is described
in Algorithm 1, also known asWhitted-Style Ray TracingWhitted (1980). Intersection and

A. NERY, N. NEDJAH, F. FRANCA6296

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



eye

viewplane

w
pixel view directionray

u

v

Figure 1: The virtual camera setup

shading computations are are an essential part of the algorithmShirley(2000); Phong(1998).

Algorithm 1 : Simplified Ray Tracing Algorithm (Whitted-Style)
Input : scene, ray, depth
Output : pixel color
if depth> maxthen1

return black ; /* usually the background color */2

else3

lowest :=∞;4

foreachscene objectdo5

t := intersect(ray, scene[obj]);6

if t < lowest and t> 0 then7

lowest := t ; /* update the lowest value */8

result := scene[obj] ; /* stores the object */9

if result 6= null then10

if result.material is specular or transparentthen11

ray := o + t· d ; /* compute new ray direction */12

color := shade(t, result) ; /* compute pixel color */13

return color + trace(ray, scene, depth+1)·result.frac14

else15

color := shade(t, result) ; /* compute pixel color */16

return color17

At first, the algorithm checks the recursion depth to determine its conclusion. Such depth
controls how further secondary rays may be spawned from an initial primary ray, which directly
affects the level of transparency and mirroring details in the synthesized image. After that, inter-
section tests determine the closest intersection point to the ray origin and stores the intersected
object and its properties. Then, if the intersected object material is specular or transparent, the
algorithm is called recursively with a new ray direction. Otherwise, the object properties are
used to determine the intersection color contribution. Back from recursion, those contributions
are merged into a single pixel color.

Objects are usually represented as a collection of triangles, calledTriangle Mesh. The ray-
triangle intersection function, line1, first determines the intersection between the ray and the
triangle plane, as every triangle must lie in a plane. Then, if positive for intersection, the
algorithm checks if such point belongs inside the triangle’s coordinates. All the computation is
accomplished through barycentric coordinatesShirley(2000).

Mecánica Computacional Vol XXIX, págs. 6295-6302 (2010) 6297

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Uniform Gridvoxel

ray
origin

1

2
3

4 5

6

(a) Traversal order

0 PE1

PE3 PE4

en en

enen

PE0 PE1

PE3 PE4

en en

enen

PE0 PE1

PE2 PE3

list list

listlist

Uniform Grid

(b) Grid Ray Tracing

Figure 2: The example of ray traversal order and the Grid Ray Tracing parallel model, in which the highlighted PE
is master.

The shading function, lines1 and1, computes a color based on the position of each light
source in the scene. Otherwise, every object would have a flatness appearance in the final
image. Usually the color is computed as a combination of three components: ambient, diffuse
and specular. Such shading model is known asPhong Empirical Shading ModelPhong(1998),
after Bui Tuong Phong.

3 THE PROPOSED MODEL

The parallel model is based on the Uniform Grid accelerationdata structure, in which the
scene is subdivided into regular regions, calledvoxels. Each voxel holds a piece of scene data
and, hence, reduces the number of intersection tests. That is only those voxels that are pierced
by a given ray have its scene tested for intersection, as depicted in Fig. 2(a). Those tests are
performed in the order that grid is traversed, so the intersection point is guaranteed to be the
closest to the ray origin.

Furthermore, our model maps each voxel onto a Processing Element (PE), which becomes
responsible for computing intersection tests within its piece of scene dataNery et al.(2009),
stored in a associated memory. So, every PE that is traversedby a ray is activated to process it
in parallel, performing intersection tests in advance throughout the ray. However, it must decide
which PE holds the correct result (the closest to the ray origin) at the end of the computation.

Thus, instead of exchanging the results between the activated processing elements, we still
use the traversal order to determine the correct result. Thus, each PE is connected to its neigh-
borhood by interrupt lines (Fig.2(b)). So, according to the traversal order, once an intersection
is discovered, an interrupt request is sent to the next PE in the traversal list, which is forwarded
until reaching the last PE in the list. Moreover, a second type of interruption handles the situa-
tion when a PE requires a feedback from a previous one, beforeassuming that it has found the
closest intersection point. For instance, let the traversal list beL = (2, 0, 1) and that the second
processing element has discovered an intersection. Then, PE1 is interrupted, but PE0 must wait
a feedback signal from PE2. Note that there is almost no overhead involved in handling interrupt
requests, since interruptions are being handled in simultaneously by a separate process in every
PE rather than by coded-interrupt routines.

