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Abstract. This paper presents the application of reliability analysis to nonlinear reinforced concrete
beams. Failure is assumed to occur when the structure presents displacements bigger than a prescribed
limit. A First Order Reliability Method (FORM) is used, and the results are compared to the ones
given by Monte Carlo simulation. Since the structural modelis nonlinear, special techniques are used
for sensitivity analysis. These techniques allow one to consider almost any variable as probabilistic in
this problem. It is also proven that the reliability index given by this problem is a lower bound for the
reliability index when collapse of the structure is considered. Finally, two examples are presented in
order to validate the proposed approach.
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1 INTRODUCTION

Reinforced concrete structures present significant nonlinear behavior and consequently non-
linear analysis of this kind of structure has been subject ofresearch for many years (Lin, 1955;
Ferry Borges and Arantes e Oliveira, 1963; Ass-Jacobsen and Grenancher, 1974; Kang and Scordelis,
1980; Chen, 1982). In the last decades very accurate structural models were proposed, that can
take into account most aspects of the nonlinear behavior of concrete structures (Abdollahi, 1994;
Gomes and Awruch, 2001; Oliver et al., 2008; Di Luzio, 2009; Hinchberger, 2009).

However, reinforced concrete structures (as is the case of most structures) are subjected
to strong uncertainties, both related to the properties of the material and the applied loads.
Consequently, the design of structures that will need to work under real conditions need to take
into account these uncertainties to some degree.

Until about 1960 these uncertainties were considered by applying some safety factor during
the design stage (Madsen et al., 1986). However, these safety factors were established only by
means of "engineering judgment", and not by a rigorous scientific approach.

The next step was the design of structures according to limitstates (Madsen et al., 1986), that
is the approach recommended by most structural design standards nowadays. In this case, the
properties of each material and the magnitude of each load isdecreased/increased according to
its respective factor. These factors are evaluated based onprobabilistic analysis and presented
as fixed values in design standards. For this reason design using limit states is also known as
semi-probabilistic design. The factors were actually evaluated using probabilistic analysis, but
the designer makes a deterministic analysis using reduced/increased resistances/loads.

It turns out that design standards are not able to cover the full range of application that
engineers are able to conceive. Even if some kind of design standards are available for most
kind of constructions (such as buildings, bridges and dams), sometimes the engineers need to
design some structure that does not fit exactly in any standard due to its size, complexity or
multidisciplinary nature. In these cases (or in cases that the engineer wants to) probabilistic
analysis can be pursued.

Full probabilistic analysis, where one aims for a full probabilistic characterization of the
behavior of the structure, needs in general much computational effort (Haldar and Mahadevan,
2000). Fortunately, in many cases it is enough to study the structure from the optics of "fail"
versus "do not fail". In these cases one can substitute a fullprobabilistic analysis by a relia-
bility analysis, where only the failure probability is evaluated. This takes much less computa-
tional effort, and can be successfully applied to several structural problems (Melchers, 1999;
Haldar and Mahadevan, 2000; Ditlevsen and Madsen, 1996).

One common feature of most reliability analysis methods is that they need to evaluate the
response of the system and its gradient according to the probabilistic variables several times
(Melchers, 1999; Haldar and Mahadevan, 2000; Ditlevsen and Madsen, 1996). Consequently,
the application of such methods to nonlinear problems must be made with care, since making
a single nonlinear analysis can be a time consuming process.In this context, carrying out
the nonlinear analysis and the gradient evaluation severaltimes can lead, in some cases, to
prohibitive computational efforts.

In the context of reinforced concrete frames and beams, an interesting strategy to tackle
the reliability analysis problem considering collapse of the structure is the response surface
approach, as presented bySoares et al.(2002). In this case, the response of the surface is
approximated by an analytical function (response surface)and the reliability analysis problem
is solved for this approximation. The approximation is theniteratively improved, and since the
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approximation is analytical, it can be evaluated efficiently. The main computational effort in
this case lies in obtaining the approximation itself.

In this paper we propose an approach for the reliability analysis of reinforced concrete beams
and frames using a First Order Reliability Method (FORM). Failure is assumed to occur when
the displacements are bigger than some prescribed limit. Besides, the FORM algorithm is ap-
plied directly to the problem, and thus an efficient approachfor carrying out sensitivity analysis
is also presented. It is also proven that the reliability index given by this problem is a lower
bound for the reliability index when collapse of the structure is considered. Finally, two exam-
ples are presented in order to validate the proposed approach.

