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Abstract. This paper presents the application of reliability analytsi nonlinear reinforced concrete

beams. Failure is assumed to occur when the structure psedisplacements bigger than a prescribed
limit. A First Order Reliability Method (FORM) is used, anbet results are compared to the ones
given by Monte Carlo simulation. Since the structural madeionlinear, special techniques are used
for sensitivity analysis. These technigues allow one tcsier almost any variable as probabilistic in

this problem. It is also proven that the reliability indexam by this problem is a lower bound for the

reliability index when collapse of the structure is considk Finally, two examples are presented in
order to validate the proposed approach.
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1 INTRODUCTION

Reinforced concrete structures present significant neafibehavior and consequently non-
linear analysis of this kind of structure has been subjectséarch for many yearkif, 1955
Ferry Borges and Arantes e Oliveif®63 Ass-Jacobsen and GrenancH&74 Kang and Scordeljs
198Q Chen 1982. In the last decades very accurate structural models wepoped, that can
take into account most aspects of the nonlinear behaviarafrete structureg\pdollahi, 1994
Gomes and Awrucl002; Oliver et al, 2008 Di Luzio, 2009 Hinchberger2009.

However, reinforced concrete structures (as is the caseost structures) are subjected
to strong uncertainties, both related to the propertieshefraterial and the applied loads.
Consequently, the design of structures that will need tc&kwaoder real conditions need to take
into account these uncertainties to some degree.

Until about 1960 these uncertainties were considered blymgpsome safety factor during
the design stageMadsen et a).1986. However, these safety factors were established only by
means of "engineering judgment"”, and not by a rigorous $sifieapproach.

The next step was the design of structures according tosiaies fadsen et a).1986, that
is the approach recommended by most structural designat@mdowadays. In this case, the
properties of each material and the magnitude of each lo@eldseased/increased according to
its respective factor. These factors are evaluated basedobabilistic analysis and presented
as fixed values in design standards. For this reason desigg lusit states is also known as
semi-probabilistic design. The factors were actually extdd using probabilistic analysis, but
the designer makes a deterministic analysis using redncegidsed resistances/loads.

It turns out that design standards are not able to cover thediuge of application that
engineers are able to conceive. Even if some kind of desayrdatds are available for most
kind of constructions (such as buildings, bridges and dasmjetimes the engineers need to
design some structure that does not fit exactly in any standiae to its size, complexity or
multidisciplinary nature. In these cases (or in cases tanhgineer wants to) probabilistic
analysis can be pursued.

Full probabilistic analysis, where one aims for a full prbibiatic characterization of the
behavior of the structure, needs in general much computeffort (Haldar and Mahadevan
2000. Fortunately, in many cases it is enough to study the stradtom the optics of "fail"
versus "do not fail". In these cases one can substitute gfababilistic analysis by a relia-
bility analysis, where only the failure probability is emated. This takes much less computa-
tional effort, and can be successfully applied to severaksiral problemsNlelchers 1999
Haldar and MahadevaB@00Q Ditlevsen and Madseri1996.

One common feature of most reliability analysis methodsi& they need to evaluate the
response of the system and its gradient according to theapiiiiic variables several times
(Melchers 1999 Haldar and Mahadeva200Q Ditlevsen and Madseri999. Consequently,
the application of such methods to nonlinear problems meishade with care, since making
a single nonlinear analysis can be a time consuming procksshis context, carrying out
the nonlinear analysis and the gradient evaluation sevenals can lead, in some cases, to
prohibitive computational efforts.

In the context of reinforced concrete frames and beams, tenesting strategy to tackle
the reliability analysis problem considering collapse lué structure is the response surface
approach, as presented Bpares et al(2009. In this case, the response of the surface is
approximated by an analytical function (response surfand)the reliability analysis problem
is solved for this approximation. The approximation is titeratively improved, and since the
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approximation is analytical, it can be evaluated efficenfThe main computational effort in
this case lies in obtaining the approximation itself.

