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Abstract. Probability theory offers an appropriate framework for quantifying the level of safety of a
structural system. Thus, it is possible to evaluate the chances that a structure fulfills prescribed perfor-
mance criteria during its lifetime due to uncertainties in loadings, deterioration processes, etc. The afore-
mentioned chances are usually termed as the reliability associated with a structure. Although reliability
constitutes a fundamental metric of safety, knowledge on the sensitivity of the reliability with respect
to variables such as material properties, cross section of structural members, etc. is also of paramount
importance. The information on reliability sensitivity is most valuable as it allows, for example, taking
decisions on the final design of a structure such that its level of safety is relatively invariant in case un-
expected changes occur.
Within the aforementioned framework, this contribution presents a novel approach for estimating the
reliability sensitivity of a particular type of structures, namely linear structural systems subject to dy-
namic loading modeled as a Gaussian stochastic process. The sensitivity is computed with respect to
deterministic variables that affect the structural performance (such as mass, stiffness, cross section of
structural members, etc.). The proposed approach is based on an efficient simulation technique and local
approximations of the functions used to model the structural performance. The reliability measure is ex-
pressed in terms of the first excursion probability, which is a criterion widely used in stochastic structural
dynamics.
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1 INTRODUCTION

One of the key issues for the analysis and design of civil engineering systems is the appropri-
ate identification of the actions (such as water wave loading, wind loading, ground acceleration,
etc.) that affect the structural performance during the life time. In most cases, such actions can-
not be characterized deterministically due to inherent uncertainties (Freudenthal, 1956). Prob-
ability theory offers an appropriate framework for accounting for these uncertainties by means
of, e.g. stochastic processes (Soong and Grigoriu, 1993). In this way, it is possible to generate
a metric of the level of safety of a structural system. This metric refers to the reliability, i.e.
the probability that a structure fulfills certain performance requirements during its lifetime. The
complement of the reliability is the probability of failure (PF ), i.e. the probability that a struc-
ture violates prescribed performance criteria.
Besides determining the level of safety associated with a particular structural system, it is also
of interest analyzing the sensitivity of the reliability with respect to variations in the proper-
ties of the structure (Au, 2005; Bjerager and Krenk, 1989; Ditlevsen and Madsen, 1996). For
example, the determination of the variation in the reliability due to a change in the size of a
structural member can provide useful information to increase the safety level or to identify the
most influential design parameters.
In cases of practical interest, the quantification of the reliability of a structure is an extremely
challenging task, as it requires evaluating integrals in high dimensional spaces involving im-
plicit domains (Schuëller et al., 2004). In consequence, the evaluation of the sensitivity of
the reliability with respect to system parameters will be usually even more involved than the
reliability assessment. In view of this issue, this contribution proposes a novel approach for
estimating reliability sensitivity for a particular class of structural systems, namely linear struc-
tures subject to dynamic loading modeled as a Gaussian stochastic process. The sensitivity is
computed with respect to deterministic variables that affect the structural performance (such
as mass, stiffness, cross section of structural members, etc.). The proposed approach is based
on an efficient simulation technique and local approximations of the functions used to model
the structural performance. The reliability measure is expressed in terms of the first excursion
probability, which is a criterion widely used in stochastic structural dynamics.
The subject of efficient reliability sensitivity analysis has been considered several times in the
literature. For example, sensitivity analysis of reliability estimates generated using approximate
methods such as the First- and Second-Order Reliability Methods (FORM and SORM, respec-
tively; see, e.g. Ditlevsen and Madsen (1996)) has been thoroughly studied in the literature
for problems involving component or system reliability, see e.g. Bjerager and Krenk (1989);
Karamchandani and Cornell (1992); Enevoldsen and Sørensen (1993, 1994). These approaches
take advantage of the so-called design point associated with a particular reliability problem
and eventual correlations between different individual failure modes in order to estimate the
sought sensitivity efficiently. Reliability sensitivity analysis has also been studied within the
framework of simulation methods. For example, in Melchers and Ahammed (2004), a method
combining Monte Carlo Simulation (MCS) with a linear approximation scheme allows estimat-
ing the sought sensitivity. In Wu (1994), an estimator for the sensitivity based on Importance
Sampling (IS) is proposed.
A common aspect of all approaches described above is that they are applicable whenever sen-
sitivity is estimated with respect to a parameter characterizing the random variables of the re-
liability problem, such as the mean or standard deviation. However, these approaches are not
directly applicable in case one seeks to estimate the sensitivity with respect to a deterministic
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variable. Thus, alternative approaches have been developed to address this case. For example,
in Royset and Polak (2004), an algorithm for estimating the gradient of the failure probability
using either MCS or IS is presented. This algorithm requires solving equations characterizing
the structural performance either analytically or numerically; however, this can be an involved
task. An alternative approach for reliability sensitivity analysis was introduced in Au (2005).
The key issues of this approach are the association of an instrumental variability with the deter-
ministic design variables involved in the sensitivity analysis and the application of the Bayes’
theorem. Nonetheless, the range of applicability of this approach is limited as no more than
3 or 4 design variables can be considered simultaneously when performing sensitivity analysis
(Koutsourelakis, 2008). A different strategy for estimating reliability sensitivity within the con-
text of non linear structural dynamics was introduced in Jensen et al. (2009); Valdebenito and
Schuëller (2009). The main aspect of this strategy is the introduction of a series of approxima-
tion concepts both at the level of reliability estimation and the functions modeling the structural
performance. This approach has been tested successfully in problems involving up to 10 design
variables.
In this contribution, the strategy developed in Jensen et al. (2009); Valdebenito and Schuëller
(2009) is applied in order to estimate the reliability sensitivity of linear systems subject to dy-
namic Gaussian excitation. Novel aspects explored herein are the integration of the aforemen-
tioned strategy with an efficient IS scheme developed in Au and Beck (2001b) and an efficient
means for generating approximations of functions related with the structural performance based
on the sensitivity analysis of the spectral properties of the linear system under study, following
the method proposed in Nelson (1976). These two novel aspects lead to a considerable reduc-
tion in the numerical costs associated with reliability sensitivity estimation when compared with
the case of non linear structural systems.
The structure of this paper is as follows. Section 2 presents the details on the problem studied
in this contribution. The approach for evaluating the structural response considering uncertain-
ties in the excitation is discussed in Section 3. Then, Section 4 addresses an efficient simulation
technique introduced in Au and Beck (2001b) for reliability evaluation of linear systems subject
to Gaussian excitation. The proposed approach for reliability sensitivity estimation is discussed
in Sections 5 and 6. A numerical example demonstrating the properties of the proposed ap-
proach is presented in Section 7. Finally, the paper closes with some final remarks and outlook.

