
SIMULATION OF WAVE PROPAGATION IN SEMI-INFINITE
DOMAINS USING THE FINITE DIFFERENCE METHOD ON A GPU

BASED ON CLUSTER.

Marcelo P. M. Zamitha, Diego N. Brandãoa, Mauricio Kischinhesvkya, Regina Célia P.
Leal-Toledoa, Otton T. Silveira Filho a, Esteban W. G. Cluaa, Anselmo A. Montenegroa

and André Bulcãob

aInstitute for Computing, Federal Fluminense University, Passo da Pátria Street, 156 Niterói, Rio de
Janeiro, Brasil, {mzamith, dbrandao, kisch, leal, otton, esteban, anselmo}@ic.uff.br,

http://www.ic.uff.br

bCentro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (Cenpes), Petrobrás, Av.
Horácio Macedo, 950, Cidade Universitária. Rio de Janeiro,Brasil, bulcao@petrobras.br,

http://www.petrobras.br

Keywords: GPU Computing, Finite Difference Method, Wave Propagation, MPI.

Abstract.
The scattering of acoustic waves has been considered of pratical interest for many areas. Relevant

works are reported in geophysics, medical images, structures’ damage identification, etc. This work
applies the finite difference method to simulate the scattering of acoustic waves in semi-infinite non-
homogeneous media. Solving these problems can demand a highcomputational effort and, in some
cases, make the proposed simulation impractical. The approach through high performance computing,
using tools as MPI (Message Passing Interface) and GPUs (Graphic Processor Units ), can soften this
limitation. This work proposes a solution of such problem byusing a heterogeneous cluster based on
GPUs, taking advantage of its high level of parallelism. Computational results illustrate the viability of
the adopted approach.

Mecánica Computacional Vol XXIX, págs. 7147-7157 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.ic.uff.br
http://www.petrobras.br


1 INTRODUCTION

Hyperbolic Partial Differential Equations (PDEs) describe a large variety of physical phe-
nomena governed by wave behavior. The acoustic wave equation is the simplest of such mod-
els, but it can be applied to describe complex problems as wave propagation in geophysics
(Michea and D.Komatitsch, 2010), structures’ damage identification (Fernandes et al., 2010)
and so on.

Numerical methods are necessary to provide approximate solutions to real wave propagation
problems. Often, numerical modeling of the scattering of acoustic waves requires high-spatial
solution; the discretization of the domain may contain millions of elements, which imposes a
significant computation burden. Thus, the simulation of scattering of acoustic waves phenom-
ena is a computationally demanding task (Kern and Méfire, 1996).

In solving large domains, single processor computers are limited and often incapable of
managing the required memory and computational time requirements. In order to improve the
performance of these finite difference methods, it is necessary to explore other computational
strategies such as parallelization, using clusters or gridcomputers.

Parallel environments such as MPI have been extensively used in numerical methods to simu-
late large complex problems that describe the scattering acoustic waves simulation (Ramadan et al.,
2004), (Kern and Méfire, 1996), (Hammonds et al., 2007).

GPU Computing has become an important choice for many parallel computational problems,
since the GPUs are potentially more powerful for massively parallel computations than the
CPUs. The reason behind the discrepancy in floating-point capability between CPUs and GPUs
is that the GPU is specialized for compute-intensive, highly parallel computation, since this
is typically required on graphics rendering. Therefore, its architecture is designed in such a
way that more transistors are devoted to data processing than data caching and flow control
(NVIDIA , 2008).

Many different non-graphical computation, simulation andnumerical problems, including
Protein Structure Prediction (Langdon and W.Banzhaf, 2008), Solution of Linear Equation Sys-
tems (Bolz et al., 2003), Options Pricing (Abbas-Turki and Lapeyre, 2009), Flow Simulation
(Rozen et al., 2008), Wave Propagation (Balevic et al., 2008), (Michea and D.Komatitsch, 2010),
have been solved in GPUs.

