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Abstract. Modal transducers allow independent sensing, actuation and control of individual vibration

modes. Shaped piezoelectric layers were initially proposed to this end but an array of independent piezo-

electric transducers with weighted actuation/sensing signals were shown to be easier to implement and

allows reconfigurable modal filters since the weighting can be done via software. Several methodolo-

gies to determine optimal weights for a modal filter based on a given array of sensors were proposed in

the literature. In a previous work, a methodology for the topology optimization of piezoelectric sensor

arrays in order to maximize the effectiveness of a set of selected modal filters was presented. This was

done using a genetic algorithm optimization for the selection of twelve piezoceramic sensors, from an

array of thirty-six piezoceramic sensors regularly distributed over an aluminum plate, which maximize

the frequency-band of a set of modal filters, each one aiming at one of the first vibration modes. It was

shown that it is possible to improve the effectiveness and frequency-band of a set of modal filters with

a reduced number of sensors by optimizing the topology of the sensor array. However, this optimiza-

tion may also lead to a higher sensitivity of modal filters performance on design parameters. Therefore,

this work presents a robustness analysis of modal filters using a topology optimized array design with a

reduced number of sensors subjected to uncertainties in the weighting coefficients and sensors position-

ing. For the weighting coefficients uncertainties, this is done using stochastic modeling tools to build a

probabilistic model of the uncertain parameters and Monte Carlo method to evaluate the realizations of

modal filters performance indices. For the sensors positioning uncertainties, a sampling-based sensitivity

analysis was performed. Latin Hypercube Sampling technique was used to reduce the number of sam-

ples and alleviate the computational cost of analyzing multiple topologies. It is shown that optimal filter

output is less sensitive to weighting coefficients uncertainties and more sensitive to sensors positioning.
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1 INTRODUCTION

Smart structures are integrated systems, composed of a host structure, sensors and actuators

which are able to monitor and act to ensure both structural integrity and adaptability to changes

in operational conditions. The development of materials having special functional properties

has made possible the development of new generation of both sensors and actuators. In the

concept of modern science, the actuator effect is defined according to the material’s capability

of generating mechanical energy from electric, magnetic or thermal energy, while the sensor

effect, on the other hand, is defined by the converse energy conversion (Chopra, 2002).

The use of piezoelectric materials (specially piezoceramics) as sensing and actuating ele-

ments has been extensively studied due to the possibility of building them as lightweight and

compact devices in several geometric configurations, since they are relatively inexpensive and

present the necessary electromechanical coupling. In terms of applications, integrated piezo-

electric sensors and actuators have been most often applied to the active control of mechanical

vibration and noise in structures subjected to several types of excitation, or even self-excited

structures, especially for aeronautic and aerospace applications (Chopra, 2002).

On the other hand, the performance of integrated systems applied to active vibration and

noise control can be substantially improved by the use of high quality modal filters (Chen and

Shen, 1997, Sun et al., 2001). In this context, the development of active control strategies

with optimal performance using modal sensors and actuators has been the object of intensive

research. Modal sensors and actuators working in closed loop enable to observe and control in-

dependently specific vibration modes, reducing the apparent dynamical complexity of the sys-

tem and the necessary energy to control them (Fripp and Atalla, 2001; Preumont et al., 2003;

Friswell, 2001). The high performance of modal controllers depends on the several parame-

ters. The size, form and also the quality of piezoelectric material’s effective eletromechanical

coupling coefficient must be considered to the development of modal sensors and actuators.

Though pioneer projects have considered the development of continuous modal sensors and ac-

tuators, the evolution of modal filter techniques and its applications to active vibration control

indicates several advantages in the use of an array of discrete sensors instead (Shelley, 1991).

The high performance of discrete sensors array depends on the convenient weighting of the

sensors signals, in order to achieve optimal modal isolation (Fripp and Atalla, 2001; Preumont

et al., 2003). Several numerical methods have been used for the evaluation of the weighting

coefficients for the signals measured by the array of sensors (Meirovitch and Baruh, 1982;

Shelley, 1991; Chen and Shen, 1997). These techniques may lead to high-performance modal

filters, but generally within a limited frequency band.