2 GENERAL FORMULATION OF THE PROBLEM

Consider a structural system subject to a stochastic excitation of duration T . Let this exci-
tation be represented by a random variable vector z ∈ Ωz ⊂ Rnz of dimension nz character-
ized by a probability density function p(z). Moreover, consider a set of responses of interest
ri, i = 1, . . . , nr of the system modeling the structural performance due to the stochastic ex-
citation such as, e.g. displacements. As the excitation acting over the structure is uncertain,
the responses of interest will be uncertain as well. In addition, suppose there is a set of design
variables grouped in a vector y of dimension ny modeling properties of the system (such as
cross section of structural members, material properties, etc.) that can be changed in order to
alter the responses of interest. Clearly, the aforementioned responses of interest will be a func-
tion of both the design variable vector y and the random variable vector z characterizing the
excitation. As this last vector also depends on time t, the responses will be also a function of
time, i.e. ri = ri(t,y, z), i = 1, . . . , nr, t ∈ [0, T ].
For design purposes, the responses of interest ri, i = 1, . . . , nr are compared against accept-
able threshold levels r∗i , i = 1, . . . , nr. Within a deterministic framework, the objective would
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be ensuring that these responses do not exceed their prescribed thresholds. However, when
uncertainties are considered, the aforementioned condition can be fulfilled only in a fraction
of the possible cases, i.e. there is a probability that the responses do exceed their prescribed
thresholds. Thus, reliability offers the means for quantifying the level of safety associated with
a structural system. A criterion widely used to characterize the level of safety of a structure is
the first excursion probability (see, e.g. Soong and Grigoriu (1993)). This probability measures
the chances that the uncertain responses exceed in magnitude the prescribed thresholds within
a specified time interval. In other words, this probability measures the chances of occurrence of
the following failure event F .

F =

{
z ∈ Ωz : max

i=1,...,nr

(
max
t∈[0,T ]

(
|ri(t,y, z)|

r∗i

))
≥ 1

}
(1)

It is important to remark that failure does not necessarily imply collapse. In fact, the criterion
proposed in eq. (1) may refer to, e.g. partial damage states or unacceptable system performance.
Alternatively, the failure event defined in eq. (1) can be expressed in terms of the so-called
normalized demand DN(y, z) (Au and Beck, 2001a):

F = {z ⊂ R : DN(y, z) ≥ 1} (2)

where:

DN(y, z) = max
i=1,...,nr

(
max
t∈[0,T ]

(
|ri(t,y, z)|

r∗i

))
(3)

Once the failure event has been defined, it is possible to express its probability of occurrence by
means of the following classical probability integral.