Few years ago, scientific computing based on GPU architecture was developed using shader
languages in combination with some graphics APIs, with all the vertex and pixel shader limita-
tions and idiosyncrasies. Recently, the architectures of GPUs have been rearranged in order to
make it easier to program general purpose problems using such devices, starting a new paradigm
for scientific computing, known as GPU Computing.

GPUs have a hierarchical memory structure divided as: global, texture and shared. The
shared memory has a large velocity of access, almost equivalent to the velocity of accessing the
registers. Texture memory is slower than the shared one, butis almost twice as faster as global
memory. On the other hand, it follows a read only paradigm. Global memory is readable and
writeable and can be accessed by any thread and processor at any time, which is important for
communication between different threads.

Two of the most popular languages for programming in parallel GPU Computing paradigm
are CUDA (Compute Unified Device Architecture) from nVidia (NVIDIA , 2008) and OpenCL
(Open Computing Language) (NVIDIA , 2003).

Finite-difference Methods (FDM) in the time domain (FDTD) are widely used to solve the
problem of simulating the scattering of acoustic waves in semi-infinite non-homogeneous media

M. ZAMITH et.al.7148

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



and some approaches about this technique are already modeled using GPUs (Balevic et al.,
2008), (Michea and D.Komatitsch, 2010), (Micikevicius, 2009).

This paper presents a parallel implementation for the scattering of 2-D acoustic waves in
semi-infinite non-homogeneous medium in heterogeneous cluster based on GPUs.

The paper is organized as follows. Acoustic wave equation and some aspects about Fi-
nite Difference Method (FDM) are described in Section2. The GPU architecture and CUDA
paradigm are discussed in Section3. Section4 presents the cluster architecture and some as-
pects about the computational implementation in CUDA for tge FDM. Numerical results are
presented in Section5. Section6 includes the conclusions and some directions for future work.

2 ACOUSTIC WAVE EQUATION

The wave equation is a second order linear differential equation which describes the behavior
of sound waves over time, amongst other types of waves, whereall of them describe a medium
perturbation. The acoustic wave field is described byP (x, y, z, t) andu(x, y, z, t), whereP
is the pressure field andu is the particle’s displacement. The relation between pressure and
particle’s displacement is given byP (x, y, z, t) = −k∇u(x, y, z, t) with k representing the
volumetric compression module. One of the hypotheses of themodel considered here is that the
pressure field is invariable inz-axis, which implies the partial derivative in relation toz is zero.
Thus, the (2-D) wave equation with a constant volumetric compression is given by:

∂2P

∂t2
= c2(x, y)∇2P + f(x, y, t) (1)

where,P = P (x, y, t), x andy are cartesian coordinates,t is time, c is the velocity acoustic
wave andf(x, y, t) is the source term.

In the classical approach, the change of velocity fieldc(x, y) represents the change of medium
and it allows to generate both reflection and diffraction of waves.

To numerically solve the partial differential equation in (Eq.1), we first discretize it into a
set of finite-difference equations by replacing partial derivatives with central differences. A
central-difference approximation can be derived from the Taylor series (Mitchell, 1969). Thus,
using a second order approximation for space and time, assuming h = ∆x = ∆y andt = n∆t,
Eq.(1) is rewritten as:

P n+1
(i,j) = 2P n

(i,j) − P n−1
(i,j) + A

[

P n
(i−1,j) + P n

(i+1,j) − 4P n
(i,j) + P n

(i,j−1) + P n
(i,j+1)

]

(2)

where,A =
(

c(x,y)∆t

h

)2

andn = 1, 2, ... represents slice time.

In general, approximations more accurate for the derivative imply that more neighboring
points are required and therefore more expensive the calculation may become. However, not
only the precision must be analyzed, we must also consider the stability criteria that are impor-
tant to ensure the convergence for certain width of the spatial mesh.