2 FINITE ELEMENT MODEL

2.1 The iterative secant approach

The FEM formulation used here is that presented byBontempi and Malerba(1998) and
also described in details byBiondini et al. (2004c) and Biondini (2004). This formulation
has been used for many applications such as bridge design (Biondini et al., 2004b), reliabil-
ity analysis (Biondini et al., 2004c), lifetime analysis (Biondini et al., 2004a), dynamic analysis
(Biondini, 2004) and analysis of structures exposed to fire (Biondini and Nero, 2006). In this
approach, constitutive equations for concrete and steel inuniaxial compression/tension are as-
sumed, based for example, on empirical data. Both constitutive models are better described
by Bontempi and Malerba(1998), Biondini et al.(2004c), Biondini et al.(2004b) andBiondini
(2004).

Based in these assumptions, the FEM is represented by

Ksq = F, (1)

whereKs is the secant stiffness matrix,q are the generalize displacements andF is the
vector of applied forces. Note that the secant stiffness matrix depends on the displacements,
that is a general rule from nonlinear analysis.

In this context, in order to evaluate the displacementsq for a given set of applied forcesF,
one takes an initial guess for the displacementsq(0) and apply the iterative relation

K(k)
s q(k+1) = F, (2)

whereK(k)
s is the secant stiffness matrix for the displacementsq(k) at iterationk. The initial

guessq(0) is generally taken as zeros vector.
The iterative procedure is then stopped when the change of displacements between two suc-

cessive iterations is smaller than a given tolerance. When the structure is not able to support
the applied loads (1) does not hold for any set of displacements and then the iterative procedure
given by (2) does not converge. In practice, it is easy to know when the iterative procedure will
not converge since for this case the displacements go to infinity.

2.2 Constitutive equations

A detailed review on constitutive modeling of reinforced concrete structures is presented
by Chen(1982). When the structure is modeled using beam finite elements, the stress-strain
relation for concrete under uniaxial compression can be accurately represented by a parabolic
relation as the one shown in Fig.1. The application of such constitutive models for the FEM for-
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mulation used here is presented byBiondini et al.(2004c), Biondini et al.(2004b) andBiondini
(2004), and show that the results are accurate enough for most practical applications.

However, the reliability analysis algorithm needs to solvethe nonlinear structural problem
several times. Thus, in order to simplify the numerical model and reduce the computational
effort involved, we assume here an approximated piecewise linear stress-strain relation as the
one shown in Fig. 1. Note that a parabolic approximation can also be used, but this will
eventually lead to an increase in the computational effort involved.

Figure 1: The parabolic approximation (red) for the stress-strain relation for concrete under uniaxial compression
and the piecewise linear approximation (black).

Here concrete is modeled using a piecewise linear stress-strain relation as the one presented
in Fig. 2. For an applied stress smaller than the yielding stressσy, the strain is given by

σy = Eε, (3)

whereE is the linear elastic modulus andε is the strain.
For a strain bigger thanεy the stress remains constant and equal toσy, until rupture occurs

for an strain equal toεu and the material is not able support stress anymore.
In order to model this constitutive equation it is necessaryto prescribe the ultimate strainεu

and two other parameters. In most practical cases, the two other parameters prescribed areσy

andE. However, here we choose to prescribeεy andσy, for reasons explained later. In this
case, the elastic modulus is obtained from (3) by usingεy instead ofε.

This constitutive model is used for concrete in both tensionand compression. In tension,
the yielding stress is called hereσc

yt, the yielding strainεcyt and the ultimate strainεcut, wherec
stands for concrete andt stands for tension. Using the same nomenclature, the parameters in
compression are called hereσc

yc, ε
c
yc andεcuc.

The secant modulus, that is used in the iterative procedure described previously, is defined
as (Chen, 1982)

Es =
σ

ε
, (4)
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whereσ andε are obtained using the constitutive model described previously.
Steel is described using the same constitutive equations, but now the behavior in tension

and in compression are assumed to be the same. Thus, the constitutive model of steel is fully
described assuming a yielding stressσs

y, a yielding strainεsy and an ultimate strainεsu, wheres
stands for steel.

Figure 2: Constitutive model used.