PF (y) =

∫
DN (y,z)≥1

p(z)dz =

∫
z∈Ωz

IF (y, z)p(z)dz (4)

In the last equation, PF (y) denotes the probability of failure (i.e. probability of occurrence
of the event F ) and IF (y, z) is an indicator function that is equal to 1 in case the normalized
demand is equal or larger than 1 and 0 otherwise.
As indicated in eq. (4), the probability of failure depends on the design variable vector y. This
has a clear physical interpretation: modifications on this vector (such as an increase in mass or
stiffness) will certainly alter the response of the structure and also the probability of exceeding
the prescribed thresholds. Thus, for design purposes, it is important to know not only the prob-
ability of failure PF (y) but also the change that this probability experiments due to changes in
the design vector, as this allows determining the most influential design variables. This is de-
noted as the reliability sensitivity. A classical measure for sensitivity is calculating the gradient
of the quantity of interest. However, within the context of linear dynamics, the estimation of
the gradient of a probability may not be feasible as the gradient may not exist due to the non
smooth normalized demand (see, e.g. Kang et al. (2006)). Therefore, in this contribution, an
approximate representation of the failure probabilities that is differentiable is constructed and
then, the gradient of this approximation is estimated. Details on this strategy are described in
Sections 5 and 6.

3 STRUCTURAL RESPONSE EVALUATION

3.1 Mechanical Model

The first step for assessing reliability and its sensitivity is characterizing the structural re-
sponse. The differential equation describing the motion of a linear structure of n degrees of
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freedom excited by a dynamical excitation is given by (see, e.g. Chopra (1995)):

Mẍ(t) +Cẋ(t) +Kx(t) = Gf(t) (5)

where x(t) is the displacement response vector of dimension n; M , C and K are the mass,
damping and stiffness matrices of dimension n × n; f(t) is a vector of dimension nf mod-
eling the excitations acting over the structure; finally, G is a n × nf dimensional matrix that
couples the excitation components of the vector f(t) with the degrees of freedom of the struc-
ture. Note that the excitation vector f(t) depends on the vector of random variables z de-
scribed in Section 2; the detailed relation between these vectors is discussed in Section 3.2.
The responses of interest ri, i = 1, . . . , nr associated with a particular set of values of y can
be evaluated using a convolution integral including the so-called impulse response functions
hi,j(t,y), i = 1, . . . , nr, j = 1, . . . , nf , as indicated below.

ri(t,y, z) =

nf∑
j=1

∫ t

0

hi,j(t− τ,y)fj(τ)dτ (6)

In the last equation, fj(t) is the j-th component of the excitation vector and hi,j(t,y) is the
impulse response function for the response function ri at time t due to a unit impulse applied
at the j-th input at time 0, where zero initial conditions have been assumed without loss of
generality. It is noted that the dependence of the response function ri on the vector of random
variables z is due to the characterization of the stochastic excitation f(t). In case the response
function of interest is given, for example, as a linear combination of the components of the
displacement vector, that is, ri = γTi x(t) and in case the system possesses classical damping,
the corresponding impulse response function is given by:

hi,j(t,y, z) =
n∑
r=1

αi,jr
1

ωd,r
e−ζlωrt sin(ωd,rt), αi,jr =

γTi φrφ
T
r gj

φTrMφr
(7)

where αi,jr , r = 1, . . . , n, i = 1, . . . , nr, j = 1, . . . , nf are mode factors, φr, r = 1, . . . , n
are the eigenvectors associated with the eigenproblem of the undamped equation of motion,
ωr, r = 1, . . . , n are the natural frequencies of the system, ζr, r = 1, . . . , n are the corre-
sponding damping ratios, ωd,r = ωr

√
(1− ζ2

r ), r = 1, . . . , n are the damped frequencies and
gj is the j-th column of the G matrix. The last equation can be interpreted as the modal su-
perposition formula for the impulse response functions. One advantage of this representation
is that in general only a relatively small number of modes m will be needed in for performing
dynamic analysis, i.e. m � n. Eventually, the contribution of the remaining modes can also
be considered in the formulation by using the static solution of the structural modes of higher
order (Bathe, 1996).