A. NERY, N. NEDJAH, F. FRANCA6298

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Algorithm 2 : Ray Tracing OpenMP Algorithm
Input : scene, ray
Output : pixel color
numcells := grid.getNumCells();1

omp_set_num_threads(numcells) ; /* set #threads */2

shared_res[numcells] ; /* resultant object of each thread */3

foreach ray of the viewplanedo4

traverse := grid.traverseGrid(ray) ; /* list of traversal */5

#pragma omp parallel private(tid, result)6

begin7

tid := omp_get_thread_num() ; /* thread id */8

triangles := grid.getTriangleArray(tid); /* thread objs. */9

foreach triangledo10

result := intersect(ray,triangle);11

if result 6= null then12

shared_res[tid] := result;13

i := 0;14

while traverse[i] 6= tid do15

if shared_res[traverse[i]]6= null then16

shared_res[tid] := null;17

break ; /* actually break innermost for */18

i := i+1;19

end20

Continue to shading computation;21

4 THE PARALLEL ALGORITHM

Both algorithms presented in this section follow the model from Section3, with minor mo-
difications. In the MPI version, interrupt signals are implemented as messages while int the
OpenMP version the communication is based on shared resources. In essence, the parallel com-
putation is still the same, but the synchronization betweenprocesses is different, especially in
the latter case.

4.1 OpenMP implementation

The OpenMP Ray Tracer maps every processing element onto aThreadand their communi-
cation is based on shared resources, as in Algorithm2. First of all, a ray is traversed through the
grid and a list containing the order of traversal is generated, line 2. Then, the parallel section
begins with each thread getting the corresponding scene andintersecting it. However, the whole
scene is not intersected at once. After each intersection test, the algorithm reads a shared array
which stores the result computed so far by each thread (line2). Thus, according to the order of
traversal, if there is a result already stored by a previous thread, the current one aborts. At the
end, only the correct result remains in the shared array.

4.2 MPI implementation

The MPI Ray tracer maps each processing element onto aProcessand models interrupt sig-
nals as messages, Algorithm3. A master process is in charge of distributing the scene datato

Mecánica Computacional Vol XXIX, págs. 6295-6302 (2010) 6299

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Algorithm 3 : Ray Tracing MPI Algorithm
Input : scene,ray
Output : pixel color
if rank = 0 then1

Distribute necessary data to Processes;2

foreach ray do3

Traverse the ray through the grid structure;4

if the Process rank is listedthen5

foreach triangledo6

result := intersect(triangle);7

if result 6= null then8

Determine the Process position in the traversal list;9

if first then10

Send interrupt message to the next Process;11

if last then12

Receive message from the previous Process;13

Check the message and interrupt if necessary;14

else15

Receive message from the previous Process;16

Forward the message to the next Process;17

Check the message and interrupt if necessary;18

if result 6= null then19

Continue to shading computation;20

MPI_Barrier(MPI_COMM_WORLD) ; /* Synchronization barrier */21

others (line3). Then, for each ray-triangle intersection test, every process checks their posi-
tion in the traversal list and decides whether to expect an message or/and to send an interrupt
message (line3).

4.3 Results

In this section, we present some performance results from the parallel algorithm execution, in
Fig. 3(a)and Fig.3(b), for primary rays. Such results were obtained in aCore i72.26GHz Intel
architecture, which is capable of running eight threads in parallel. At each execution, the grid
size configuration was increased: 8, 12, 27, 36 and 64 processing elements, which corresponds
to the number of threads/processes.

Also, note that eight parallel threads are enough, since thenumber of threads actually doing
some real work in parallel are those listed in the traversal list. All the others will be waiting in
a busy waitstyle. Thus, for the grid configuration that we have setup, the maximum parallel
threads/processes is eight, which fits nicely even for a 64 processors configuration.

The result depicted in Fig.3(a) compare the sequential and parallel implementations, for
a small scene of approximately 67K triangles. In that case, the sequential algorithm beats the
parallel one, due to a synchronization overhead, especially for a large grid configuration. Howe-
ver, as the scene grows sparsely, the parallel OpenMP algorithm becomes a better alternative,
as in Fig.3(b). What happens is that the chance of occurring intersection tests in advance (in
parallel) increases for distributed objects (Fig.4(b)), while the sequential algorithm would step
into each voxel looking for further intersections along theray. On the other hand, the parallel

A. NERY, N. NEDJAH, F. FRANCA6300

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 0

 100

 200

 300

0 8 12 27 36 64E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Threads/Processes

Sequential
MPI

OpenMP

(a) 67K triangles.