The reason why we chooseσy and εy as parameters of the constitutive models, and the
elastic modulusE is defined implicitly from theses two parameters is picturedin Fig. 3 and
Fig. 4. Note that if the elastic modulus is prescribed, instead of the yielding strain, changes
to the yielding stress are not "felt" in the elastic range, asshown in Fig. 4. This behavior
can lead to difficulties in the reliability problem preventing the algorithm to converge. When
both the yielding stress and the yielding strain are prescribed, instead of the elastic modulus,
modifications to the yielding stress are "felt" in the elastic range, as shown in Fig.3. This leads
to a better posed reliability problem.

Figure 3: Two constitutive models for the same yielding strain but different yielding stresses.

3 STATEMENT OF THE RELIABILITY PROBLEM

3.1 The failure function

In the reliability problem failure is assumed to occur when the displacement of a given node
of the structure is bigger than a prescribed limit. Thus, thefailure function can be written as

g(x,q) = qj(x)− qmax, (5)
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Figure 4: Two constitutive models for the same elastic modulus but different yielding stresses.

whereqj is the displacement in a given node,qmax is the maximum allowable displacement
for this node andx is the vector of probabilistic variables, named from now on as parameters
of the reliability problem. From (5) it can be seen that failure occurs wheng > 0, that is, when
the displacement is bigger than the allowable displacement.

The FORM also uses the gradient of the failure function according to the parameters of the
problem in order to evaluate the reliability of the structure. The gradient of (5) is

∇xg = ∇xqj , (6)

sinceqmax is a fixed value. Thus, in order to evaluate the gradient of thefailure function
it is necessary to evaluate the gradient of the displacements according to the parameters of the
problem. The evaluation of this information is described later.

Note that (5) and (6) are valid when the displacementqj is expected to be positive. In cases
when the displacement is expected to be negative, both the failure function and its gradient are
multiplied by minus one.

Here the reliability analysis problem is solved using a First Order Reliability Method (FORM).
The algorithm used is that developed by Rackwitz and Fissler, that is described byHaldar and Mahadevan
(2000). Monte Carlo(MC)simulation is performed as described byHaldar and Mahadevan(2000).

3.2 The relation between the problem defined for maximum allowable displacements
and the problem defined for collapse of the structure

Frequently the engineer needs to know the reliability of thestructure considering collapse
instead of some maximum allowable displacement. This is thecase when the analysis is made
for the ultimate limit state, for example (Soares et al., 2002). In this case, the reliability analysis
problem will seek the combination of probabilistic variables that leads to the collapse of the
structure. The reliability index will then be defined according to this point in the design space.

From the computational point of view, collapse of the structure happens when the tangent
stiffness matrix becomes singular and thus any small load increment leads to very big displace-
ments. That is, for a structure that collapses some displacements go to infinity. In order to
makes things clear, we thus make the following definition.

Definition 1 Collapse of the structure according to some degree of freedom is assumed when
the displacement of this degree of freedom goes to infinity.

Note that the definition of collapse presented above dependson the degree of freedom cho-
sen. That is, the same structure may collapse according to some degree of freedom but do not
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collapse according to another. This kind of behavior is expected for structures as the one pre-
sented in Fig.5. Collapse according to degree of freedom (d.o.f.) 2 do not necessarily mean
collapse according to d.o.f. 1.

Figure 5: Two degrees of freedom of a plane frame.

Applying Definition1 to (5), the reliability analysis problem for collapse of the structure can
be defined as

g(x,q) = lim
qmax→∞

{qj(x)− qmax}, (7)

whereqj is the d.o.f. according to which collapse is defined.
According to (7), the structure would be safe for a finite displacementqj and unsafe when

this displacement goes to infinity.
For computational purposes (7) can be rewritten as

g(x,q) = qj(x)− b, (8)

whereb is taken as a sufficiently big number, in order to take the roleof the limit that appears
in (7). Note that in most practical cases the displacements are ofthe order of10−6m to 10−2m,
and takingb = 10 would likely do the job.

In practice, considering such a big allowable displacementwould lead to serious convergence
difficulties. That’s because the FORM would eventually moveto a point in the design space that
leads to collapse of the structure. However, in such points the displacements would be very big
and the evaluation of the failure function and its gradient would surely fail. From this step
onward, the FORM would start to move almost randomly, since the information given by the
failure function and its gradient would not represent the problem appropriately. Consequently,
solving the reliability analysis problem considering collapse of the structure using an approach
similar to the ones given by (7) and (8) is not an efficient approach. Fortunately, it is possible
to evaluate a lower bound for the reliability index of this problem.