In this paper we propose an approach for the reliabilityysiglbf reinforced concrete beams
and frames using a First Order Reliability Method (FORM)ildta is assumed to occur when
the displacements are bigger than some prescribed limgidBs, the FORM algorithm is ap-
plied directly to the problem, and thus an efficient apprdaclcarrying out sensitivity analysis
is also presented. It is also proven that the reliabilityexdiven by this problem is a lower
bound for the reliability index when collapse of the struetis considered. Finally, two exam-
ples are presented in order to validate the proposed agproac

2 FINITE ELEMENT MODEL
2.1 The iterative secant approach

The FEM formulation used here is that presentedBontempi and Malerb41998 and
also described in details bBiondini et al. (20049 and Biondini (2004. This formulation
has been used for many applications such as bridge deBigndini et al, 20048, reliabil-
ity analysis Biondini et al, 20049, lifetime analysisBiondini et al, 20043, dynamic analysis
(Biondini, 2004 and analysis of structures exposed to fB&adini and Nerg2009. In this
approach, constitutive equations for concrete and staeshigxial compression/tension are as-
sumed, based for example, on empirical data. Both conggtutodels are better described
by Bontempi and Malerb&1998, Biondini et al.(20049, Biondini et al.(20040) andBiondini
(2009.

Based in these assumptions, the FEM is represented by

qu - F, (l)

where K is the secant stiffness matrix, are the generalize displacements dnds the
vector of applied forces. Note that the secant stiffnessirmdéepends on the displacements,
that is a general rule from nonlinear analysis.

In this context, in order to evaluate the displacementsr a given set of applied forcds,
one takes an initial guess for the displacemegitsand apply the iterative relation

K{g"Y = F, @

whereK'" is the secant stiffness matrix for the displacemegitsat iterationk. The initial
guesxy”) is generally taken as zeros vector.

The iterative procedure is then stopped when the changepladiements between two suc-
cessive iterations is smaller than a given tolerance. Wherstructure is not able to support
the applied loadsl) does not hold for any set of displacements and then thdiitearocedure
given by @) does not converge. In practice, it is easy to know when #ratitve procedure will
not converge since for this case the displacements go tatynfin

2.2 Constitutive equations

A detailed review on constitutive modeling of reinforcedhceete structures is presented
by Chen(1982. When the structure is modeled using beam finite elememsstress-strain
relation for concrete under uniaxial compression can berately represented by a parabolic
relation as the one shown in Fify. The application of such constitutive models for the FEM for
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mulation used here is presentediipndini et al.(20049, Biondini et al.(2004H andBiondini
(20049, and show that the results are accurate enough for mostqaleapplications.

However, the reliability analysis algorithm needs to sdive nonlinear structural problem
several times. Thus, in order to simplify the numerical made reduce the computational
effort involved, we assume here an approximated piecewisai stress-strain relation as the
one shown in Fig.1. Note that a parabolic approximation can also be used, st
eventually lead to an increase in the computational effmdlved.

&

Figure 1: The parabolic approximation (red) for the str&tsain relation for concrete under uniaxial compression
and the piecewise linear approximation (black).

Here concrete is modeled using a piecewise linear stress-sélation as the one presented
in Fig. 2. For an applied stress smaller than the yielding strgsthe strain is given by

o, = Ee, 3)

whereFE is the linear elastic modulus aads the strain.

For a strain bigger than, the stress remains constant and equalt,tountil rupture occurs
for an strain equal te,, and the material is not able support stress anymore.

In order to model this constitutive equation it is necessamyrescribe the ultimate strair)
and two other parameters. In most practical cases, the twey parameters prescribed are
and E. However, here we choose to prescrigeando,, for reasons explained later. In this
case, the elastic modulus is obtained fr@lfy usinge, instead ot.

This constitutive model is used for concrete in both tengind compression. In tension,
the yielding stress is called hesg,, the yielding straire;, and the ultimate straig,, wherec
stands for concrete andstands for tension. Using the same nomenclature, the p&eesrne
compression are called herg,, ;. andes,...

The secant modulus, that is used in the iterative procedeseribed previously, is defined
as Chen 1982

Es ) (4)

o
9
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whereos ande are obtained using the constitutive model described pusiyo

Steel is described using the same constitutive equatiansndw the behavior in tension
and in compression are assumed to be the same. Thus, théwoesmodel of steel is fully
described assuming a yielding stregs a yielding straire; and an ultimate straig,, wheres
stands for steel.

Figure 2: Constitutive model used.