 0

 1500

 3000

 4500

 6000

 7500

0 8 12 27 36 64E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Threads/Processes

Sequential
MPI

OpenMP

(b) 1.20M triangles.

Figure 3: Parallel vs. Sequential Ray Tracing.

MPI algorithm did not performed as expected: most of its execution time is being spent on
barriers, as depicted in Fig.4(a). The execution time for both implementations are depicted in
Table1. We have not included the latency of MPI messages as they are almost inexistent, since
all processes are running on the same machine.

Table 1: Execution times∗ for rendering 67K and 1.2M scenes.

Grid
67K scene 1.2M scene

Sequential MPI OpenMP Sequential MPI OpenMP

8 179 248 227 5931 5675 5594
12 149 292 185 4819 4625 3909
27 68 254 101 2489 2010 1740
36 60 275 100 2182 1945 1678
64 37 272 127 1242 1200 975

All times are in seconds.

0 8 12 27 36 64

%
 o

f 
to

ta
l 
e

x
e

c
u

ti
o

n

Threads/Processes

MPI MPI Barrier

(a) MPI barrier overhead (b) 18Stanford Bunnies

Figure 4: MPI Barrier overhead and 18 Stanford Bunnies render.

Mecánica Computacional Vol XXIX, págs. 6295-6302 (2010) 6301

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



5 CONCLUSION AND FUTURE WORK

The GridRT architecture was presented together with two parallel algorithm solutions. Des-
pite the lower performance achieved for small scenes, the parallel algorithm becomes promising
as the scene size increases. Generally, computer graphics applications are required to render
large scenes. Also, the MPI implementation is being re-structured in order to avoid the usage
of barriers and so increase its performance. Furthermore, rays that are traversed through dif-
ferent processors could be processed in parallel, which is likely to increase both algorithms
performance.

We are now working on the hardware implementation, with fourprocessing elements only,
due to area constraints. However, a hardware solution is expected to yield much better perfor-
mance than the software parallel solution.

REFERENCES

Cameron C. Using fpgas to supplement ray-tracing computations on the cray xd-1.HPCMP
Users Group Conference, 0:359–363, 2007. doi:http://doi.ieeecomputersociety.org/10.1109/
HPCMP-UGC.2007.79.

Fujimoto A., Tanaka T., and Iwata K. Arts: accelerated ray-tracing system.Tutorial: computer
graphics; image synthesis, pages 148–159, 1988.

Hurley J. Ray tracing goes mainstream.Intel Technology Journal, 9(2):99–107, 2005. ISSN
1535-766X. doi:http://dx.doi.org/.

Nery A.S., Nedjah N., and França F.M.G. Gridrt: A massively parallel architecture for ray-
tracing using uniform grids. InDSD ’09: Euromicro Conference on Digital System Design,
pages 211–216. IEEE Computer Society, Los Alamitos, CA, USA, 2009.

Phong B.T. Illumination for computer generated pictures.Seminal graphics: poineering efforts
that shaped the field, pages 95–101, 1998. doi:http://doi.acm.org/10.1145/280811.280980.

Purcell T.J., Buck I., Mark W.R., and Hanrahan P. Ray tracingon programmable graphics
hardware. InSIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, page 268. ACM, New York,
NY, USA, 2005. doi:http://doi.acm.org/10.1145/1198555.1198798.

Shirley P. Realistic ray tracing, pages 35–38. A. K. Peters, Ltd., Natick, MA, USA, 2000.
ISBN 1-56881-110-1.

Suffern K.Ray Tracing from the Ground Up. A. K. Peters, Ltd., Natick, MA, USA, 2007. ISBN
1568812728.

Whitted T. An improved illumination model for shaded display. Commun. ACM, 23(6):343–
349, 1980. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/358876.358882.

Woop S., Schmittler J., and Slusallek P. Rpu: a programmableray processing unit for realtime
ray tracing. InSIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 434–444. ACM, New
York, NY, USA, 2005. doi:http://doi.acm.org/10.1145/1186822.1073211.

A. NERY, N. NEDJAH, F. FRANCA6302

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