The failure probability according to some failure functiongi is evaluated as (Haldar and Mahadevan,
2000)

P =

∫

Ω

φ(x1, x2, .., xn)dΩ, (9)

whereφ(x1, x2, .., xn) is the joint probability density (PDF) of the design variablesx1, x2, .., xn

andΩ is the set of design vectorsx for which gi(x) > 0, that is, the set of design vectors that
lead to failure.
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Now lets compare the failure probabilities for two different maximum allowable displace-
ments. First we assume a maximum allowable displacementq1, thus defining a failure function
g1. We then have a setΩ1 of design vectorsx for which g1 > 0. Next we assume a maximum
allowable displacementq2, thus defining a failure functiong2. We then have a setΩ2 of design
vectorsx for whichg2 > 0.

According to (5), the setΩ1 is composed of design vectorsx that respect

qj(x) > q1, (10)

while the setΩ2 is composed of design vectorsx that respect

qj(x) > q2. (11)

Evaluating the failure probability for both sets accordingto (9) we have

P1 =

∫

Ω1

φ(x1, x2, .., xn)dΩ1 (12)

and

P2 =

∫

Ω2

φ(x1, x2, .., xn)dΩ2. (13)

Suppose now thatq2 > q1. Then we know thatΩ2 ⊆ Ω1 since every displacement bigger
thanq2 will also be bigger thanq1, but the opposite is not true. That is, the setΩ2 is actually
a subset ofΩ1 whenq2 > q1. Since the PDFφ(x) is always non negative (there can be no
negative probabilities) andΩ2 is a subset ofΩ1, then the integrals from (12) and (13) give

P2 ≤ P1 (14)

when

q2 > q1. (15)

This is true since (12) and (13) are evaluated for the same functionφ. SinceΩ2 ⊆ Ω1, (13)
is evaluated in a subset of the domain used in (12). However,φ is always non negative and thus
the integral from (13) must have a smaller value than that of (12).

If we rewrite the condition given by (14) for reliability indexes we have

β2 ≥ β1. (16)

Note that the conditions given by (14) and (16) just state that bigger displacements are less
likely to be surpassed than smaller displacements, since inorder to achieve bigger displacements
its is necessary to surpass smaller displacements first.

Applying the definition of collapse from Definition1 we have, from (15) and (16),

βlim q2→∞ ≥ β1 (17)

since

lim q2 → ∞ > q1, (18)
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whereβlim q2→∞ is the reliability index when the maximum allowable displacements goes to
infinity, that is the definition of collapse.

That is, (17) states that every reliability index for problems considering finite maximum
allowable displacements is a lower bound to the reliabilityindex when collapse is considered.
From the engineering point of view this make sense, since forstructures that present finite
displacements collapse as defined previously has not yet occurred. Thus, the reliability index
for collapse must always be bigger than (or at least equal to)the reliability index given for
maximum allowable displacements.

Note that this result holds when the reliability index is thetrue reliability index of the
problem. In most cases, the FORM does not give the true reliability index of the problem
(Haldar and Mahadevan, 2000), but an approximation. In cases when this approximation isnot
good enough, (17) may not hold anymore, because the reliability index given by the FORM is
not the true reliability index of the problem. However, as presented in the following examples,
the approximation given by the FORM is satisfactory in most cases.

Based on (17), one way of evaluating the reliability index for the problem considering col-
lapse is by making successive reliability analysis for increasing allowable displacements. Every
time the FORM converges, one obtains a reliability index fora structure that does not collapse,
that is a lower bound for the reliability index when collapseis considered. This procedure is
performed until the FORM does not achieve convergence anymore. When the procedure ends,
one have a list of reliability indexes, that are all lower bounds for the reliability index when
collapse is considered.

Using this procedure one is able to know that the reliabilityindex for collapse is bigger than
a given value, what is sufficient for most practical applications. However, when one needs to
know accurately the reliability index for collapse this procedure is not appropriate.

Finally, note that (17) was obtained considering that the displacementqj is positive. How-
ever, the whole discussion is also valid when this displacement is negative, since some equations
would be multiplied by minus one without changing the main results.

4 SENSITIVITY ANALYSIS

4.1 Partial derivatives of the displacements

As discussed previously, FORM algorithms need to evaluate the gradient of the failure func-
tion according to the design variables in order to carry out the reliability analysis. The pro-
cedure involved in evaluating this information is known in literature as sensitivity analysis
(Haftka and Gürdal, 1992).