The reason why we choosg, ande, as parameters of the constitutive models, and the

elastic modulus® is defined implicitly from theses two parameters is pictureérig. 3 and

Fig. 4. Note that if the elastic modulus is prescribed, insteachefytielding strain, changes
to the yielding stress are not "felt" in the elastic rangeslaswn in Fig. 4. This behavior
can lead to difficulties in the reliability problem prevergithe algorithm to converge. When
both the yielding stress and the yielding strain are prbsdiiinstead of the elastic modulus,
modifications to the yielding stress are "felt" in the elastinge, as shown in Fi@. This leads

to a better posed reliability problem.

o A

Figure 3: Two constitutive models for the same yieldingisttaut different yielding stresses.

3 STATEMENT OF THE RELIABILITY PROBLEM
3.1 The failure function

In the reliability problem failure is assumed to occur whiea tlisplacement of a given node
of the structure is bigger than a prescribed limit. Thus féilere function can be written as

g(Xv q) = qj (X) — Gmazx (5)

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar



6852 A. TORII, R. MACHADO

A

Figure 4: Two constitutive models for the same elastic maslblt different yielding stresses.

whereg; is the displacement in a given nodg,,, is the maximum allowable displacement
for this node anck is the vector of probabilistic variables, named from now erparameters
of the reliability problem. From§) it can be seen that failure occurs wher 0, that is, when
the displacement is bigger than the allowable displacement

The FORM also uses the gradient of the failure function atiogrto the parameters of the
problem in order to evaluate the reliability of the struetufhe gradient off) is

Vxg = Vxqj, (6)

sinceq, .. 1S a fixed value. Thus, in order to evaluate the gradient offallare function
it is necessary to evaluate the gradient of the displacesvamtiording to the parameters of the
problem. The evaluation of this information is describedia

Note that §) and @) are valid when the displacemeptis expected to be positive. In cases
when the displacement is expected to be negative, both itbhesféunction and its gradient are
multiplied by minus one.

Here the reliability analysis problem is solved using atfingler Reliability Method (FORM).
The algorithm used is that developed by Rackwitz and Fidslatis described bialdar and Mahadevan
(2000. Monte Carlo(MC)simulation is performed as describedHiaydar and Mahadevg2000.

3.2 The relation between the problem defined for maximum allable displacements
and the problem defined for collapse of the structure

Frequently the engineer needs to know the reliability ofgstracture considering collapse
instead of some maximum allowable displacement. This i€#se when the analysis is made
for the ultimate limit state, for exampl&g¢ares et al2002. In this case, the reliability analysis
problem will seek the combination of probabilistic varieblthat leads to the collapse of the
structure. The reliability index will then be defined acdagito this point in the design space.

From the computational point of view, collapse of the stoethappens when the tangent
stiffness matrix becomes singular and thus any small loa@ment leads to very big displace-
ments. That is, for a structure that collapses some displents go to infinity. In order to
makes things clear, we thus make the following definition.

Definition 1 Collapse of the structure according to some degree of freesoassumed when
the displacement of this degree of freedom goes to infinity.

Note that the definition of collapse presented above depemdse degree of freedom cho-
sen. That is, the same structure may collapse accordingne segree of freedom but do not
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collapse according to another. This kind of behavior is etgxkfor structures as the one pre-
sented in Fig.5. Collapse according to degree of freedom (d.o.f.) 2 do noesgarily mean
collapse according to d.o.f. 1.

F
do.f. 1 do.f. 2 #
Ty

7 %

Figure 5: Two degrees of freedom of a plane frame.

Applying Definition1 to (5), the reliability analysis problem for collapse of the sture can
be defined as

g(X7 q) - hIgOO{QJ (X) - Qmax}a (7)

whereg; is the d.o.f. according to which collapse is defined.

According to {7), the structure would be safe for a finite displacemgrand unsafe when
this displacement goes to infinity.

For computational purposes)(can be rewritten as

g(X> CI) = dqj (X) - bv (8)
whereb is taken as a sufficiently big number, in order to take the obtée limit that appears
in (7). Note that in most practical cases the displacements ateeafrder ofl0=°m to 10~2m,
and takingp = 10 would likely do the job.

In practice, considering such a big allowable displacemenid lead to serious convergence
difficulties. That’s because the FORM would eventually mtwva point in the design space that
leads to collapse of the structure. However, in such poiraslisplacements would be very big
and the evaluation of the failure function and its gradieould surely fail. From this step
onward, the FORM would start to move almost randomly, siheeinformation given by the
failure function and its gradient would not represent thabpgm appropriately. Consequently,
solving the reliability analysis problem considering epie of the structure using an approach
similar to the ones given by’J and @) is not an efficient approach. Fortunately, it is possible
to evaluate a lower bound for the reliability index of thi®plem.

