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Abstract. The growing use of Computational Simulation in the design and analysis of complex en-
gineering systems, has underscored the need of developing methodologies capable of assessing the un-
avoidable uncertainty contained in the numerical results. One major issue to be deeper understood and
controlled is how uncertainties in the input data impacts the reliability of the results obtained through
computer simulations. Specifically in the present work, the focus relies on hydro-ship dynamics in the
context of floating offshore structures. Particular emphasis is placed on investigating uncertainty propa-
gation in the nonlinear response of flow-structures interactions, investigating the response of the system
to random load, performing a stability analysis of the system. It is important to remind that waves
and currents, major agents in the dynamics of the floating structures, are usually modeled as random pro-
cesses. Therefore, stochastic modeling seems to offer an appropriate framework to handle external forces
and uncertainties in the data, like, for instance, damping and boundary conditions. We propose in this
work, apply an adaptative sparse grid stochastic collocation method in a prototype problem of a single
oscillator excited by means of an interaction stochastic force corresponding to the Morison formula. The
velocity and acceleration of the flow are determined using the Pierson-Moskovitz power spectrum that
lead to a highly non-linear equation of motion. Even in the presence of nonlinearities, the collocation
approach, approximates the solution in the stochastic space using Lagrange polynomial interpolation,
requiring only repetitive calls to an existing deterministic solver, just as in sampling-based methods,
such as Monte Carlo. Moreover, uncertainty in the system parameters can be also taken into account.
Comparisons with non-adaptative Collocation method and Monte Carlo method, taken as reference, are
also presented to demonstrate the accuracy and efficiency of the method.
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1 INTRODUCTION

The complexity involved in engineering systems has been, frequently, tackled with the use
of sophisticated computational models. That, from the decision makers standpoint, requires the
use of robust and reliable numerical simulators. Often, the reliability of those simulations is
disrupted by the inexorable presence of uncertainty in the model data, such as inexact knowl-
edge of system forcing, initial and boundary conditions, physical properties of the medium, as
well as parameters in constitutive equations. These situations underscore the need for efficient
uncertainty quantification (UQ) methods for the establishment of confidence intervals in com-
puted predictions, the assessment of the suitability of model formulations, and/or the support of
decision-making analysis.

The traditional statistical tool for uncertainty quantification within the realm of Engineering
is the Monte Carlo method, (Elishakoff, 2003). This method requires, first, the generation of
an ensemble of random realizations associated to the uncertain data, and then it employs deter-
ministic solvers repetitively to obtain the ensemble of results. The ensemble results should be
processed to estimate the mean and standard deviation of the final results. The implementation
the Monte Carlo is straightforward, but its convergence rate is very slow (proportional to the
inverse of the square root of the realization number) and often infeasible due the large CPU
time needed to run the model in question. Other technique that has been applied recently is
the so called Stochastic Galerkin Method (SG), which employs Polynomial Chaos expansions
to represent the solution and inputs to stochastic differential equations, (Babuska and Zouaris,
2005). A Galerkin projection minimizes the error of the truncatedexpansion and the resulting
set of coupled equations is solved to obtain the expansion coefficients. SG methods are highly
suited to dealing with ordinary and partial differential equations, even in the case of nonlinear
dependence on the random data. The main drawback with SG relies on its need of solving a
system of coupled equations that requires efficient and robust solvers and, most importantly,
the modification of existing deterministic code. This last issue entails difficulties on using
commercial or already in use codes. A non-intrusive method, referred to as Stochastic Collo-
cation (SC), (Dongbin and Hesthaven, 2005), arises towards addressing this point. SC methods
are built on the combination of interpolation methods and deterministic solvers, likely Monte
Carlo. A deterministic problem is solved in each point of an abstract random space. Similarly
to SG methods, SC methods achieve fast convergence when the solution possesses sufficient
smoothness in random space.

Thus when there are steeps gradients or finite discontinuities in the stochastic space, these
methods converge very slowly or even fail to converge. In this work, we present an adaptative
sparse grid collocation strategy with the aim of obtaining greater accuracy in nonlinear systems
analysis. Specifically in the present work, the focus relies on hydro-ship dynamics in the con-
text of floating offshore structures. Particular emphasis is placed on investigating uncertainty
propagation in the nonlinear response of fluid-structure interaction, (Dongbin et al., 2002). It is
important to remind that waves and currents, major agents in the dynamics of the floating struc-
tures, are usually modeled as random processes. Therefore, stochastic modeling seems to offer
an appropriate framework to tackle the external forces and uncertainties in the data, like, for
instance, damping and boundary conditions. Here, the fluid-structure interaction is modeled in
a simple way focusing the assessment of an SC method as an effective tool for uncertainty quan-
tification. The interaction is introduced by means of the Morison’s formula, which represents a
challenge, despite the simplicity of the model itself, as far as the input is a nonlinear function
of the random variables, (Witteveen and Bijl, 2008). Those variables represent the phase angle
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which inherent to the time series description of the wave induced motion.