Suppose that the structure being studied hasn degrees of freedom and that the sensitivity
analysis is made form design variables (parameters of the reliability problem).Besides, the de-
sign variables are all grouped in a vectorx. In this case, sensitivity analysis of the displacements
is accomplished when the following matrix is evaluated:

∇xq =











∂q1
∂x1

∂q1
∂x2

... ∂q1
∂xm

∂q2
∂x1

∂q2
∂x2

... ∂q2
∂xm

... ... ... ...
∂qn
∂x1

∂qn
∂x2

... ∂qn
∂xm











=
[

∂q

∂x1

∂q

∂x2

... ∂q

∂xm

]

, (19)

that is the gradient of the nodal displacementsq according to the design variablesx. This is
also the gradient of the failure function according to the design variables, as can be seen from
(6).
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The gradient from (19) can be evaluated using some finite difference scheme, by applying
small changes to each design variable and then solving solving the entire structural problem
again. However, this approach implies solving the nonlinear structural problem several times,
at least once for each design variable. Since the computational cost needed for a single non-
linear structural analysis is generally high (since several systems of linear equations must be
solved for each analysis), evaluating (19) using finite differences can lead to almost prohibitive
computational costs.

Another approach for evaluating (19) is by using some technique from sensitivity analysis.
Some very efficient approaches are discussed byHaftka and Gürdal(1992), but here we use a
slightly modified version of a technique that is generally applied to linear structural problems
(Haftka and Gürdal, 1992).

First, we differentiate (1) according to some design variablexj and rearrange to get

Ks.
∂q

∂xj

=
∂F

∂xj

−
∂Ks

∂xj

.q. (20)

The partial derivative of the stiffness matrixKs is given by

∂Ks

∂xj

=
dKs

dxj

+

n
∑

i=1

dKs

dqi

∂qi
∂xj

+

n
∑

i=1

dKs

dFi

∂Fi

∂xj

, (21)

whered stands for an ordinary derivative that does not take into account the implicit relation
betweenK andxj by means ofq orF.

According to (21), changes to a parameterxj can lead to changes to the stiffness matrixKs

by three different ways, namely by its direct influence on thestiffness matrix, by its influence on
the displacementsq and by its influence on the loadsF. In general, the parametersxj will exert
small or no influence at all on the applied loads, and thus the last term of (21) can be neglected.
This is not true when the parameterxj is actually some applied load, but this case is discussed
further on. Besides, it is expected that the indirect influence ofxj to the stiffness matrix, by
means of the displacements will be small if compared to its direct influence. Thus, the second
term from (21) is also neglected. Consequently, the following approximation is made to (21)

∂Ks

∂xj

≈
dKs

dxj

, (22)

that can be evaluated by finite differences without solving any system of linear equations
since it is an explicit derivative. Note that in using (22) we are making a linear approximation
for the derivative of the stiffness matrix (that is actuallynon linear), by neglecting the influence
of the displacements and applied loads.

Substituting (22) into (20) we get

Ks.
∂q

∂xj

≈
∂F

∂xj

−
dKs

dxj

.q. (23)

Sensitivity analysis is then made by solving (23) for the partial derivatives∂q/∂xj . Since the
system of linear equations are solved for the same secant stiffness matrixKs, decomposition
procedures (such as Cholesky or L.U. decomposition) can be used efficiently (Bathe, 1996).
These techniques decompose the stiffness matrix into a product of two matrices that are lower
triangular and upper triangular. Each system of linear equations involved in obtaining∂q/∂xj

is then solved using retro substitution. This is a very efficient procedure when one needs to
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solve several systems of linear equations for the same coefficients matrix, since the main com-
putational effort lies in the decomposition procedure itself, that is made only once.

If sensitivity analysis is made for some applied load, then the parameterxj is actually some
nodal loadFi. In this case, (23) is not a good approximation since (22) was obtained by ne-
glecting the influence of the applied loads. However, sensitivity analysis for nodal loads can be
made using the following relation (Bathe, 1996):

Kt.dq = dF, (24)

whereKt is the tangent stiffness matrix anddq anddF are differentials related to displace-
ments and applied loads. This relation is frequently used for non linear structural analysis using
Newton’s Method or Quasi Newton’s methods (Bathe, 1996).