The failure probability according to some failure functigms evaluated ad{aldar and Mahadevan
2000

P /Q Be1, T, )Y (©)

whereg(xy, za, .., ,,) is the joint probability density (PDF) of the design variedt,, 2o, .., x,,
and() is the set of design vectossfor which ¢g;(x) > 0, that is, the set of design vectors that
lead to failure.
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Now lets compare the failure probabilities for two differenaximum allowable displace-
ments. First we assume a maximum allowable displacemetttus defining a failure function
g1. We then have a sét; of design vectors for which g; > 0. Next we assume a maximum
allowable displacemen, thus defining a failure functiog,. We then have a sét, of design
vectorsx for which g, > 0.

According to b), the set?; is composed of design vectatghat respect

4;(x) > a1, (10)
while the set?, is composed of design vectatghat respect

¢;(x) > qo. (1)
Evaluating the failure probability for both sets accordiad9) we have

P = (w1, T2, .., 2, )dEYy (12)
951

and

P2 - ¢($1,,’L‘27..7I’n)d92. (13)
Qo

Suppose now that, > ¢;. Then we know thaf), C 2, since every displacement bigger
thang, will also be bigger tham;, but the opposite is not true. That is, the Sgtis actually
a subset of); wheng, > ¢;. Since the PDRp(x) is always non negative (there can be no
negative probabilities) and, is a subset of);, then the integrals froml@) and (L3) give

P,<P (14)

when

q2 > q1.- (15)

This is true sinceX2) and (L3) are evaluated for the same functionSince(2, C €y, (13)
is evaluated in a subset of the domain used.R).(However,¢ is always non negative and thus
the integral from 1{3) must have a smaller value than that b2

If we rewrite the condition given byld) for reliability indexes we have

Ba > Bi. (16)

Note that the conditions given by4) and (L6) just state that bigger displacements are less
likely to be surpassed than smaller displacements, sinm&ler to achieve bigger displacements
its is necessary to surpass smaller displacements first.

Applying the definition of collapse from Definitichwe have, from 15) and (L6),

Blim q2—00 2 ﬁl (17)
since

lim go — 00 > qy, (18)
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whereSim 4,00 1S the reliability index when the maximum allowable disgatents goes to
infinity, that is the definition of collapse.

That is, (L7) states that every reliability index for problems considgrfinite maximum
allowable displacements is a lower bound to the reliabititfex when collapse is considered.
From the engineering point of view this make sense, sincestimictures that present finite
displacements collapse as defined previously has not yetrect Thus, the reliability index
for collapse must always be bigger than (or at least equaht)eliability index given for
maximum allowable displacements.

Note that this result holds when the reliability index is tinee reliability index of the
problem. In most cases, the FORM does not give the true riyaimdex of the problem
(Haldar and MahadevaB000, but an approximation. In cases when this approximatiamts
good enough,17) may not hold anymore, because the reliability index giveithe FORM is
not the true reliability index of the problem. However, asganted in the following examples,
the approximation given by the FORM is satisfactory in mestes.

Based on 17), one way of evaluating the reliability index for the pramleonsidering col-
lapse is by making successive reliability analysis for@éasing allowable displacements. Every
time the FORM converges, one obtains a reliability indexafetructure that does not collapse,
that is a lower bound for the reliability index when collapseonsidered. This procedure is
performed until the FORM does not achieve convergence argimhen the procedure ends,
one have a list of reliability indexes, that are all lower bds for the reliability index when
collapse is considered.

Using this procedure one is able to know that the reliabitittex for collapse is bigger than
a given value, what is sufficient for most practical applmas. However, when one needs to
know accurately the reliability index for collapse this pedure is not appropriate.

Finally, note that 17) was obtained considering that the displacemgers$ positive. How-
ever, the whole discussion is also valid when this displasens negative, since some equations
would be multiplied by minus one without changing the masuits.

4 SENSITIVITY ANALYSIS
4.1 Partial derivatives of the displacements

As discussed previously, FORM algorithms need to evallneggtadient of the failure func-
tion according to the design variables in order to carry aetreliability analysis. The pro-
cedure involved in evaluating this information is known itedature as sensitivity analysis
(Haftka and Gurdall1992.