3.2 Stochastic Excitation

Stochastic processes offer an adequate means for describing quantities fluctuating randomly
in time such as earthquake ground motion, water wave loading, etc. In particular, a Gaussian
processXt, t ∈ [0, T ] is such that for every finite set {t1, t2, . . . , tnT

} ∈ [0, T ] , the random vari-
ablesXt1 , Xt2 , . . . , XtnT

are jointly normally distributed (see, e.g. Soong and Grigoriu (1993)).
A quite general means for representing Gaussian processes is by applying the Karhunen-Loève
(K-L) expansion of the corresponding covariance function (see, e.g. Loève (1963)). This repre-
sentation is applicable to stationary as well as to non stationary stochastic processes. In order to
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apply this representation for the excitation vector f(t) acting over a particular structural system
(see eq. (5)), consider a discrete representation of time such that ∆t = T/(nT − 1) where T
is the duration of the excitation and nT the number of time points so that the time instants of
analysis are tk = (k − 1)∆t, k = 1, . . . , nT . Thus, the discrete K-L representation of the j-th
component of f(t) is the following.

fj(tk) ≈ f 0
j (tk) +

nKL∑
s=1

f sj (tk)z
j
s , k = 1, . . . , nT , j = 1, . . . , nf (8)

In the equation above, zjs , s = 1, . . . , nKL are independent, identically distributed standard
Gaussian random variables, f 0

j (tk) and f sj (tk) denote the mean function and the s-th K-L com-
ponent of fj(tk), respectively, and nKL is the order of truncation of the series expansion. The
K-L vectors are determined by solving an eigenproblem of the corresponding covariance matrix
of the discrete process. In the remaining part of this contribution, it is assumed – without loss
of generality – that the excitation is a zero-mean process, i.e. f 0

j (tl) = 0, l = 1, . . . , nT .
Considering the characterization of the components of the excitation vector described above
and considering the convolution integral in eq. (6), the dynamic response of interest evaluated
at time tk can be written as:

ri(tk,y, z) = ∆t

nf∑
j=1

nKL∑
s=1

(
k∑
l=1

εlhi,j(tk − tl,y)f sj (tl)

)
zjs (9)

where εl is a coefficient depending on the numerical integration scheme used in the evaluation
of the convolution integral.

4 RELIABILITY ANALYSIS

4.1 Characterization of Elementary Failure Events

According to the definition in eq. (1), failure takes place whenever the absolute value of
any of the responses exceeds the prescribed thresholds at any time within the duration of the
stochastic excitation. Considering the discretization scheme proposed above, the occurrence of
the failure event reduces to comparing the value of the nr responses during the nT discrete time
steps against the prescribed thresholds. Thus, the failure event F can be expressed as the union
of elementary failure events Fi,k, i = 1, . . . , nr, j = 1, . . . , nT , i.e.:

F =
nr⋃
i=1

nT⋃
k=1

Fi,k (10)

where:

Fi,k =

{
z ∈ Ωz :

|ri(tk,y, z)|
r∗i

≥ 1

}
(11)

Based on eq. (10), it is clear that the probability of failure is actually the probability of the
union of a number of elementary failure elements. According to eq. (11), the elementary failure
regions are defined as the region in the random variables space which cause a barrier crossing at
instant tk due to the i-th response function. Then, it is seen that the evaluation of PF (y) corre-
sponds to a reliability problem of a series system of nr × nT failure elements. Using the linear
relations between input and response in terms of the Gaussian random variables z (see eq. (9)),
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the so-called design points can be established in a straightforward manner defining uniquely the
elementary failure regions Fi,k, i = 1, . . . , nr, j = 1, . . . , nT , see e.g. Der Kiureghian (2000);
Ditlevsen and Madsen (1996). It is reminded that the design point associated with the (i, k)-th
elementary failure domain – which is denoted as z∗i,k – can be defined using two equivalent
criteria (Freudenthal, 1956). According to the geometrical criterion, the design point is the re-
alization in the standard normal space that belongs to Fi,k with the minimum Euclidean norm
with respect to the origin. According to the probabilistic interpretation, the design point is the
point belonging to Fi,k with highest probability density p(z).
Once the design point z∗i,k has been established, the calculation of the probability of occur-
rence of the elementary failure events is straightforward. In particular, this probability is equal
to 2Φ(−βi,k(y)), where Φ(·) is the cumulative distribution function of the standard Gaussian
distribution, and βi,k(y) is the so-called reliability index. Note that this reliability index is the
norm of the corresponding design point, i.e. βi,k(y) = ||z∗i,k||. For the particular case under
study, the expression for calculating the reliability index associated with the i-th response and
k-th discrete time is the following (see, e.g. Der Kiureghian (2000)).

