Asociacion Argentina AMCL

de Mecanica Computacional

Mecénica Computacional Vol XXIX, pags. 6295-6302 (articulo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)
Buenos Aires, Argentina, 15-18 Noviembre 2010

TWO ALTERNATIVE PARALLEL IMPLEMENTATIONS FOR RAY
TRACING: OPENMP AND MPI

Alexandre S. Nery?, Nadia NedjarP and Felipe M.G. Frangéa?

a_AM — Computer Architecture and Microeletronics Laboratdbystems Engineering and Computer
Science Program, COPPE, Universidade Federal do Rio deidgrH{alexandre.solon@gmail.com,
felipe@cos.ufrj.br}http://www.coppe.ufrj.br~felipe

bDepartamento de Engenharia de Sistemas e Computacéo,deataitie Engenharia, Universidade do
Estado do Rio de Janeiro, nadia@eng.uerijtiitp:// www.eng.uerj.br~nadia

Keywords: 3D rendering, ray tracing, uniform grid.

Abstract. In computer graphics, rendering scenes into high-quatityges efficiently is critical, es-
pecially if some interactivity is required. However, it igd to satisfy both speed and interactivity
requirements for most existing rendering algorithms. Reacihg is an algorithm for three-dimensional
scene rendering, but it needs massive heavy floating-pomipatations. Nevertheless, the algorithm
can be very well parallelized, making it ideal for parallaltiircore architectures. In this paper, we pre-
sent a structured model for parallel Ray Tracing togethér tiwio software implementations in OpenMP
and MPI. The model is based on thimiform Grid spatial subdivision of the scene, which allows for
intersection test reduction. Furthermore, we show thatallphimplementation improves the algorithm
performance when the rendered scenes are large and sparse.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

6296 A.NERY, N. NEDJAH, F. FRANCA

1 INTRODUCTION

Rather than a simple rendering algorithm, Ray Tracing is aepful simulation of light
interaction within a three dimensional scene. Such intemads determined through costly
intersection computations between each light ray and tbaesc Each intersection test may
generate more rays and lead to even more computation, gicgethe level of details in the
synthesized image, which includes: shadows, transpamamtynirror effects.

Tracing the path of each light ray is a computing intensiwk.taFor a naive ray tracing
implementation, in which every ray is intersected agaihstwhole scene, the rendering time
is proportional to the number of objects. Furthermore, lcagon data structures based on
spatial subdivision of the scene can greatly reduce the puwfintersection tests, since only
the objects that are in the direction of a given ray are teitedhtersection. Even thought, a
frame rate above 60 fps (frames per second) is usually uengdbie in ray tracing, which makes
the algorithm unsuitable for real time rendering.

The algorithm is well-known for its parallelism, as every raay be processed independen-
tly. Generally, a parallel ray tracer scales almost linetrlthe number of available processors
Cameron2007). Thus, parallel architectures have been enabling re-performance in Ray
Tracing, such as multi-core processeétsrley (2005, GPGPUPurcell et al.(2005(General-
Purpose Graphics Processing Unit) and custom parallejaesn FPGA. In the latter, it has
been possible to render scenes between 20 and 60 fps, agrficgs up to 90 MH¥Voop et al.
(2005.

In this paper, we present a parallel ray tracing model, aloitly two parallel algorithms
based on that model. The architecture, called GritieTy et al.(2009, has been developed in
FPGA, while the algorithm has been developed in OpenMP ant ™ model exploits the
Uniform Grid Fujimoto et al.(1988 spatial subdivision of the scene to reduce the amount of
intersection tests as well as performing them in advanceessribed in Sectios.

The rest of this paper is organized as follows: in Secfipmve briefly introduce the ray
tracing sequential algorithm. Then, in Sect@nve present the parallel model. Thereafter, in
Section4, we sketch two parallel algorithms, the corresponding en@ntations and yielded
results. Finally, in Sectiof, we draw some conclusions and point out some directionsifaré
work.

2 THE RAY TRACING ALGORITHM

The Ray Tracing algorithm is briefly introduced in this sentiwhile more details are best
described in textbooks on the subfeaffern (2007. Thus, given avirtual Camerapointed
towards the scene, the idea is to launch a view ray (apianary ray) that passes through a
pixel of theviewplane according to Figl.