Suppose that the structure being studied hakegrees of freedom and that the sensitivity
analysis is made for design variables (parameters of the reliability probleB®sides, the de-
sign variables are all grouped in a veckorin this case, sensitivity analysis of the displacements
is accomplished when the following matrix is evaluated:

91 Oqu oq1
dr1  Oxe T Oxm
992 Ogqa 9q2 o o o
— | Oz oz Tt Oz | — |94 09 _oq
Veq = |0 oo =g | (19)
9gn  Ogn Oqn
Ory Oxe 7 Oxm

that is the gradient of the nodal displacemeantcording to the design variables This is
also the gradient of the failure function according to thsigie variables, as can be seen from

(6).
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The gradient from19) can be evaluated using some finite difference scheme, dyiagp
small changes to each design variable and then solvingngptiie entire structural problem
again. However, this approach implies solving the nonlirstiactural problem several times,
at least once for each design variable. Since the compn#dtamst needed for a single non-
linear structural analysis is generally high (since sdveyatems of linear equations must be
solved for each analysis), evaluatiri®) using finite differences can lead to almost prohibitive
computational costs.

Another approach for evaluating9) is by using some technique from sensitivity analysis.
Some very efficient approaches are discusseHdiyka and Giurda{1992, but here we use a
slightly modified version of a technique that is generallplaga to linear structural problems
(Haftka and Giurdall992.

First, we differentiateX) according to some design variableand rearrange to get

oq OF 0K

= — q. 20
81‘]‘ 81‘]‘ al‘j E ( )
The partial derivative of the stiffness mati; is given by

K.

0K,  dK N " dK, dg; N " dK, OF;
8xj N dl’j i1 dQZ 8xj i1 dE 61‘]‘7

(21)

whered stands for an ordinary derivative that does not take intoactthe implicit relation
betweenK andz; by means ofy or F.

According to 1), changes to a parametey can lead to changes to the stiffness malkix
by three different ways, namely by its direct influence ondtiféness matrix, by its influence on
the displacemenig and by its influence on the loa#s In general, the parameterg will exert
small or no influence at all on the applied loads, and thusatstetérm of 1) can be neglected.
This is not true when the parameteris actually some applied load, but this case is discussed
further on. Besides, it is expected that the indirect infageafz; to the stiffness matrix, by
means of the displacements will be small if compared to itsadinfluence. Thus, the second
term from Q1) is also neglected. Consequently, the following approxiomas made toZ1)

OKs  dKs

81‘]‘ - de‘j ’

that can be evaluated by finite differences without solving system of linear equations
since it is an explicit derivative. Note that in usirZ2] we are making a linear approximation
for the derivative of the stiffness matrix (that is actualtyn linear), by neglecting the influence

of the displacements and applied loads.
Substituting 22) into (20) we get

(22)

Sensitivity analysis is then made by solvir&$) for the partial derivative8q/Jz;. Since the
system of linear equations are solved for the same secéiness matrixK, decomposition
procedures (such as Cholesky or L.U. decomposition) cansbd afficiently Bathe 1996.
These techniques decompose the stiffness matrix into aiptad two matrices that are lower
triangular and upper triangular. Each system of linear ggusinvolved in obtainingq/0z;
is then solved using retro substitution. This is a very edfitiprocedure when one needs to
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solve several systems of linear equations for the same cieeffs matrix, since the main com-
putational effort lies in the decomposition procedurelif¢lat is made only once.

If sensitivity analysis is made for some applied load, tHengarameter; is actually some
nodal loadF;. In this case, 3) is not a good approximation sinc2) was obtained by ne-
glecting the influence of the applied loads. However, seitgiinalysis for nodal loads can be
made using the following relatioBathe 19996:

K,.dq = dF, (24)

whereKj; is the tangent stiffness matrix add anddF are differentials related to displace-
ments and applied loads. This relation is frequently usedda linear structural analysis using
Newton’s Method or Quasi Newton’s metho@athe 1999.

In order to obtain the partial derivativegy/0F; we make the following approximation,
based onZ4):

oq  OF
“OF; T OF;

where the partial derivativeF' /OF; is the derivative of the vector of applied loads according
to some applied load. As can be verified by the reader, thigateme is actually a vector with
all components equal to zero but compongrhat is equal to plus or minus one, depending on
the sign of the forcé’.