βi,k(y) = ||z∗i,k|| =
r∗i

∆t

√∑nf

j=1

∑nKL

s=1

(∑k
l=1 εlhi,j(tk − tl,y)f sj (tl)

)2
(12)

Additionally, the (s, j)-th component of the vector z∗i,k is equal to:

(
z∗i,k
)s
j

=
r∗i

(∑k
l=1 εlhi,j(tk − tl,y)f sj (tl)

)
∆t
∑nf

j=1

∑nKL

s=1

(∑k
l=1 εlhi,j(tk − tl,y)f sj (tl)

)2 , s = 1, . . . , nKL, j = 1, . . . , nf

(13)

4.2 Simulation Strategy

As the elementary failure regions are fully described by the design points, Importance Sam-
pling (IS) arises as an option for evaluating the probability of occurrence (see, e.g. Schuëller
and Stix (1987)). Thus, the probability integral in eq. (4) is estimated as:

PF (y) =

∫
z∈Ωz

IF (y, z)
p(z)

pIS(z)
pIS(z)dz ≈ 1

N

N∑
v=1

IF (y, z(v))
p(z(v))

pIS(z(v))
(14)

where pIS(z) is the Importance Sampling density (ISD) function and z(v), v = 1, . . . , N are
samples of the vector of uncertain parameters simulated according to pIS(z). The key issue
for the application of the IS scheme described in eq. (14) is the design of an appropriate ISD
function ensuring a low variability of the estimator of the probability. In particular,the ISD
function proposed in Au and Beck (2001b) is applied here. This importance sampling density
is defined as a weighted sum of probability density functions conditioned on the elementary
failure events described previously, that is:

pIS(z) =
nr∑
i=1

nT∑
k=1

ωi,k(y)pIS(z/Fi,k) (15)

where ωi,k ≥ 0 is the weight associated with the elementary failure domain Fi,k and it is defined
such that:

ωi,k(y) =
Φ(−βi,k(y))∑nr

l=1

∑nT

s=1 Φ(−βl,s(y))
(16)
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Additionally, the distribution of z conditioned on the elementary failure domain Fi,k is defined
as (according to Bayes’ theorem):

pIS(z/Fi,k) =
p(z)IFi,k

(y, z)

2Φ(−βi,k(y))
(17)

where IFi,k
(y, z) is an indicator function equal to one in case the (i, k)-th failure event takes

place and zero, otherwise. Replacing the expressions in eqs. (15), (16) and (17) into eq. (14)
yields the following estimator for the failure probability:

PF (y) ≈ P̂F (y) =
2

N

(
nr∑
i=1

nT∑
k=1

Φ(−βi,k(y))

)
N∑
v=1

1∑nr

i=1

∑nT

k=1 IFi,k
(y, z(v))

(18)

where P̂F (y) denotes an estimator of the failure probability. It should be noted that in the
estimator in eq. (18), the indicator function IF (y) is set equal to one, as the generation of
samples of z conditioned on an elementary failure event ensures that the failure events occurs.
In summary, the estimation of the failure probability using the estimator in eq. (18) requires
the characterization of the elementary failure domains through the design points and reliability
indexes. Samples of the vector z conditioned on the elementary failure events are required
as well; these samples can be generated according to the technique proposed in Au and Beck
(2001b). Finally, the structural response associated with each of the samples of z must be
evaluated and compared with the threshold levels in order to compute the indicator function
IFi,k

(y, z).

5 FRAMEWORK FOR ESTIMATING RELIABILITY SENSITIVITY

As already mentioned above, the sought sensitivity of the probability of failure is expressed
as the gradient of an approximate representation of the probability. This approximation is con-
tinuous and smooth, ensuring differentiability. In particular, consider the following approximate
representation of the normalized demand function:

DN(y + ∆y, z) ≈ D̃N(y + ∆y, z) = DN(y, z) +

ny∑
q=1

aq∆yq (19)

where ∆y is a certain perturbation of the design variable vector and aq, q = 1, . . . , ny are real
coefficients (the issue on how to compute these coefficients is discussed in Section 6). Now,
consider the following limit, expressing the derivative of the approximate failure probability
P̃F (y) with respect to yq, q = 1, . . . , ny.

∂P̃F (y)

∂yq
= lim

∆yq→0

P̃F (y + v(q)∆yq)− P̃F (y)

∆yq
(20)

= lim
∆yq→0

P
[
D̃N(y + v(q)∆yq, z) ≥ 1

]
− P

[
D̃N(y, z) ≥ 1

]
∆yq

(21)

where P [·] denotes the probability of occurrence of the event between brackets and where v(q)
is a vector of length ny with zero entries, except by the q-th entry, which is equal to one.
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Introducing the approximation of the normalized demand function of eq. (19) in eq. (21) yields
the following result.

∂P̃F (y)

∂yq
= lim

∆yq→0

P
[
DN(y, z) ≥ 1− aq∆yq

]
− P [DN(y,θ) ≥ 1]

∆yq
(22)

To evaluate the limit in eq. (22), it is necessary to estimate the probability that the normalized
demand (for a given design y) exceeds two different threshold levels. That is, it is necessary to
estimate P [DN(y, z) ≥ b] for the values b = 1 and b = 1 − aq∆yq . Numerical experience has
shown that this relation can be approximated by means of an exponential function (Gasser and
Schuëller, 1997), i.e.:

P [DN(y, z) ≥ b] ≈ eψ0+ψ1(b−1), b ∈ [1− ε, 1 + ε] (23)

where ε is a small constant, e.g. ε = 0.02 and where ψ0, ψ1 are real coefficients (the details on
the calculation of these coefficients are discussed in Section 6). After introducing eq. (23) in
(22), an expression for computing the probability sensitivity can be obtained, as shown below.