Preumont et al. (2003) have suggested that the frequency band of high-performance filtering

depends on the relation between the number of vibration modes to be filtered, in that frequency

band, and the number of sensors in the array. They conclude that the number of sensors in

the array should be larger than the number of vibration modes to be filtered. Although this is

true for an arbitrarily distributed array of sensors, it is possible to show that the location of the

sensors, that is the array topology, has a significant effect on the observability of the vibration

modes and, thus, on the filtering performance of modal filters derived from it. Therefore, it

should be possible to optimize the array topology and, consequently, increase the number of

filtered vibration modes, thus the frequency band, for a given number of sensors available.

Topology optimization techniques are common in advanced structural design, for instance

the simultaneous design of actuated mechanical devices, and often present a multiobjective

character (Frecker, 2003). Techniques for topology optimization include but are not limited
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to genetic algorithms search methods. Genetic algorithm (GA) methods are search algorithms

based on the survival of the fittest theory applied for a structured set of parameters Goldberg

(1989). GA-based optimization methods have also been used for the design optimization of

controlled structures (Han and Lee, 1999; Trindade, 2007).

Previous studies focused on designing and validating a methodology for the topology op-

timization of a sensor array with the objective of improving the performance of modal filters

derived from it (Pagani and Trindade, 2008a, 2008b, 2009). This was done combining a stan-

dard technique for the evaluation of the coefficients for weighting the sensors signals with a

proposed strategy for the optimization of the sensor array topology. The methodology was ap-

plied to a free plate with an array of thirty-six bonded piezoceramic patch sensors. A set of

modal filters, aiming at isolating the first five vibration modes of the plate, were evaluated using

only selected twelve of the thirty-six sensors of the array. An optimization strategy based on GA

was proposed to find a sensor array topology that minimizes the norm of the filtering residue

along a wider frequency band. It was shown that it is possible to improve the effectiveness and

frequency-band of a set of modal filters with a reduced number of sensors by optimizing the

topology of the sensor array. However, this optimization may also lead to a higher sensitivity

of modal filters performance on design parameters.

Therefore, this work presents a robustness analysis of modal filters using a topology opti-

mized array design with a reduced number of sensors subjected to uncertainties in the weight-

ing coefficients and sensors positioning. For the weighting coefficients uncertainties, this is

done using stochastic modeling tools to build a probabilistic model of the uncertain parame-

ters and Monte Carlo method to evaluate the realizations of modal filters performance indices.

For the sensors positioning uncertainties, a sampling-based sensitivity analysis is performed.

Latin Hypercube Sampling technique is used to reduce the number of samples and alleviate the

computational cost of analyzing multiple topologies.

2 DESIGN OF MODAL FILTERS

The design of a modal filter from an array of sensors requires the output signals of each sen-

sor to be weighted and summed such that the response of target vibration modes is maximized

while that of undesired ones are minimized. Therefore, it is possible to consider the frequency

response function (FRF) of an equivalent single degree of freedom system with natural fre-

quency ωi and damping factor ζi, corresponding to the target i-th vibration mode, as the desired

response of the weighted signal of the modal filter, which can be written as

gi (ω) =
2ζiω

2
i

ω2
i −ω2 +2 jζiωiω

. (1)

Whenever the vibration modes are weakly damped and relatively well spaced, the resonance

peaks are well defined and, thus, (1) represents a realistic objective for the filtered FRF signal.

Let Y be a matrix with columns that represent the FRFs of the n selected sensors in the array and

discretized in a frequency domain [ω1, . . . ,ωm]. Let Gi = [gi (ω1) , . . . ,gi (ωm)] be the vector

representing (1) in the discrete frequency domain. The vector of coefficients αi which equates

the filtered output (weighted sum of sensors outputs) to the one defined by the vector Gi is the

solution of the following system
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In general, the linear system defined by (2) admits only approximate solutions, which will

be denoted α
†
i . The vector of weighting coefficients α

†
i represents the best solution, in a least

squares sense, for the design of a modal filter which isolates the i-th vibration mode response.

If several vibration modes are to be considered simultaneously as target modes for the filter

design, it is necessary to define G as the matrix of target FRFs with dimension m× p, where

p denotes the number of target modes. Consequently, the approximate solution of (2), α†, is a

matrix of dimension n× p, that is one column vector of weighting coefficients for each one of

the target modes. This may be written in a compact form as

Yα† = G. (3)

Actually, Yα† approximates G†, a matrix with columns that are the orthogonal projection of

the columns of G onto the space spanned by the columns of Y. The traditional Moore-Penrose

pseudo-inverse solution of (3) for a full column rank Y matrix (with columns that are linearly

independent) may be obtained by pre-multiplying (3) by YH, where the symbol H denotes the

hermitian,

YHYα† = YHG, (4)

such that

α
† =

(

YHY
)−1

YHG. (5)