Sensitivity analysis for applied loads is then made by s@\{25) for the partial derivatives
0q/0F;. Again, decomposition procedures can be used efficientbesall the systems of linear
equations from Z5) are solved for the same tangent stiffness matrix. Note tti@tangent
stiffness matrix can be evaluated by the same procedurefaistiak secant stiffness matrix, but
using the tangent modulus of the materials instead of thentene.

In order to carry the entire sensitivity analysis one agpf@5) for design variables that are
nodal loads and2Q) for the other design variables. Note that one system o&firguations
must be solved for each design variable, but that the sysbéfirear equations are all solved
either for the secant stiffness matrix or for the tangeffitngtss matrix. Consequently, decom-
position procedures can be used efficiently, as discussatbpisly. If the sensitivity analysis is
made using finite differences, instead, one needs to soéverttire non linear structural prob-
lem at least once for each design variable. This would neetchrmore computational effort
than the approach used here, since each non linear striuahalysis needs to solve several
systems of linear equations.

(25)

5 NUMERICAL RESULTS
5.1 First example

The first example is that from Fid. The cross section has= 30cm andb = 20cm. The
beam is 4m long and there is an applied force at mid span. Tane®rcement bars of 12mm
are used in the upper chord and other three bars of 12mm ageirusiee lower chord. The
covering distance is = 2.5cm for both reinforcements. The material properties arerias
o, = 25MPa, oy, = 2.5MPa,e;, = 2/1000, g5, = 0.2/1000, &5, = 3/1000, €5, = 0.3/1000,

o, = 450MPa,e; = 2.25/1000 ande;, = 35/1000. The beam is divided into 8 finite elements
of equal length.

The displacement at mid span for different magnitudes ogj@ied load are presented in
Fig. 7. It can be seen that the behavior of the model is consistemta Foad of about 2.5 tons
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F
S v 7

Figure 6: Reinforced concrete beam used in the first example.

the concrete is not able to resist tension anymore (it startsack), and so there is a change
on the displacement evolution. For a load of about 8 tonstéed starts to yield finally leading
to the collapse of the structure. This example was presentecter to show that even if the
structural model is very simple it is able to capture the nmanlinear behavior of reinforced
concrete structures.

X 104

Applied force (N)

0 | :I | | |
0 0.01 0.02 0.03 0.04 0.05 0.06
Vertical displacement at mid span (m)

Figure 7: Displacement x Applied force for the beam used éfittst example.

We now address the reliability analysis for this probleme @pplied load is assumed to be a
gaussian variable with mean equal to SE4N(tons) and stdmt#siation equal to 0.5E4N(tons).
This is called here parameter. Besides, the standard deviation of the concrete yieldiegs
in compressiornr;,. is assumed to have an standard deviation of 2.5MPa, whilsttredard
deviation of the steel yielding stresg is assumed to have an standard deviation of 10MPa.
These variables are named here parameteend s, respectively. The other parameters are
taken as deterministic variables with values as definedquiely. The reliability analysis of this
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example is made assuming two allowable displacements as$paid, equal to 0.020m (Case 1)
and equal to 0.023m (Case 2).

The results are presented in Taband2. The reliability index for Case 1 is 3.4850, while
for Case 2 itis 5.0796. As expected, the reliability indesrgases when a larger displacement
is allowed.

In order to study the influence of the probabilistic variabl@e increase the standard devia-
tion of the applied load to 1.0E4N(tons), the standard dmnaof the concrete yielding stress
in compression to 3.0MPa, and the standard deviation oté®t welding stress to 20MPa. The
allowable displacement is taken as 0.020m. This examplalliscchere Case 3. The reliability
index for this case is 1.7667 and the results are presenfiabiri and2. This results was also
expected, since increasing the standard deviation of titora variables leads to a less reliable
structure.

Case 3 was also solved using Monte Carlo Simulation (MCS)qu20,000 samples. The
reliability index obtained was 1.7484, that is very closth@reliability index obtained with the
FORM for this case (1.7667). However, the MCS took about 7tuig while the FORM took
about 2min on the same machine. Even if these times coulddoeed by using more efficient
programming techniques, it can be seen that the compughtesfort needed by the MCS is
orders of magnitude bigger than that needed by the FORMdBsshote that for Case 1, the
number of samples used in the MCS would be even larger (ali@y0Q0), since this structure
is more reliable and consequently MCS needs more sampleéggaig accurate result.