2 THEORY

To quantify the uncertainty in a system of differential equations we adopt a probabilistic
approach and define a complete probability space(Ω,F ,P). WhereΩ is the event space,F ⊂
2Ω is theσ-algebra of subsets inΩ andP : F → [0, 1] is the probability measure. Utilizing
this framework, the uncertainty in a model is introduced by representing the model input data
as random field.

2.1 Governing Equations

Consider the general differential equation defined on ad-dimensional bounded domainD ⊂
R

d, (d = 1, 2, 3) with boundary∂D. The problem consists on finding a stochastic function,
u(x, ω) : Ω × D −→ R, such that forP-almost everywhereω ∈ Ω, the following equation
holds:

L(x, ω; u) = f(x, ω) x ∈ D (1)

B(x, ω; u) = g(x, ω) x ∈ ∂D (2)

with x = (x1, . . . , xd) ∈ R
d, d ≥ 1, space coordinates inRd, L a linear or non linear differen-

tial operator andu(ω) = (u1(ω), . . . ui(ω)) ∈ R
i, i ≥ 1, are unknown solutions. Sometimes,

to solve the equations (1) and (2) it is necessary reduce the infinite dimensional probability
space(Ω,F ,P) to a finite dimensional one. This can be accomplished by characterizing the
probability space by a finite number of random variables. Thus, employing any truncated spec-
tral expansion it is possible characterize the random inputs by a set ofN random variables
Y = (Y1(ω), . . . , YN(ω)) and rewrite the random inputs as,

L(x, ω; u) = L(x, Y1(ω), . . . , YN(ω); u), f(x, ω) = f(x, Y1(ω), . . . , YN(ω)), (3)

Where, following the Dob-Dynkin lemma, (Oskendal, 1998), the solution of (1) and (2) can be
represented by the same set of random variables{Yi(ω)}

N
i=1, reducing the infinite dimensional

probability space to aN-dimensional space, i.e.,

u(x, ω) = u(, x, Y 1(ω), . . . , Y N (ω)) (4)

Now assuming that{Y i}Ni=1 are independent random variables with probability density func-
tionsρi : Γi → R

+, and their imagesΓi ≡ Y i(Ω) bounded intervals inR for i = 1, . . . , N , the
joint probability density ofY ≡ (Y 1, . . . , Y N) hold,

ρ(y) =
N
∏

i=1

ρi(Y
i) ∀y ∈ Γ, (5)

and the space support,

Γ ≡
N
∏

i=1

Γi ⊂ R
N . (6)

This allow us to rewrite (1) and (2) as a(N + d) dimensional differential equation as following,

L(x,Y; u) = f(x,Y), (x,Y) ∈ Γ×D (7)

B(x,Y; u) = g(x,Y), (x,Y) ∈ Γ× ∂D (8)
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with N dimensionality of the random spaceΓ andd the dimensionality of the physical spaceD.
Thus, the original infinite dimensional problem become in a deterministic problem in the

physical domainD and can be solved by a common discretization technique as finite elements
for example.

3 STOCHASTIC COLLOCATION METHOD

The idea of this method is approximate the multidimensional stochastic space building a
interpolation function on a set of collocation points{Yi}

M
i=1 in the stochastic spaceΓ ⊂ R

M .
The method, similarly to Monte Carlo methods, requires only the solution of a set of decoupled
equations, allowing the model to be treated as a black box and solved it with existing determin-
istic solvers. The multidimensional interpolation can be built through either full-tensor product
of 1D interpolation rule or by the so called sparse grid interpolation based on the Smolyak al-
gorithm. The Smolyak algorithm provides a way to construct interpolations functions based
on minimal number of points in multidimensional space (Bungartz and Griebel, 2004). This
method is easily extended from the univariate interpolation to the multivariate case by using
tensor products.