Beyond the viewplane, lies the scene to be rendered. Therafdersection tests are per-
formed against each ray and, if and intersection is fourgse@ndary raynay be generated
heading towards a new direction. Also, at each intersegi@nt, the intersected object pro-
perties are stored in order to merge the results into a spigé color. This idea is described
in Algorithm 1, also known adWhitted-Style Ray Tracingvhitted (1980. Intersection and

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecanica Computacional Vol XXIX, pags. 6295-6302 (2010) 6297

Figure 1: The virtual camera setup

shading computations are are an essential part of the tdgo8hirley (2000; Phong(1998.
Algorithm 1: Simplified Ray Tracing Algorithm\{/hitted-Style
Input: scene, ray, depth
Output: pixel color
1 if depth> maxthen

2 return black; /* usual ly the background col or =*/
3 else

4 lowest :=oc;

5 foreach scene objeatlo

6 t := intersect(ray, scene[obj]);

7 if t < lowest and t> 0 then

8 lowest :=t; /* update the | owest val ue =*/
9 result ;= scene[obj] ; /* stores the object */
10 if result=£ null then

11 if result.material is specular or transparetiten

12 ray:=o+td; /* conmpute new ray direction */
13 color := shade(t, result) ; [+ conpute pixel color =*/
14 return color + trace(ray, scene, depth+esult.frac

15 else

16 color := shade(t, result) ; /= conpute pixel color */
17 return color

At first, the algorithm checks the recursion depth to deteemis conclusion. Such depth
controls how further secondary rays may be spawned fromiaal jorimary ray, which directly
affects the level of transparency and mirroring detailb@égynthesized image. After that, inter-
section tests determine the closest intersection poiigtoay origin and stores the intersected
object and its properties. Then, if the intersected objeatiennl is specular or transparent, the
algorithm is called recursively with a new ray direction.hétwise, the object properties are
used to determine the intersection color contribution.kfe@m recursion, those contributions
are merged into a single pixel color.

Objects are usually represented as a collection of triangkdledTriangle Mesh The ray-
triangle intersection function, ling, first determines the intersection between the ray and the
triangle plane, as every triangle must lie in a plane. Thepositive for intersection, the
algorithm checks if such point belongs inside the triargyt@ordinates. All the computation is
accomplished through barycentric coording®égrley (2000.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

6298 A.NERY, N. NEDJAH, F. FRANCA

voxel UniformGid

B

T
3

ray 1) L7 i,>

origin

(a) Traversal order (b) Grid Ray Tracing

Figure 2: The example of ray traversal order and the Grid Ragimg parallel model, in which the highlighted PE
is master.

The shading function, lines and1, computes a color based on the position of each light
source in the scene. Otherwise, every object would have rreflatappearance in the final
image. Usually the color is computed as a combination oftle@mponents: ambient, diffuse
and specular. Such shading model is knowRhsng Empirical Shading Modehong(1998),
after Bui Tuong Phong.

3 THE PROPOSED MODEL

The parallel model is based on the Uniform Grid acceleratiata structure, in which the
scene is subdivided into regular regions, calledels Each voxel holds a piece of scene data
and, hence, reduces the number of intersection tests. 3 baty those voxels that are pierced
by a given ray have its scene tested for intersection, axt@epin Fig. 2(a) Those tests are
performed in the order that grid is traversed, so the int¢iee point is guaranteed to be the
closest to the ray origin.

Furthermore, our model maps each voxel onto a Processimgeale(PE), which becomes
responsible for computing intersection tests within itscgi of scene datidery et al.(2009),
stored in a associated memory. So, every PE that is travbgsaday is activated to process it
in parallel, performing intersection tests in advanceuliwut the ray. However, it must decide
which PE holds the correct result (the closest to the rayirgrag the end of the computation.

Thus, instead of exchanging the results between the astiyabcessing elements, we still
use the traversal order to determine the correct results,Téach PE is connected to its neigh-
borhood by interrupt lines (Fig2(b)). So, according to the traversal order, once an intergectio
is discovered, an interrupt request is sent to the next Pleitraversal list, which is forwarded
until reaching the last PE in the list. Moreover, a secone typinterruption handles the situa-
tion when a PE requires a feedback from a previous one, bas@ming that it has found the
closest intersection point. For instance, let the travéigde . = (2,0, 1) and that the second
processing element has discovered an intersection. Tikgns hterrupted, but PEmust wait
a feedback signal from BENote that there is almost no overhead involved in handhibgrrupt
requests, since interruptions are being handled in simedtasly by a separate process in every
PE rather than by coded-interrupt routines.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecanica Computacional Vol XXIX, pags. 6295-6302 (2010) 6299