Y† =
(

YHY
)−1

YH is then the pseudo-inverse of Y. On the other hand, for a full column

rank matrix, inversion of YHY is unnecessary and computationally inefficient, since Y may be

decomposed through QR decomposition, where Q is an orthonormal matrix and R is upper

triangular, such that Y = QR and (5) can be rewritten as

α
† =

[

(QR)H
QR

]−1

(QR)H
G, (6)

which, after expansion and accounting for QHQ = I, reads

α
† = R−1QHG. (7)

Notice that the inverse of R does not need to be evaluated, instead the upper triangular

linear system, Rα† = QHG, is solved through back substitution, which is more computationally

efficient. For all the cases studied in the present work, the solution through QR decomposition

was always convenient, since the FRF matrix has had full column rank. If at least two columns

of the FRF matrix are linearly dependent, this means that two sensors outputs are equivalent so

that one of them is dispensable and the array formed by these sensors is equivalent to one with

one sensor less, thus, it should present lower performance. If this is the case, the singular value

decomposition (SVD) is the suitable method to approximate the least square solution.

In practice, truncation of matrix Y over a given frequency range will affect its QR decom-

position and, thus, the approximate solution of linear system (3). Let Y be the FRF matrix

truncated at frequency ωt ≤ωm. Recent works have shown that there is a value for ωt =ωl
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such that all vibration modes inside the frequency range [ω ≤ωl] are perfectly filtered, except

the target ones, whereas vibration modes with natural frequency larger than ωt are not filtered

(Preumont et al., 2003; Pagani and Trindade, 2008a). To filter higher frequency modes, higher

values for ωt must be considered in the filter design (FRF truncation) but, then, only a partial

filtering can be assured for all modes, including those in the lower frequency range.

3 APPLICATION TO A PLATE WITH AN ARRAY OF BONDED PIEZOCERAMIC

PATCHES

In this section, the modal filter design technique presented in the previous section is applied

to a plate with bonded piezoceramic patches, acting as sensors, to analyze its effectiveness and

evidence its limitations.

3.1 Finite element modeling

The host structure is a free rectangular aluminum plate, of dimensions 320×280×3 mm, with

thirty-six identical thickness-poled PZT-5H piezoceramic patches bonded to its upper surface.

The piezoceramic patches have dimensions 25×25×0.5 mm. Figure 1 presents a geometric

description of model. The material properties are: i) Aluminum – Young’s modulus 70 GPa,

Poisson’s ratio 0.33, mass density 2700 kg/m3; and ii) PZT-5H – mass density 7500 kg/m3,

and elastic cE
11 = cE

22 = 127 GPa, cE
33 = 117 GPa, cE

12 = 80.2 GPa, cE
13 = 84.7 GPa, cE

44 =
cE

55 = 23.0 GPa, cE
66 = 23.5 GPa, piezoelectric d31 = d32 = −274 pCN−1, d33 = 593 pCN−1,

d15 = d24 = 741 pCN−1 and dielectric ǫT
11 = ǫT

22 = 27.7 nFm−1, ǫT
33 = 30.1 nFm−1 constants.

The model was built and simulated in ANSYS commercial software. The structural element

SHELL99, with a single layer, has been used to model the aluminum plate, while the element

SOLID226 has been considered to model the piezoelectric patches. The element SOLID226

presents nodal degrees of freedom, for displacements in x, y and z directions and electric voltage,

and eletromechanical coupling properties required to model the sensor and actuator effects. This

element has been used in the cubic form, with 20 nodes, eight in each face (with commons nodes

at vertices). For the plate, 3584 SHELL99 elements were used, while 50 SOLID226 elements

were considered for each piezoceramic patch.

��

�
�

��

�
�

�
�

���

�
�
�

Figure 1: Aluminum plate with thirty-six bonded PZT-5H piezoceramic patches (dimensions in mm).

To ensure an ideal perfect bonding between the piezoceramic patches and the plate, the nodes

on the bottom surface of the patches are mechanically coupled to the ones on the top surface of

the plate. To this end, the nodes of the SHELL99 element must be offset to the contact surface
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with the SOLID226 element and the finite element meshes for both elements must be coherent.