‘ Case ‘ 1 ‘ T ‘ x3 ‘ 6] ‘
1 | 3.4317|-0.4387| -0.4201| 3.4850
2 | 4.9815| -7.1527| -6.8900| 5.0796
3 | 1.7487| -1.3104| -2.1509| 1.7667

Table 1: Most probable failure point at the normalized sgacéhe reliability analysis of the first example.

‘ Case ‘ F (E4N) ‘ fe (MPa)‘ fs (MPa) ‘
1 6.7158 | 23.9033| 445.7988
2 7.4908 | 23.2118| 443.1099
3 6.7488 | 24.6069 | 445.6983

Table 2: Most probable failure point at the real space forétiability analysis of the first example.

5.2 Second example

The second example studied is that of the plane frame pexséntig. 8, that is subjected
to a lateral load of magnitude. The cross section of each beam and the material propergéies a
the same as used in the previous example. The base of theustrisd = 4m and each story is
h = 4m height. Each beam is divided in two elements of equal lenigtmally, the horizontal
displacement: of the upper left node is measured, as pictured in 8ig.

The displacement, for different magnitudes of the loa#l is presented in Fig.9. For
the reliability analysis we assume that the allowable dispientu,,., is equal to0.050m.
Besides, we take the applied load, the concrete yieldirggstin compression and the steel
yielding stress as the probabilistic variables. Two casesstudied. For Case 1, the applied
load is assumed to be a gaussian variable with mean equafité(&ihs) and standard deviation
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Figure 8: The plane frame used in the second example.

equal to 0.5E4N(tons). For Case 2, the load has the same rakenbut the standard deviation
is equal to 1.0E4N(tons). Besides, the standard deviatidheoconcrete yielding stress in
compression is assumed to have an standard deviation ofPapWhile the standard deviation
of the steel yielding stress is assumed to have an standardtidea of 10MPa. The other
parameters are taken as deterministic variables with saselefined for the previous example.
The reliability index obtained with the FORM was 2.2986 fasg 1 and 1.1780 for Case 2.
The most probable failure points are presented in Bald\s expected, increasing the standard
deviation of the applied force leads to a less reliable siinec
Case 2 was also solved by MCS, using again 20,000 simulafidvesreliability index found
in this case was 1.1800, that is very similar to the one obthinith using FORM (1.1780).
However, it is important to point out again that MCS neededimmnore computational effort
than FORM, namely 3min against 10h.

‘C’ase‘ T ‘ Z2 ‘ Z3 ‘ g ‘
1 |2.2279| -0.4593| -0.3300| 2.2986
2 |1.1689| -0.1173| -0.0872| 1.1780

Table 3: Most probable failure point at the normalized sgacéhe reliability analysis of the second example.

6 CONCLUSIONS

This paper presents an approach for the reliability ansiysnonlinear reinforced concrete
beams and frames, assuming maximum allowable displacemEm reliability analysis prob-
lem is solved using a FORM algorithm, and sensitivity analys carried out in an efficient
manner (without using finite differences). The numericauits obtained here agree with
those obtained from MC simulation. However, MC needs muchenoomputational effort
than FORM, mainly for structures with a high level of reliiiyi

Reinforced concrete structures present significant neafifehavior, and thus reliability
analysis should be done considering a nonlinear model. Menvthe reliability analysis prob-
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Figure 9: Displacement x Applied force for the beam used énstbcond example.

lem needs to carry out several deterministic analyses |éaaling to a high computational cost.
In this context, it is interesting to have a structural matiet is as simple as possible but that
is able to represent the behavior of the structure appratyialhe structural model presented
here is suitable for this task since it is efficient from thenpoitational point of view. In a few
words, using a very complex structural model would likelsgdeo prohibitive computational
costs.

It has been proved that every reliability index considesoge finite allowable displace-
ment is a lower bound for the reliability index when collapseonsidered. This allows one to
estimate the reliability index indirectly by solving a fealiability analysis problems consider-
ing maximum allowable displacements. The importance afbsult is that reliability analysis
considering collapse can lead to computational difficaltdrie to the very nature of collapse.

In most cases the designer does not need to know the exaet ohthe reliability index
of the structure, but just need to know if the reliability exdis bigger than a minimum value.
In these cases, the reliability index considering collageme be estimated as described here.
Besides, in many current practical applications conssan maximum displacements must be
enforced in order to guarantee an appropriate use of theéractien.
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