Algorithm 2 : Ray Tracing OpenMP Algorithm
Input: scene, ray
Output: pixel color

1 numcells := grid.getNumCells();

2 omp_set_num_threads(numcells) ; |+ set #threads =/
3 shared_res[numcells] ; /* resultant object of each thread */
4 foreachray of the viewplaneo

5 traverse := grid.traverseGrid(ray) ; /= list of traversal =*/
6 #pragma omp parallel private(tid, result)

7 begin

8 tid := omp_get_thread_num() ; [+ thread id */
9 triangles := grid.getTriangleArray(tid); /* thread objs. =/
10 foreachtriangledo

11 result := intersect(ray,triangle);

12 if result # null then

13 shared_resJtid] := result;

14 i:=0;

15 while traverseli| # tid do

16 if shared_res[traverse[i]}# null then

17 shared_resJtid] := null;

18 break ; /* actually break i nnernost for =*/
19 i=i+1;

20 end

21 Continue to shading computation;

4 THE PARALLEL ALGORITHM

Both algorithms presented in this section follow the modahf Section3, with minor mo-
difications. In the MPI version, interrupt signals are inmpented as messages while int the
OpenMP version the communication is based on shared reourcessence, the parallel com-
putation is still the same, but the synchronization betw@®weesses is different, especially in
the latter case.

4.1 OpenMP implementation

The OpenMP Ray Tracer maps every processing element drticeadand their communi-
cation is based on shared resources, as in AlgorithRirst of all, a ray is traversed through the
grid and a list containing the order of traversal is generdiae 2. Then, the parallel section
begins with each thread getting the corresponding scenmterdecting it. However, the whole
scene is not intersected at once. After each intersectsinttee algorithm reads a shared array
which stores the result computed so far by each threadZ)in€hus, according to the order of
traversal, if there is a result already stored by a previbtesaid, the current one aborts. At the
end, only the correct result remains in the shared array.

4.2 MPI implementation

The MPI Ray tracer maps each processing element oRto@essand models interrupt sig-
nals as messages, Algoritien A master process is in charge of distributing the scenetdata

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

6300 A.NERY, N. NEDJAH, F. FRANCA

Algorithm 3: Ray Tracing MPI Algorithm
Input: scene,ray
Output: pixel color
1 if rank = Othen
Distribute necessary data to Processes;
foreachray do
Traverse the ray through the grid structure;
if the Process rank is listetthen
foreachtriangle do
result := intersect(triangle);
if result # null then
Determine the Process position in the traversal list;
if firstthen
Send interrupt message to the next Process;
if lastthen
Receive message from the previous Process;
Check the message and interrupt if necessary;
else
Receive message from the previous Process;
Forward the message to the next Process;
Check the message and interrupt if necessary;
if result # null then
Continue to shading computation;
MPI_Barrier(MPI_COMM_WORLD); /+* Synchronization barrier x/

© 00 N o 0o b w N

NN R R R R R R R e
B O © O N O U M W N R O

others (line3). Then, for each ray-triangle intersection test, everycpss checks their posi-
tion in the traversal list and decides whether to expect assage or/and to send an interrupt
message (lin&).

4.3 Results

In this section, we present some performance results frerpdhallel algorithm execution, in
Fig. 3(a)and Fig.3(b), for primary rays. Such results were obtained Dae i72.26GHz Intel
architecture, which is capable of running eight threadsaraltel. At each execution, the grid
size configuration was increased: 8, 12, 27, 36 and 64 prioceskements, which corresponds
to the number of threads/processes.

Also, note that eight parallel threads are enough, sincaudhngber of threads actually doing
some real work in parallel are those listed in the traveisal All the others will be waiting in
a busy waitstyle. Thus, for the grid configuration that we have setup,nttaximum parallel
threads/processes is eight, which fits nicely even for a 6dgssors configuration.

The result depicted in Fig3(a) compare the sequential and parallel implementations, for
a small scene of approximately 67K triangles. In that cas®sequential algorithm beats the
parallel one, due to a synchronization overhead, espgmalé large grid configuration. Howe-
ver, as the scene grows sparsely, the parallel OpenMP #ilgokiecomes a better alternative,
as in Fig. 3(b). What happens is that the chance of occurring intersectisis in advance (in
parallel) increases for distributed objects (Fgb)), while the sequential algorithm would step
into each voxel looking for further intersections along thg. On the other hand, the parallel

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecanica Computacional Vol XXIX, pags. 6295-6302 (2010) 6301

S 300 S 7500

K2 K2

e 200 |

= = 4500 | :

3 2 1500 ¢ : q

- 0 8 12 27 6 64 - 0 8 12 27 36 64

Threads/Processes Threads/Processes
Sequential — OpenMP [z Sequential — OpenMP

MPI MPI
(a) 67K triangles. (b) 1.20M triangles.