All nodes of the piezoelectric patches surfaces bonded to the plate are considered electrically

grounded. The dielectric properties of PZT-5H prevent the homogeneous distribution of the

induced electrical charges on the free surface of the patches. Therefore, measurement of the

electric potential in a specific node on the free surface will correspond to local information

on induced strain. In practice, the upper and lower surfaces of each patch are covered with

electrodes which ensure uniform induced electric potentials (equipotential).

To analyze the effect of the electrode, the mode shapes, natural frequencies and electric po-

tential distributions for the first four vibration modes were evaluated without and with electrodes

on the free surfaces of the patches. Figure 2 shows the first four vibration modes accounting for

the equipotentiality condition. More details on the importance of equipotential condition on the

modeling of piezoelectric structures can be found in (Trindade and Benjeddou, 2009).

Figure 2: Mode shapes, natural frequencies and voltage distributions in the sensors for the first four vibration

modes of the plate with bonded piezoceramic patches with equipotentiality condition.

3.2 Modal filter performance for a reduced number of sensors

Modal filters can be simulated and, in practice, implemented using thirty-six, or even more,

sensors bonded to the aluminum plate. However, one should wish to minimize the number

of sensors in the array while maximizing the performance of modal filters since using fewer

sensors reduces project cost, structure weight and acquisition system complexity, which are all

very important in practical applications.

Therefore, in this section, only twelve of the thirty-six sensors shown previously are con-

sidered to be active. This allows us to form a large number of reduced-dimension arrays and

analyze the effect of the array topology on the performance of modal filters derived from it. It is

supposed that the piezoceramic patches do not alter significantly the vibration modes and nat-

ural frequencies of the plate so that the topologies with twelve sensors may be all evaluated by

simply considering the output of the selected sensors in the modal filter design. This means that

the twenty-four inactive sensors are also bonded to the structure but their output is ignored. The

main reason for this procedure is that most of the computational cost comes from the evaluation

of the FRF matrix and, thus, in the proposed methodology this evaluation is performed only

one time for the plate with thirty-six sensors, even though only twelve selected outputs will be

considered for each topology. Evidently, the hypothesis that the twenty-four inactive sensors

do not alter much the results shall be confirmed afterwards by remodeling the plate with only

twelve sensors for given selected topologies.

The FRF of each piezoceramic patch was evaluated through modal superposition considering
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the twenty-six flexible vibration modes in the frequency range [10 – 2000] Hz, with steps of 0.5

Hz, and a transversal point force applied near the upper-right corner of the plate.

Previous results indicate that, with the exception of topologies susceptible to spatial alias-

ing, twelve sensors should be enough for a satisfactory filtering quality in the frequency range

up to 800 Hz. If it is required to increase the frequency range of the modal filters, the FRF

truncation frequency for the QR decomposition could be increased but, generally, this will lead

to a loss in the filtering quality. One could also think of increasing the number of sensors in

the array to increase the frequency range of the modal filters derived from it. This was done

here by considering the average and standard deviation of a sample of 104 arbitrary topologies

with sixteen sensors, selected from the thirty-six of the base array. 104 arbitrary topologies

with twelve sensors are considered for comparison purposes. The FRFs considered for the QR

decomposition are truncated at 1000 Hz, which leads to a frequency range containing fourteen

vibration modes. Figure 3 shows the average and one standard deviation confidence interval

output of modal filters designed to isolate the first vibration mode using twelve and sixteen sen-

sors. For sixteen sensors, the modal filter is very effective in isolating the first resonance for any

of the 104 arbitrary topologies considered, since the standard deviation of the response nearly

vanishes up to 1000 Hz (Figure 3b). For twelve sensors, unfiltered residual response for other

resonances in the frequency range of interest can be observed (Figure 3a). However, based on

the one standard deviation confidence intervals, it is possible to assume that there may be some

specific topologies of twelve sensors that lead to effective modal filters.
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Figure 3: Average and one standard deviation confidence interval of the output of first mode modal filters based on

a sample of 104 arbitrary topologies of twelve (a) and sixteen (b) sensors.

The analyses presented in this section indicate that although, in average, the number of

modes, and thus the frequency range of the modal filter, is limited by the number of sensors

considered, properly selected topologies could increase the frequency range, for a given num-

ber of sensors, or reduce the number of sensors, for a given frequency range. This suggests that

the topology of an array of sensors could be optimized to enhance its performance.
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4 OPTIMIZATION OF THE SENSORS ARRAYS TOPOLOGIES

This section presents a methodology for improving filtering performance through the opti-

mization of the sensors arrays topologies.