In order to obtain the partial derivatives∂q/∂Fj we make the following approximation,
based on (24):

Kt.
∂q

∂Fj

≈
∂F

∂Fj

, (25)

where the partial derivative∂F/∂Fj is the derivative of the vector of applied loads according
to some applied load. As can be verified by the reader, this derivative is actually a vector with
all components equal to zero but componentj, that is equal to plus or minus one, depending on
the sign of the forceFj .

Sensitivity analysis for applied loads is then made by solving (25) for the partial derivatives
∂q/∂Fj . Again, decomposition procedures can be used efficiently since all the systems of linear
equations from (25) are solved for the same tangent stiffness matrix. Note thatthe tangent
stiffness matrix can be evaluated by the same procedure usedfor the secant stiffness matrix, but
using the tangent modulus of the materials instead of the secant one.

In order to carry the entire sensitivity analysis one applies (25) for design variables that are
nodal loads and (23) for the other design variables. Note that one system of linear equations
must be solved for each design variable, but that the systemsof linear equations are all solved
either for the secant stiffness matrix or for the tangent stiffness matrix. Consequently, decom-
position procedures can be used efficiently, as discussed previously. If the sensitivity analysis is
made using finite differences, instead, one needs to solve the entire non linear structural prob-
lem at least once for each design variable. This would need much more computational effort
than the approach used here, since each non linear structural analysis needs to solve several
systems of linear equations.

5 NUMERICAL RESULTS

5.1 First example

The first example is that from Fig.6. The cross section hash = 30cm andb = 20cm. The
beam is 4m long and there is an applied force at mid span. Threereinforcement bars of 12mm
are used in the upper chord and other three bars of 12mm are used in the lower chord. The
covering distance isc = 2.5cm for both reinforcements. The material properties are taken as
σc
yc = 25MPa,σc

yt = 2.5MPa,εcyc = 2/1000, εcyt = 0.2/1000, εcuc = 3/1000, εcut = 0.3/1000,
σs
y = 450MPa,εsy = 2.25/1000 andεsu = 35/1000. The beam is divided into 8 finite elements

of equal length.
The displacement at mid span for different magnitudes of theapplied load are presented in

Fig. 7. It can be seen that the behavior of the model is consistent. For a load of about 2.5 tons
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Figure 6: Reinforced concrete beam used in the first example.

the concrete is not able to resist tension anymore (it startsto crack), and so there is a change
on the displacement evolution. For a load of about 8 tons the steel starts to yield finally leading
to the collapse of the structure. This example was presentedin order to show that even if the
structural model is very simple it is able to capture the mainnonlinear behavior of reinforced
concrete structures.
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Figure 7: Displacement x Applied force for the beam used in the first example.

We now address the reliability analysis for this problem. The applied load is assumed to be a
gaussian variable with mean equal to 5E4N(tons) and standard deviation equal to 0.5E4N(tons).
This is called here parameterx1. Besides, the standard deviation of the concrete yielding stress
in compressionσc

yc is assumed to have an standard deviation of 2.5MPa, while thestandard
deviation of the steel yielding stressσs

y is assumed to have an standard deviation of 10MPa.
These variables are named here parametersx2 andx3, respectively. The other parameters are
taken as deterministic variables with values as defined previously. The reliability analysis of this
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example is made assuming two allowable displacements at midspan, equal to 0.020m (Case 1)
and equal to 0.023m (Case 2).

The results are presented in Tab.1 and2. The reliability index for Case 1 is 3.4850, while
for Case 2 it is 5.0796. As expected, the reliability index increases when a larger displacement
is allowed.

In order to study the influence of the probabilistic variables, we increase the standard devia-
tion of the applied load to 1.0E4N(tons), the standard deviation of the concrete yielding stress
in compression to 3.0MPa, and the standard deviation of the steel yielding stress to 20MPa. The
allowable displacement is taken as 0.020m. This example is called here Case 3. The reliability
index for this case is 1.7667 and the results are presented inTab.1 and2. This results was also
expected, since increasing the standard deviation of the random variables leads to a less reliable
structure.

Case 3 was also solved using Monte Carlo Simulation (MCS) using 20,000 samples. The
reliability index obtained was 1.7484, that is very close tothe reliability index obtained with the
FORM for this case (1.7667). However, the MCS took about 7h torun, while the FORM took
about 2min on the same machine. Even if these times could be reduced by using more efficient
programming techniques, it can be seen that the computational effort needed by the MCS is
orders of magnitude bigger than that needed by the FORM. Besides, note that for Case 1, the
number of samples used in the MCS would be even larger (about 100,000), since this structure
is more reliable and consequently MCS needs more samples to give an accurate result.