Hence, considering a smooth functionsf : [−1, 1]N → R, for the1D case(N = 1), f can
be approximated by the following:

U i(f)(y) =

mi
∑

j=1

f(Yi
j)a

i
j , (9)

with the set of support nodes

X i = Yi
j |Y

i
j ∈ [0, 1]forj = 1, . . . , mi (10)

where,i ∈ N, ai(Yi
j) ∈ C[0, 1] are the interpolation nodal basis functions andmi is the number

of elements of the setX i. Hence, in the multivariate case, the tensor product formula is:

(U i1 ⊗ . . .⊗ U iN )(f) =

m1
∑

j1=1

· · ·

mN
∑

jN=1

f(Y i1
j1

. . . Y iN
jN

).(ai1j1 ⊗ · · · ⊗ aiNjN ) (11)

which serve as building blocks for the Smolyak algorithm. So, The Smolyak algorithm build
the interpolantAq,N(f) using products of1D functions as given in (Xiang and Zabaras, 2009).

Aq,N(f) =
∑

q−N+1≤|i|≤q

(−1)q−|i|

(

N − 1

q − |i|

)

(U i1 ⊗ . . .⊗ U iN ) (12)

with q ≥ N , AN−1,N = 0 and where the multi-indexi = (i1, . . . , iN) ∈ N
N and |i| =

i1+ · · ·+ iN . Hereik, k = 1, . . . , N , is the level of interpolation along thek− th direction. The
Smolyak algorithm builds the interpolation function by adding a combination of1D functions
of orderik with the constraint that the sum total(|i| = i1 + . . . + iN) across all dimensions is
betweenq −N + 1 and q. Therefore, the Smolyak interpolationAq,N is given by;

Aq,N(f) =
∑

|i|≤q

(△i1 ⊗ . . .⊗△iN ) = Aq−1,N(f) +
∑

|i|=q

(△i1 ⊗ . . .⊗△iN ) (13)
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To compute the interpolantAq,N(f) is necessary to compute the function at the nodes cov-
ered by the sparse gridHq,N :

Hq,N(f) =
⋃

q−N+1≤|i|≤q

(X i1 × · · · ×X iN ) (14)

The construction of the algorithm allows to utilizing all the previous results generated to im-
prove the interpolation. By choosing the appropriate points for interpolating the1D function,
it is possible ensure that the sets of points are nestedX i ⊂ X i+1. Where to extend the interpo-
lation from leveli − 1 to i, one only has to evaluate the function at grid points that are unique
to X i. Hence, to go from an orderq − 1 to q in N dimensions, one only needs to evaluate the
function at the differential nodes:

△Hq,N(f) =
⋃

|i|=q

(X i1 ⊗ · · · ⊗X iN ) (15)

Finally after a choice of collocation points and the nodal basis functions, any functionu ∈ Γ
can be approximated by;

u(x,Y) =
∑

|i|≤q

∑

j∈Bi

wi
j(x)a

i
j(Y) (16)

This equation is a simple weighted sum of the value of the basis functions for all collocations
points in the sparse grid, being an approximation to the solution of the equations (7) and (8).
From this equation, it is possible calculate easily the useful statistics of the solution for example,
the mean of the random solution can be evaluated as follow:

E[u(x)] =
∑

|i|≤q

∑

j∈Bi

wi
j(x).

∫

Γ

aij(Y)dY (17)

where denoting
∫

Γ
aij(Y)dY = I ij we can write

E[u(x)] =
∑

|i|≤q

∑

j∈Bi

wi
j(x).I

i
j (18)

the mean is an arithmetic sum of the product of the hierarchical surpluses and the integral weight
at each interpolation point. To obtain the variance of the random solution we can be calculate
first:

u2(x,Y) =
∑

|i|≤q

∑

j∈Bi

vij(x)a
i
j(Y) (19)

and then

Var[u(x)] = E[u2(x)]− (E[u(x)])2 =
∑

|i|≤q

∑

j∈Bi

vij(x).I
i
j − (

∑

|i|≤q

∑

j∈Bi

wi
j(x)I

i
j)

2 (20)

The method allows us to obtain an approximation of the solution dependent random vari-
ables and also easily extract the mean and variance analytically as well its probability den-
sity function (PDF)by simple sampling of this function, leaving only the interpolation error
(Dongbin and Hesthaven, 2005).