4.1 Optimization strategy

After some numerical simulations with straightforward topologies derived from the base ar-

ray with thirty-six sensors, it becomes clear that the relation between the array topology and

the filtering performance is quite complex, even when the mode shapes are known, and, hence,

optimal solutions require a more advanced strategy. An extensive search of the possible com-

binations of twelve sensors from the thirty-six available would lead to an impracticable com-

putational cost, since around one billion (C36,12) combinations would have to be evaluated.

Extensive search could however be considered using selected subspaces to identify rationales

for the parameters’ setup of another search strategy (Pagani and Trindade, 2008b).

GAs are more suitable search methods in these cases when the research space is too large,

strongly multimodal and non-linear. It is chosen here to setup a GA search by defining a ran-

dom initial population formed by so-called individuals with chromosomes that are composed

of twelve genes. Each gene is an integer number from 1 to 36 representing the sensor index.

Therefore, one individual represents a sensors array topology formed by the twelve sensors

defined by its genes.

Following the standard GA evolutive process, the initial population is considered to evolve

along a set of generations through reproduction (crossover), mutation and selection operations.

While reproduction and mutation operations aim to provide diversity to the population, the se-

lection operation aims to rank individuals with respect to a fitness or objective function. Since

this is a random search algorithm, the optimal results are dependent on the initial population and

on the reproduction, mutation and selection parameters. However, it is expected that for a suffi-

ciently large number of generations or size of the initial population, the algorithm will converge

to the global optimum. More details on convergence and selection of operations parameters can

be found in (Pagani and Trindade, 2008b).

Since any individual of the population is composed by twelve different integer numbers in

the domain [1,. . . ,36], a specific routine was written to build the initial population. For each

individual, the routine scrambles randomly a vector of integers from 1 to 36 and, then, the first

12 elements of the scrambled vector define the corresponding individual. This procedure is

repeated for all individuals in the initial population. The selection of the first 12 elements in the

scrambled vector does not imply in a tendency since the distribution of the sensor indices in the

vector is equiprobable.

The mutation operation, considered in this work, consists in replacing one of the 12 genes

(sensors), selected randomly, of an individual by another one, selected randomly from the com-

plementary group of sensors, that is, from the 24 remaining sensors not present in the individual.

This procedure prevents the generation of an individual with repeated genes. The reproduction

(crossover) operation combines the initial and final sections of two individuals (parents) to form

a new individual (child), where the breaking position of the parents’ sequences (chromosomes)

is defined randomly. In this case, the generation of an individual with repeated genes is possible

and, when this is the case, the fitness function of this individual is not evaluated to save compu-

tational time; instead a small fitness value is attributed to it, such that its selection probability

is also small. The selection operation is based on a stochastic universal sampling algorithm,

where the expectation of individuals in the population is evaluated from a fitness ranking.
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Besides the choice of reproduction, mutation and selection operators, it is necessary to de-

fine the size of the initial population (N), the number of best individuals (elite) which are kept

unmodified from one generation to another (Σ), the percentage of the population in each gener-

ation which are generated by crossover (Tc) and the total number of generations the population

evolves (Np). Once defined Tc, the remaining part of population is generated by either the pre-

vious elite or mutation operation. Crossover percentages of [30, 40, 50, 60, 70]% lead to genic

mutation rates of [5.8, 5.0, 4.2, 3.3, 2.5]%. Apart from the procedures proposed for the con-

struction of the initial populations, the mutation operation and the parameters’ definition, the

optimization was performed using operators and algorithms of MATLAB Genetic Algorithm

and Direct Search (GADS) Toolbox.

4.2 Objective function to rank the modal filters performance

The objective of the present optimization is to find the topology of an array with twelve sen-

sors that maximizes the filtering quality, over a given frequency range, of modal filters designed

to isolate a given set of resonances of the structure. In the present work, a particular case of in-

terest was studied using the first three vibration modes of the free plate as target vibration modes

to be isolate by the modal filters. The target frequency range is [0, 1000] Hz, which is higher

than the limit frequency ωl = 800 Hz for the present case and contains fourteen resonances

(four after ωl). Therefore, the FRF truncation frequency is defined as ωt = 1000 Hz such

that, for an arbitrary array topology, no filtering quality can be guaranteed along the frequency

range, while an optimal topology can maximize this quality. For implementation purposes, the

objective function to be minimized is then defined as the residual error norm

J =
∥

∥

∥
|Gt |− |Ytα

†|
∥

∥

∥

2
. (8)

where Gt and Yt are the target and measured, by each sensor, FRFs truncated at frequency ωt

andα† is the vector of weighting coefficients, evaluated using Gt and the QR decomposition of

matrix Yt in (7).