∂P̃F (y)

∂yq
= lim

∆yq→0

eψ0−ψ1aq∆yq − eψ0

∆yq
= −ψ1aqe

ψ0 = −ψ1aqP̂F (y) (24)

It is most interesting to note that the expression for estimating the derivative of the failure
probability in eq. (24) depends on the estimate of the failure probability P̂F (y), the coefficient
ψ1 and on aq, q = 1, . . . , ny. While the estimate of the failure probability can be computed with
the procedure outlined in Section 4, the remaining coefficients are obtained using the procedure
outlined in the following Section.

6 IMPLEMENTATION OF RELIABILITY SENSITIVITY ANALYSIS

6.1 Exponential Approximation of Probability

As discussed in the previous Section, the implementation of the proposed strategy for re-
liability sensitivity requires the generation of an exponential approximation of the probability
that the normalized demand exceeds a threshold b. The procedure for reliability estimation de-
scribed in Section 4 allows estimating the probability that the normalized demand exceeds 1.
However, this procedure can be easily extended for estimating the required relation. As this
required relation must be estimated for a range b ∈ [1− ε, 1 + ε], the definition of the elemen-
tary failure domains is slightly altered. In particular, the reliability indexes and design points
defined in eqs. (12) and (13) are modified as follows: the term that denotes the threshold level
r∗i is replaced by r∗i (1 − ε). This change ensures that the samples of z are such that the values
of the associated normalized demands are equal or larger than (1 − ε). In the second place, an
indicator function IF,b(y, z) is introduced in the estimator of eq. (18). This indicator function
is defined such that:

IF,b(y, z) =

{
1 if DN(y, z) ≥ b
0 if DN(y, z) < b

(25)

The indicator function in the equation above is dependent on the threshold level b. This function
is then included in the probability estimator of eq. (18) as shown below.

P̂F [DN(y, z) ≥ b] =
2

N

(
nr∑
i=1

nT∑
k=1

Φ(−βi,k(y))

)
N∑
v=1

IF,b(y, z
(v))∑nr

i=1

∑nT

k=1 IFi,k
(y, z(v))

(26)
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The estimator above can be used directly to estimate the probability that the normalized demand
exceeds a certain threshold level . Thus, the estimator is applied as follows. Firstly, samples
of the vector z conditioned on the modified elementary failure events are generated. Then,
response and normalized demand associated with each of these samples is computed. In the next
step, the probability that the normalized demand exceeds a threshold level is computed over a
suitable grid b ∈ [1 − ε, 1 + ε]. This allows generating pairs (b, P̂F [DN(y, z) ≥ b]). Finally,
the coefficients ψ0, ψ1 of the exponential approximation proposed in eq. (23) are calculated on
a least square sense using the aforementioned pairs.
An important feature of the approach proposed above for calculating the coefficients ψ0, ψ1 is
that it requires a single run of the simulation algorithm. Moreover, it should be noted that only
minor modifications are introduced to the original approach for estimation the probability of
failure presented in Au and Beck (2001b) and described in Section 4 of this contribution.

6.2 Linear Approximation of Normalized Demand Function

The expression in eq. (19) is as a linear expansion of the normalized demand function
with respect to a perturbation in the design variable vector. In most cases, this expansion
will not be exact, as changes in the normalized demand function due to perturbations in the
design variables are non linear, implicit functions. Nonetheless, as long as the coefficients
aq, q = 1, . . . , ny are calibrated appropriately, it could be expected that D̃N(y + ∆y, z) can
approximate DN(y + ∆y, z) reasonably well. For a better understanding of the last point,
consider the definition of normalized demand function in eq. (3). As this function includes
the max(·) operator, several elementary failure domains may be relevant in the calculation of
PF (y). The sensitivity of each these elementary domains with respect to the design variables
will be – in general – different. Thus, the linear expansion shown in eq. (19) will not capture
those individual sensitivities. However, the coefficients aq represent an average sensitivity, i.e.
they are an approximate representation of the sensitivity of the individual elementary failure
domains.
In view of the issues discussed above, the proposed approach for calibrating the coefficients aq
consists in two steps. In the first one, samples of the vector modeling the uncertain excitation
z are generated such that they lie precisely in the boundary of the failure event. The second
step consists in calculating the sensitivity of the normalized demand function with respect to
the design variables at the samples generated at the previous step. Thus, the sought coefficients
can be calculated as the average of the sensitivities calculated for each sample.
From the two steps described above, the first one can be easily achieved by scaling the samples
of z generated at the reliability analysis step. Suppose that for a particular sample z?, the asso-
ciated normalized demand function is equal to DN(y, z?) = b?. Then, the required sample is
equal to the original sample multiplied by the reciprocal of b?, i.e. DN(y, (1/b?)z?) = 1. This
property holds due to the linearity of the equation of motion with respect to the excitation (see
eq. (5)).
The second step of the proposed approach for calibrating the coefficients aq consists in estimat-
ing the sensitivity of the normalized demand function with respect to the design variables at the
sample point z?. Suppose that the sample z? lies in the boundary of the (i?, k?)-th elementary
failure domain. That means that the failure event is reached because the i-th response achieved
the threshold value r∗i at the k-th discrete time step. Thus, the sensitivity of the associated nor-
malized demand function can be approximated by considering the derivatives of corresponding
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response at that particular time, i.e.:

∆DN(y, (1/b?)z?)

∆yq
≈ 1

r∗i
sgn (ri(tk,y, (1/b

?)z?))
∂ri(tk,y, (1/b

?)z?)

∂yq
, q = 1, . . . , ny (27)

In the last equation, sgn(·) is the sign function. The derivative of the response function ri at the
k-th time can be computed by calculating the derivative of the impulse response function with
respect to the design variables. Thus, considering the expression for calculating the response of
interest in eq. (9), the expression for estimating the sensitivity of the response is as follows.

∂ri(tk,y, z)

∂yq
= ∆t

nf∑
j=1

nKL∑
s=1

(
k∑
l=1

εl
∂hi,j(tk − tl,y)

∂yq
f sj (tl)

)
zjs (28)

In the equation above, ∂hi,j(tl,y)/∂yq represents the derivative of the impulse response func-
tion with respect to the q-th design variable. Moreover, it is assumed that the coefficients of
the K-L expansion of the stochastic excitation do not depend on the design variable yq, q =
1, . . . , ny.
The calculation of the derivative of the impulse response function implies calculating the deriva-
tive of the spectral properties (frequencies and eigenvectors associated with the eigenproblem of
the undamped equation of motion). In this contribution, an efficient procedure for determining
eigenvector derivatives developed in Nelson (1976) is used. In that procedure the calculation of
the derivatives of a given eigenvector requires only eigendata associated with that eigenvector.
The simplified procedure is much more efficient than standard methods in which eigenvector
derivatives are expressed in terms of all eigenvectors.
Once the sensitivities of the responses are calculated according to eq. (28), the sought coef-
ficients aq are calculated taking the average of the sensitivities calculated for all the samples
generated.

aq =
1

N

N∑
v=1

∆DN(y, (1/b?,(v))z?,(v))

∆yq
(29)

An interesting feature of the approach proposed above is that it requires a sensitivity analysis of
the spectral properties. The numerical costs associated with this analysis can be considerably
lower than solving the eigenproblem for perturbed values of the design variables.

7 NUMERICAL EXAMPLE

7.1 Description

A 2-DOF linear shear beam model is considered in the example. The model is depicted
in fig. (1). The system is excited by a horizontal ground acceleration gA(t) of 15 [s] duration,
which is modeled as a discrete white noise. The responses of the system to be controlled involve
the displacements of each floor due to the ground acceleration. These responses are compared
with prescribed thresholds in order to define whether or not failure occurs. The objective is
estimating the sensitivity of the probability of failure with respect to the stiffnesses of each of
floor.
As shown in fig. (1), each floor of the model is supported by two columns. It is assumed that

the columns are perfectly clamped and axially very stiff; thus, each column can be described
by its lateral stiffness ki/2 = 9 × 106 [N/m], i = 1, 2. The mass of each floor of the model is
equal to m1 = m2 = 30 × 103 [kg]. Additionally, two viscous dampers are located between
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gA(t)

m1

m2

k1/2k1/2

k2/2k2/2

c1

c2

Figure 1: Example - 2-DOF shear beam model

each floor; the damping ratios associated with these dampers are equal to 4% for each vibration
mode. Thus, the equation of motion of the mechanical model can be written as:(

m1 0
0 m2

)
ẍ(t) +

(
c1 + c2 −c2

−c2 c2

)
ẋ(t) +

(
k1 + k2 −k2

−k2 k2

)
x(t) = f(t) (30)

The external force vector is defined as f(t) = −MgA(t), where M is the mass matrix and
gA(t) is a horizontal ground acceleration, which is modeled as a discrete white noise of 15
[s] duration. A time discretization step equal to ∆t = 0.01 [s] is used to model the ground
acceleration, i.e. a total of 1501 time instants are involved in the problem. The discrete rep-
resentation of the white noise signal is such that the coefficients of the K-L expansion of the
ground acceleration gA are equal to:

f s(tk) =

{ √
2πS
∆t

if s = k

0 if s 6= k
, k = 1, . . . , 1501 (31)