Mecánica Computacional Vol XXIX, págs. 6761-6770 (2010) 6765

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



4 ADAPTATIVE SPARSE GRID COLLOCATION METHOD

When the the smoothness condition in the stochastic space is not fulfilled it is possible to
use adaptative strategies to improve de interpolation function in the stochastic space. The basic
idea here is to use hierarchical surpluseswi

j(x) as an error indicator to detect the smoothness
of the solution and refine the grid around the discontinuity region and less points in the region
of smooth variation. This method proposed in (Xiang and Zabaras, 2009), automatically detect
the discontinuity region in the stochastic space and refine the collocation points in this region.

Then, considering the interpolation level of a grid pointY as the depth of the treeD(Y ).
After denote the father of a grid point asF (Y ), where the father of the root 0.5 is itself. Thus, the
conventional sparse grid in the N-dimensional random space Equation14 can be reconsidered
as:

Hq,N(f) = Y = Y1 . . . YN

N
∑

i=1

D(Yi) ≤ q (21)

Where we call their sons of a grid pointY = (Y1 . . . YN) by:

Sons(Y) = S = (S1, S2, . . . , SN)|(F (S1), S2, . . . , SN) = Y (22)

or
(S1, F (S2), . . . , SN) = Y, . . . , or(S1, S2, . . . , F (SN)) = Y (23)

From this definition, is noted that in general for each grid point here there are two sons in
each dimension, therefore, for a grid point in a N-dimensional stochastic space, there are 2N
sons. Therefore, by adding the neighbor points, we actually add the support nodes from the
next interpolation level, so that the magnitude of the hierarchical surplus satisfies|wi

j ≥ ε|. If
this criterion is satisfied, one only add the2N neighbor points of the current point to the sparse
grid. It is noted that the definition of level of the Smolyak interpolation por the ASGC method
is the same as that of the conventional sparse grid even if not all point are included. A more
detailed explanation of the method and algorithm can be found in, (Xiang and Zabaras,2009).

5 APPLICATION

All numerical result present in this section were obtained using algorithms developed for
high-level programming language in parallel environment. To run such calculations on a parallel
computer were used sixteen cores of a cluster SGI Altix ICE 8200 of Supercomputer Center of
UFRJ (NACAD). With the aim of illustrate the methods developed in the preceding sections, we
are going to consider the stochastic response of a single-degree-of-freedom structure exited by
a random Morison’s force and a restoring force expressed by a cubical polynomial term. This
equation can be considered as an idealizing model of one offshore system,

ÿ + 2ς0ω0ẏ + ω0

[

y +By2 + Cy3
]

=
Ce

M
F (t, ϕi) (24)

where{ϕi}
n
i=0 are stochastic variables and the others parameters are presented in Figure2. It is

a first approximation to a more complex model of structure with internal damping and stiffness
to describe a fluid-structure interaction, (Floris and Pulega, 2002).

The effect of the fluid on the system has been modeled via the force term given by

pd(z, ϕi, t) = Kd

[

U(z, ϕi, t)|U(z, ϕi, t)|
]

+KM

(

U̇(z, ϕi, t)
)

(25)
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Figure 1: Offshore tower scheme

k damper factor 0.4024
ω1 natural frequency 0.356rad/s
ce efficacious dynamic force 0.1
M structural mass 5e6Kg
B nonlinear parameter 0.419074
C nonlinear parameter 0.321047
L platform height 80m
d water depth 60m
D diameter 2m

U19.5 wind velocity 25m/s
Kd drag coefficient 2785kg/sm2

KM inertia coefficient 48734kg/m

Figure 2: Numerical and physical parameters of
the simulations

being

F (t, ϕi) =

∫ −d

0

pd(z, ϕi, t)dz (26)

In the presence of a mean currentU(z, ϕi, t), the water particle velocity is

U(z, ϕi, t) = U(z, t) + u(z, ϕi, t) (27)

assumingU(z, t) current mean equal to zero by the linear wave theory, also called Airy wave
theory we can obtain the linear wave profile and velocity in terms of a spectral density,

uy(z, ϕi, t) =

n
∑

i=1

ωi

cosh(kiz)

sinh(kid)
cos(ωit− ki − ϕi)

√

2Sηη(ωi)∆ωi (28)

and the acceleration

u̇y(z, ϕi, t) =
n

∑

i=1

−(ωi)
2 cosh(kiz)

sinh(kid)
sin(ωit− ki − ϕi)