Case x1 x2 x3 β

1 3.4317 -0.4387 -0.4201 3.4850
2 4.9815 -7.1527 -6.8900 5.0796
3 1.7487 -1.3104 -2.1509 1.7667

Table 1: Most probable failure point at the normalized spacefor the reliability analysis of the first example.

Case F (E4N) fc (MPa) fs (MPa)

1 6.7158 23.9033 445.7988
2 7.4908 23.2118 443.1099
3 6.7488 24.6069 445.6983

Table 2: Most probable failure point at the real space for thereliability analysis of the first example.

5.2 Second example

The second example studied is that of the plane frame presented in Fig. 8, that is subjected
to a lateral load of magnitudeF . The cross section of each beam and the material properties are
the same as used in the previous example. The base of the structure isb = 4m and each story is
h = 4m height. Each beam is divided in two elements of equal length. Finally, the horizontal
displacementu of the upper left node is measured, as pictured in Fig.8.

The displacementu for different magnitudes of the loadF is presented in Fig.9. For
the reliability analysis we assume that the allowable displacementumax is equal to0.050m.
Besides, we take the applied load, the concrete yielding stress in compression and the steel
yielding stress as the probabilistic variables. Two cases are studied. For Case 1, the applied
load is assumed to be a gaussian variable with mean equal to 5E4N(tons) and standard deviation
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Figure 8: The plane frame used in the second example.

equal to 0.5E4N(tons). For Case 2, the load has the same mean value but the standard deviation
is equal to 1.0E4N(tons). Besides, the standard deviation of the concrete yielding stress in
compression is assumed to have an standard deviation of 2.5MPa, while the standard deviation
of the steel yielding stress is assumed to have an standard deviation of 10MPa. The other
parameters are taken as deterministic variables with values as defined for the previous example.

The reliability index obtained with the FORM was 2.2986 for Case 1 and 1.1780 for Case 2.
The most probable failure points are presented in Tab.3. As expected, increasing the standard
deviation of the applied force leads to a less reliable structure.

Case 2 was also solved by MCS, using again 20,000 simulations. The reliability index found
in this case was 1.1800, that is very similar to the one obtained with using FORM (1.1780).
However, it is important to point out again that MCS needed much more computational effort
than FORM, namely 3min against 10h.

Case x1 x2 x3 β

1 2.2279 -0.4593 -0.3300 2.2986
2 1.1689 -0.1173 -0.0872 1.1780

Table 3: Most probable failure point at the normalized spacefor the reliability analysis of the second example.

6 CONCLUSIONS

This paper presents an approach for the reliability analysis of nonlinear reinforced concrete
beams and frames, assuming maximum allowable displacements. The reliability analysis prob-
lem is solved using a FORM algorithm, and sensitivity analysis is carried out in an efficient
manner (without using finite differences). The numerical results obtained here agree with
those obtained from MC simulation. However, MC needs much more computational effort
than FORM, mainly for structures with a high level of reliability.

Reinforced concrete structures present significant nonlinear behavior, and thus reliability
analysis should be done considering a nonlinear model. However, the reliability analysis prob-
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Figure 9: Displacement x Applied force for the beam used in the second example.

lem needs to carry out several deterministic analyses, thusleading to a high computational cost.
In this context, it is interesting to have a structural modelthat is as simple as possible but that
is able to represent the behavior of the structure appropriately. The structural model presented
here is suitable for this task since it is efficient from the computational point of view. In a few
words, using a very complex structural model would likely lead to prohibitive computational
costs.

It has been proved that every reliability index consideringsome finite allowable displace-
ment is a lower bound for the reliability index when collapseis considered. This allows one to
estimate the reliability index indirectly by solving a few reliability analysis problems consider-
ing maximum allowable displacements. The importance of this result is that reliability analysis
considering collapse can lead to computational difficulties, due to the very nature of collapse.

In most cases the designer does not need to know the exact value of the reliability index
of the structure, but just need to know if the reliability index is bigger than a minimum value.
In these cases, the reliability index considering collapsecan be estimated as described here.
Besides, in many current practical applications constraints on maximum displacements must be
enforced in order to guarantee an appropriate use of the construction.
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