Figure 3: Parallel vs. Sequential Ray Tracing.

MPI algorithm did not performed as expected: most of its akea time is being spent on
barriers, as depicted in Fig(a) The execution time for both implementations are depiated i
Tablel. We have not included the latency of MPI messages as theyraostinexistent, since
all processes are running on the same machine.

Table 1: Execution timé&sfor rendering 67K and 1.2M scenes.

Grid _ 67K scene _ 1.2M scene
Sequential MPI | OpenMP | Sequential MPI | OpenMP
8 179 248 227 5931 5675 5594
12 149 292 185 4819 4625 3909
27 68 254 101 2489 2010 1740
36 60 275 100 2182 1945 1678
64 37 272 127 1242 1200 975

All times are in seconds.

% of total execution

8 12 27 36 64
Threads/Processes

o

MPI MPI Barrier
(a) MPI barrier overhead (b) 18Stanford Bunnies

Figure 4: MPI Barrier overhead and 18 Stanford Bunnies rende

Copyright © 2010 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

6302 A.NERY, N. NEDJAH, F. FRANCA

5 CONCLUSION AND FUTURE WORK

The GridRT architecture was presented together with twallgalgorithm solutions. Des-
pite the lower performance achieved for small scenes, tralpbalgorithm becomes promising
as the scene size increases. Generally, computer gragiptisadions are required to render
large scenes. Also, the MPI implementation is being recsiired in order to avoid the usage
of barriers and so increase its performance. Furthermays, that are traversed through dif-
ferent processors could be processed in parallel, whictke$ylto increase both algorithms
performance.

We are now working on the hardware implementation, with foacessing elements only,
due to area constraints. However, a hardware solution isa&g to yield much better perfor-
mance than the software parallel solution.

REFERENCES

Cameron C. Using fpgas to supplement ray-tracing compuisiton the cray xd-1HPCMP
Users Group Conferen¢®:359-363, 2007. doi:http://doi.ieeecomputersocetyl0.1109/
HPCMP-UGC.2007.79.

Fujimoto A., Tanaka T., and lwata K. Arts: accelerated naging systemTutorial: computer
graphics; image synthesipages 148-159, 1988.

Hurley J. Ray tracing goes mainstreamtel Technology JournalP(2):99-107, 2005. ISSN
1535-766X. doi:http://dx.doi.org/.

Nery A.S., Nedjah N., and Franca F.M.G. Gridrt: A massivedyghlel architecture for ray-
tracing using uniform grids. IDSD '09: Euromicro Conference on Digital System Design
pages 211-216. IEEE Computer Society, Los Alamitos, CA, | Z89.

Phong B.T. lllumination for computer generated pictui®sminal graphics: poineering efforts
that shaped the fieJgpages 95-101, 1998. doi:http://doi.acm.org/10.11452&.280980.
Purcell T.J., Buck I., Mark W.R., and Hanrahan P. Ray tra@ngprogrammable graphics
hardware. I'SIGGRAPH '05: ACM SIGGRAPH 2005 Courspage 268. ACM, New York,

NY, USA, 2005. doi:http://doi.acm.org/10.1145/11985398798.

Shirley P. Realistic ray tracing pages 35-38. A. K. Peters, Ltd., Natick, MA, USA, 2000.
ISBN 1-56881-110-1.

Suffern K.Ray Tracing from the Ground U. K. Peters, Ltd., Natick, MA, USA, 2007. ISBN
1568812728.

Whitted T. An improved illumination model for shaded digpl&Commun. ACM23(6):343—
349, 1980. ISSN 0001-0782. doi:http://doi.acm.org/1085/358876.358882.

Woop S., Schmittler J., and Slusallek P. Rpu: a programnralglerocessing unit for realtime
ray tracing. INSIGGRAPH '05: ACM SIGGRAPH 2005 Papgpages 434-444. ACM, New
York, NY, USA, 2005. doi:http://doi.acm.org/10.1145/6B22.1073211.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