In the equation above, S = 10−4 [m2/s3] is the spectral density of the white noise.
The failure event is formulated as a first passage problem during the time of analysis; the struc-
tural responses to be controlled are the 2 interstorey drift displacements and the roof displace-
ment. The threshold values are chosen equal to 6× 10−3 [m] for each of these three responses.
In addition, the design variable vector y groups the stiffnesses of the columns of each floor, i.e.
y = 〈k1, k2〉T . Thus, the reliability problem is formally defined as:

PF (y) =

∫
DN (y,z)≥1

p(z)dz (32)

where:

DN(y, z) = max
i=1,2,3

(
max

k=1,...,1501

(
|ri(∆t(k − 1),y, z)|

r∗i

))
(33)

7.2 Results

In order to estimate the reliability sensitivity of the failure probability in eq. (32) with respect
to the stiffnesses, two different approaches are considered, namely:

1. Firstly, the sensitivity is estimated by performing finite differences, i.e.:

∆P̂F (y)

∆yq
=
P̂F (y + v(q)∆yq)− P̂F (y − v(q)∆yq)

2∆yq
, l = 1, 2 (34)
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Figure 2: Sensitivity Analysis - 10 independent estimations using proposed approach compared to reference solu-
tion

In the estimator of the equation above, the perturbation introduced is such that ∆yq/yq =
0.1%. As it can be noted from the formula, two reliability analyses are required for
estimating the sensitivity with respect to one design variable. For each of these reliability
analyses, a total of 200 samples of the vector modeling the excitation are generated. As
the sensitivity measure in eq. (34) may be affected by the variability of the probability
estimator P̂F (y), a total of 200 independent estimations of the sensitivity are performed
and then, an average result is considered. Thus, the estimate of the sensitivity generated
using this procedure is considered as a reference.

2. Secondly, the sensitivities are estimated using the approach proposed in Sections 5 and
6. A total of 200 independent runs of this approach are performed, in order to assess the
variability of the estimates. Each individual simulation involves generating 200 samples
of the vector modeling the stochastic excitation.

The results obtained are shown in figs. (2) and (3), respectively. Figure (2) shows the estimates
of probability sensitivity in the form of arrows indicating the magnitude of the sensitivity; the
results obtained with the proposed approach are presented with gray, thin line (only ten simula-
tions were plotted for the sake of clarity) and the reference result with black, thick line. It can
be observed that the estimates generated with the proposed approach present very little disper-
sion. Moreover, on the average, they tend to converge to the reference result. Figure (3) also
shows the probability sensitivity estimates for the two approaches described above. Note that
this figure includes the results for the proposed approach in terms of the mean plus/minus one
standard deviation. As it can be observed, the variability of the proposed approach is quite low,
producing accurate estimates of the probability sensitivity.

8 CONCLUSIONS AND OUTLOOK

This contribution has presented an approach for estimating reliability sensitivity of linear
structures subject to Gaussian stochastic excitation. The approach is based on a general frame-
work that was proposed for non linear systems. Taking advantage of the linearity of the problem
studied here, this general framework was modified appropriately.
The key issue of the proposed approach is replacing the original reliability problem by one that
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Figure 3: Sensitivity Analysis - mean ± std. deviation using results of proposed approach compared to reference
solution

is differentiable. Thus, the sought sensitivities are calculated by combining an efficient simula-
tion technique with two approximation concepts. The first of these approximations involves the
construction of an exponential function modeling the probability that the normalized demand
exceeds a prescribed threshold. This approximation can be constructed using the information
generated by the simulation technique when estimating reliability. The second approximation
involves the sensitivity analysis of the responses of interest of the structural system with respect
to design variables. This sensitivity analysis can be performed most efficiently by applying a
specific procedure for computing the sensitivity of spectral properties.
A salient feature of the proposed approach for reliability sensitivity is that it can be very effi-
cient from a numerical point of view. The same samples generated for reliability sensitivity can
be employed for constructing the aforementioned exponential approximation. In addition, the
second approximation mentioned above requires a sensitivity analysis of the spectral properties,
which is a problem that is numerically inexpensive when compared to solving a full eigenprob-
lem for perturbed values of the design variable vector.
Future research efforts on the approach proposed here aim at testing the proposed approach in
examples involving a larger number of design variables, subject not only to white noise but
also to other types of Gaussian processes. Particular emphasis will be given at investigating the
variability of the sensitivity estimators produced with the method presented in this contribution
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