Another possible strategy that was presented in a previous work consists on maximizing the

frequency range for a given filtering quality (Pagani and Trindade, 2008a).

4.3 Results for the optimal topology

In this section, the results obtained for the modal filters with optimal sensors array topologies

are presented. Based on previous studies (Pagani and Trindade, 2008b), the following param-

eters were set for the GA optimization: initial population of N = 1500 individuals, crossover

rate at Tc = 45%, genic mutation rate at Tg = 4.6%, elite population at Σ = 2 individuals and

termination criteria at Np = 35 generations. To minimize the dependence of GA optimization

on the initial population, fifty simulations with different initial populations were performed for

each case and the best results from these simulations are saved.

Figure 4 presents the normalized filters outputs, such that the amplitude at target resonances

is unitary, and the corresponding optimal topology, in which the twelve selected sensors are

highlighted from the original thirty-six sensors array. It shows that topology optimization for

isolation of the first two vibration modes has provided excellent performance up to 1000 Hz.

Therefore, the modal filter was effective up to the fourteenth mode and, thus, four additional

resonant modes were effectively filtered compared to an arbitrary topology. Figure 4 also shows

the normalized filters output when only the real part of the weighting coefficients are considered.

This verification is important because it is much easier to implement in practice a weighted sum
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circuit if the weighting coefficients are all real. It can be noticed that neglecting the imaginary

part of the weighting coefficients does not affect significantly the quality of the filters.
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Figure 4: Normalized outputs of the modal filters designed for the isolation of first (a) and second (b) vibration

modes with real (solid) and complex (dashed) weighting coefficients.

As it was shown, it is possible to improve the effectiveness and frequency-band of a set of

modal filters with a reduced number of sensors by optimizing the topology of the sensor array.

However, this optimization may also lead to a higher sensitivity of modal filters performance

on design parameters. Therefore, the next section presents a robustness analysis of these modal

filters using an optimal topology subjected to uncertainties in the weighting coefficients and in

the sensors positioning.

5 UNCERTAINTIES ANALYSIS

5.1 Effect of weighting uncertainties

This section presents an approach for analyzing random uncertainties in the weighting coef-

ficients. A Gaussian probability density function is assumed for each weighting coefficient α j,

for which the mean values are based on the nominal ones designed in the previous section and

the standard deviations are estimated from experiments, such that

p(α j) =
1√

2πσα
exp

{

− 1

2σ2
α

(

α j −ᾱ j

)2

}

(9)

where ᾱ j are the real part of the weighting coefficients, normalized to the maximum weight of

0.35 allowed by the voltage divider circuit used for the measurements. σα is an estimation of the

standard deviation based on 12 sample experiments, each consisting of a manual setup of the

potentiometer in one of the 16 similar circuits constructed in the laboratory. Since the level of

precision in the manual setup is much more dependent on the sensibility of each potentiometer,

the measurement technique for setup verification and the user’s experience, than the nominal

value of the weighting coefficient, the standard deviation σα was considered to be constant for

all weighting coefficients. Based on laboratory experiments, the value of σα was set to 0.0003.

Based on these assumptions, N random realizations were generated for each weighting co-

efficient with MATLAB function normrnd and, then, combined to form N random realizations
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Figure 5: Mean square convergence of Monte Carlo simulation using σα = 0.0003.

of the vector of weighting coefficients α(θi). Each realization α(θi) was then used to evaluate

a realization of the filter output G̃(θi) = Yα(θi). The mean-square convergence analysis with

respect to the independent realizations G̃(θi) was carried out considering the function

conv(ns) =
1

ns

ns

∑
i=1

‖G̃(θi)− G̃N‖2
, (10)

where ns is the number of simulations, or the number of sets of weighting coefficients con-

sidered, and G̃N is the response calculated using the corresponding mean model. Figure 5

shows the mean-square convergence analysis. It is possible to observe that 2000 simulations

are enough to assure convergence. Despite that, the statistical analyses presented in the follow-

ing sections consider all N = 4000 simulations performed.