√

2Sηη(ωi)∆ωi (29)

where wave number assumed aski = ω2
i /g and the velocity and acceleration are completely

characterized in a statically sense by the wave height spectrumSηη. In general, ocean waves
spectrums models are semi-empirical formulas, derived mathematically where the formulation
requires one or more experimentally determined parameters. In this example it has been adopted
the Pierson-Moskowitz’s spectrum. This is the most extensively used spectrum for representing
a fully developed sea, where the sea severity can be specified in terms of the wind velocity,

Sηη(ωi) =
8.1× 10−3g2

2ω5
i

exp

(

−0.74
( g

Uw,19.5

)4

ω−4
i

)

(30)

whereωiis the frequencyg the gravity acceleration andUw,19.5 the wind speed at a height of
19.5m above the still water. Assuming tree waves frequencies asω1 = 0.3, ω2 = 0.45, ω3 = 0.8
for the Pierson-Moskowitz’s spectrum.

A excitation force was supposed with three random components each one associated to the
frequencies (.6, .8 and 1.0)rad/s. The random components are the anglesϕi supposed as
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standard uniform random variables between[−π, π] values. Therefore, using the parameters
presented in Table1 the Equation24 was integrated over the interval[0, 120]s with time step
dt = 0.01 using a conventional Runge-Kutta method. Figures3 and4 show the statistics of the
response obtained for Monte carlo simulation over 1000000 experiments as well as the solutions
obtained using Conventional and Adaptative Sparse Grid Method, for the last using(ε ≥ 1e−5)
as surplus error limit. To allow the refinement of the Sparse Grid, with Smolyak algorithm, was
used the Newton-Cotes abscissas that have equidistant support nodes and allows to refine the
grid locally easily.
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Figure 3: Mean
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Figure 4: Variance

The mean and variance of the solutions obtained by the conventional and adaptive method,
assuming 1D, 2D and 3D stochastic dimensions, was equally well as compared with the ref-
erence of the Monte-Carlo. Already in Figures5, 7, 9 grids obtained are shown for the con-
vergence value as the number of collocation point in Figures6, 8, 10 for increasing levels of
interpolation.

Number of collocations Point dor CSGC and ASGC
Level 1D/CSGC 1D/ASGC 2D/CSGC 2D/ASGC 3D/CSGC 3D/ASGC

0 1 1 1 1 1 1
1 3 3 5 5 7 7
2 5 5 13 13 25 25
3 9 9 29 29 69 69
4 17 17 65 65 177 177
5 33 33 145 145 441 441
6 65 65 321 289 1073 1009
7 129 129 705 537 2561 2209
8 257 257 1537 931 6017 4601
9 513 511 3329 1493 13953 9217
10 1025 1003 7169 2477 32001 18011
11 2049 1803 15361 4081 72705 33167
12 4097 2717 32769 5909 163841 58687
13 8193 2805 69633 6085 263841 101403

Table 1: Number of collocations Points for CSGC and ASGC methods
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Figure 5: 1D - Conventional and Adaptative
Sparse Grids from Level 0 to 13
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Figure 6: 1D - Number of point for Conven-
tional and Adaptative Sparse Grids
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Sparse Grids, Level 13
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Figure 8: 2D - Number of point for Conven-
tional and Adaptative Sparse Grids

Figure 9: 3D - Adaptative Sparse Grids,
Level 13
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Figure 10: 3D - Number of point for Con-
ventional and Adaptative Sparse Grids
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6 CONCLUSIONS

Like the Monte Carlo method, the Sparse Grid Stochastic Collocation method leads to the
solution of uncoupled deterministic problems and, as such, it is simple to implement and paral-
lelize. These non-intrusive methods, allow convert any deterministic code into a code that solves
the corresponding stochastic problem. Compared with the Monte Carlo Simulation method, the
Sparse Grid Stochastic Collocation method presents a significative reduction in the number of
experiments required to achieve the same level of accuracy.On the other hand, the results ob-
tained, comparing the Conventional Sparse Grid Collocation method and an adaptative strategy,
show that it is possible refine the grid locally identifying automatically non smooth regions in
the stochastic space achieving the same accuracy and reducing significatively the cost by the
use of less collocations points in smooth regions of the stochastic space.

Due to that the majority of engineering problems varying rapidly in only some dimensions,
remaining much smoother in other dimensions and in general it have more stochastic dimen-
sions. Future work of this research will include the study high-dimensional methods mixed
with Adaptative Sparse Grid Stochastic Collocation methods, in high performance computer
environment, aiming to obtain tools to solve real problems of interest in Engineering
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