The statistical analyses of the FRFs were performed from a Gamma distribution fit to their

amplitudes at each frequency to calculate maximum likelihood estimates of the distribution

parameters using MATLAB function gamfit. Then, these parameters were used to calculate

the 95% confidence intervals for the FRF amplitudes, with MATLAB function gaminv. More

details on the stochastic modeling methodology used here can be found in (Cataldo et al., 2009;

Soize, 2001; Santos and Trindade, 2009).
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Figure 6: Nominal values (solid), mean values (dashed) and 95% confidence intervals (area) for the normalized

outputs of the modal filters designed for the isolation of first (a) and second (b) vibration modes.

Figures 6 shows the normalized filter outputs when using the gaussian model forα and when
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using the nominal model (nominalα). The normalized filter output using the gaussian model for

the weighting coefficients vector is represented by its mean value and 95% confidence interval.

From Figure 6, it is possible to notice that the uncertainty in the weighting coefficients may yield

variations in comparison with the nominal model of the order of 6% for the value considered

for the standard deviation σα.

5.2 Effect of positioning uncertainties

This section presents an analysis of the effect of random uncertainties on the positioning

of the twelve sensors of the optimal topology presented previously. As discussed previously,

topology optimization allows to use less sensors than it would be necessary otherwise for the

design of modal filters. However, modal filters based on such optimal arrays of sensors become

sensitive to the sensors positioning. Therefore, it is important to quantify the sensitiveness of a

given optimal topology to perturbations on the positioning of its sensors. Instead of using local

methods, such as gradient-based methods, to perform a sensitivity analysis, here a sampling-

based analysis is used (Helton et al., 2006). This is much more complicate than the previous

analysis of weighting coefficients since, for each perturbation in a given sensor positioning,

the dynamic stiffness of the structure is modified and, thus, a new structural model should be

constructed and used to evaluate the voltage frequency responses of all sensors in the array. This

fact not only leads to higher computational cost, due to multiple evaluations of the structural

harmonic response, but also requires special attention to whether the changes in output are due

to perturbations in sensors positioning or to the reconstruction of structural model.

Figure 7: Optimal topology for the isolation of the first two vibration modes and three of its arbitrary perturbations.

The methodology used in this work to prevent variability due to structural modeling was to

consider a fixed finite element mesh over which the piezoelectric sensors can be repositioned.

The finite element model presented previously can be used but only allows positioning perturba-

tions in steps of 5 mm, which is the mesh refinement. Therefore, a second finite element model

similar to the previous one but with a mesh refinement of 2.5 mm was built. In this case, for the

plate, 14336 (128 x 112) SHELL99 elements were used, while 200 SOLID226 elements were

considered for each piezoceramic patch. It is unnecessary to state that this increases heavily

the computational cost of one harmonic analysis in ANSYS, as compared to the coarser mesh

model. Figure 7 shows the optimal topology together with the finite element mesh considered

and three of the one hundred perturbed topologies used in the present analysis. The one hun-

dred perturbed topologies were obtained using Latin Hypercube Sampling (LHS), which is an

interesting method when the number of samples is relatively small and consists on maximiz-

ing the distance between the samples. Since the positioning perturbation must be performed

in steps of 2.5 mm, two vectors of displacements in x and y directions relative to the optimal

position, ∆x ∈ {−1,0,1} and ∆y ∈ {−1,0,1}, were constructed for each piezoelectric sensor.

This leads to a vector of 24 elements with values in {−1,0,1} defining the perturbed topology

described by the displacements along x and y directions of each piezoelectric sensor relative to
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its optimal position. Then, the LHS technique was used to construct one hundred samples of

the 24 elements vector.

For each perturbed topology, the FRF was evaluated for each one of the twelve piezoelectric

sensors and, then, used to evaluate the modal filters output responses through multiplication by

the real part of the optimal (unperturbed) vector of weighting coefficients, ᾱ. The results for the

first and second modes modal filters output are shown in Figure 8 for all perturbed topologies.

A large variation of the filter output response can be noted inside the frequency range of interest

in which the response should be filtered.

(a)

(b)

Figure 8: Normalized filter outputs for first (a) and second (b) modes obtained using the perturbed topologies using

displacement steps of 2.5 mm.

(a)

(b)

Figure 9: Normalized filter outputs for first (a) and second (b) modes obtained using the perturbed topologies using

displacement steps of 5 mm.

To save computational effort, the same analysis was performed for higher (5 mm) displace-

ment steps using the finite element model with coarser mesh (5 mm mesh refinement). The
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results are presented in Figure 9. Although it is not presented here, a comparison between the

unperturbed responses using the 2.5 mm and 5 mm spaced meshes was made and found to have

no significant effect on the evaluation of the modal filters output responses. Therefore, the un-

perturbed response using the finer mesh (2.5 mm) can be used as reference to the perturbed

responses with displacement steps of 5 mm.
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Figure 10: Mean and 95% confidence interval of the normalized first (a) and second (b) modes filters outputs

compared to the unperturbed (black) output for 2.5 mm (red) and 5 mm (blue) displacement steps.
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Figure 11: Mean and 2.5-97.5% percentiles interval of the normalized first (a) and second (b) modes filters outputs

compared to the unperturbed (black) output for 2.5 mm (red) and 5 mm (blue) displacement steps.

Then, two methodologies were considered to quantify the filtering quality decrease due to

the topology perturbations. First, the distribution of filter output amplitudes, for each frequency

point, was fitted into a Gamma probability distribution function which was then used to evaluate

the 95% confidence interval of the distribution. The results for both first and second modes

modal filters and for smaller (2.5 mm) and larger (5 mm) displacement steps are presented in
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Figure 12: Mean and minmax interval of the normalized first (a) and second (b) modes filters outputs compared to

the unperturbed (black) output for 2.5 mm (red) and 5 mm (blue) displacement steps.

Figure 10. It can be noticed that the responses differ mainly inside the frequency range of

interest. As expected, smaller values for the perturbation (displacement) steps lead to better

filtering quality. It can also be observed that the perturbation yields a mean output for which

the amplitude of the filtered ressonances are set to the same order of magnitude. This suggests

that the perturbation decreases the filtering quality more for the ressonances that are better

filtered. From the 95% confidence interval, the maximum error for the first mode modal filter

is approximately 20%, for a 5 mm perturbation, and 10%, for a 2.5 mm perturbation. For

the second mode modal filter, these maximum errors are, respectively, 28% and 13%. The

maximum error is located at the third resonance for all cases. Although, it is not advisable to

interpolate these results to estimate the confidence interval for other perturbation magnitudes,

it is reasonable to guess that perturbations smaller than 2.5 mm should lead to errors smaller

than 10%. Considering the mean outputs, the maximum errors for the first and second modes

modal filters are, respectively, 6.7% and 10% for larger perturbation and 3.5% and 5.5% for

smaller perturbation. The average filtering errors for the first and second modes modal filters

over the frequency range of interest (200-1000 Hz) are, respectively, 2% and 2.5% for larger

perturbation and 1% and 1.3% for smaller perturbation.

Since there is no guarantee that the distribution of filter output amplitudes is well fitted by

a Gamma probability distribution function, a second methodology was considered to quantify

the loss of filtering quality due to the topology perturbation. Figure 11 shows the confidence

intervals evaluated using the 2.5-97.5% percentiles. It can be noticed that Figures 10 and 11

are very similar, apart from a less smooth lower interval for the latter. In terms of maximum

filtering errors, results similar to the previous ones are also obtained, 21% and 26% for larger

perturbation and 11% and 13% for smaller perturbation.

Another methodology that could be used is to consider the full intervals from the samples

considered, i.e. maximum and minimum amplitudes obtained for the filter outputs. These are

shown in Figure 12. As expected, the intervals become wider and with less smooth lower

interval. The maximum filtering errors obtained using this methodology are 27% and 34% for

larger perturbation and 14% and 17% for smaller perturbation.
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6 CONCLUSIONS

This work presented a robustness analysis of modal filters using a topology optimized array

design with a reduced number of sensors subjected to uncertainties in the weighting coeffi-

cients and sensors positioning. For the weighting coefficients uncertainties, this was done using

stochastic modeling tools to build a probabilistic model of the uncertain parameters and Monte

Carlo method to evaluate the realizations of modal filters performance indices. It was shown

that optimal filter output is somewhat sensitive to the weighting coefficients but, as long as

the standard deviation from nominal values are kept around 0.0003, the performance predicted

with the nominal model is satisfactorily reliable. For the sensors positioning uncertainties, a

sampling-based sensitivity analysis was performed. Latin Hypercube Sampling technique was

used to reduce the number of samples and alleviate the computational cost of analyzing multiple

topologies. It was shown that for perturbation displacements smaller than 2.5 mm, the filter-

ing error should be smaller than 10% approximately. Future works will include experimental

validation of these uncertainties analyses and applications for active vibration control.
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