2.1 Numerical Stability

The stability of the explicit FDM for second order2-D wave propagation is given by the
Courant−Friedrichs−Lewy condition (CFL condition). This condition requires that the do-

Mecánica Computacional Vol XXIX, págs. 7147-7157 (2010) 7149

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



main of dependence of the PDE must lie within the domain of dependence of the finite differ-
ence scheme for each mesh point of an explicit finite difference scheme for the acoustic wave
equation. Thus, the CFL condition that guarantees the stability in this case is (Mitchell, 1969):

√
A =

(

c∆t

h

)

≤ 1√
s

(3)

where s is the domain dimension, heres = 2.

2.2 Semi-Infinite Domains

The scattering wave equation is theoretically solved in a non-finite medium. However in
computing models the size of memory computer is limited which requires that artificial fron-
tiers must be introduced to the model. This non-realistic contour implies in wave reflection
of borders of domain. The solution, in the case of punctual source, is a explicit approxima-
tion. This approach consist in increasing the domain, so that artificial reflections do not appear
in the simulation. However this solution implies in a high computational cost. For instance,
in geophysics’ simulations, the domain dimension is very large, thus the process can become
infeasible.

Aiming to simulate semi-infinite domains, this work considers the boundaries conditions
proposed byReynolds(1978). Such conditions are determined by decomposing the unidimen-
sional scalar wave equation, obtaining the product of two terms, each one representing the
spread of the wavefront in one direction. Equation4 represents this condition when the wave
propagation occurs to the right. The boundaries conditionsfor the left direction can be obtained
analogously (Reynolds, 1978). The conditions in the top and the bottom of model are given by
Dirichlet conditions (Golub and Ortega, 1991).

∂P

∂~n
=

1

c

∂P

∂t
(4)

where~n is the normal vector.

2.3 Source Function

The choice of an appropriate source function is essential toFDM. The frequence of pulse
affects diretly the numerical dispersion of the method (Bording and Lines, 1997). Thus, the
pulse is prescribed in according to Eq.5:

f(x, y, t) = 1 − 2 ×

(

t ×
√

(1

2

)

× π × CF

)2

(5)

whereCF represents the cut frequency andt is the time instant.

3 CUDA AND GPU COMPUTING

CUDA enables inexpensive multi-threaded GPUs programming. One of the advantages of
programming in CUDA instead of conventional Shader language programming is that it allows
one to work with familiar programming concepts while developing software that can run on
a GPU, avoiding the performance overhead of graphics layer APIs by compiling the software
directly to the hardware (Dobbs, 2008).

CUDA has several advantages over traditional general purpose computation on GPUs, such
as: scattered reads - code can read from arbitrary addressesin memory; shared memory - CUDA

M. ZAMITH et.al.7150

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



exposes a fast shared memory region which can be shared amongdifferent threads; faster down-
loads and read-backs to and from the GPU and full support for integer and bitwise operations,
including integer texture lookups (NVIDIA , 2008). Besides all this memory facilities of GPU,
CUDA does not cater memory access by CPU. This constraint requires the CPU to previously
copy the data from its memory to the GPU.

The GPU used for running CUDA is based on an unified architecture, i.e., there is a set
of general stream processors for both vertex and pixel programs. Due to the fact that CUDA
organizes this set of stream processors in a set of multiprocessor cores, it is possible to run
multiple threads concurrently. The threads are arranged inblocks, which have their own shared
memory space for sharing among their threads, as well as eachmultiprocessor can process one
block1. Therefore, the level of parallelism is enhanced through proper arrangement of the GPU
model, blocks and threads per blocks. The block set is named grid.

Figure 1: CUDA’s execution configuration (Balevic et al., 2008).

CUDA enables application programming in an extension of theC language (C for CUDA).
In fact, a CUDA program is a set of C functions, named kernels,that can be invoked by the
host, and are executed on the deviceśn instance of the kernel in parallel. In CUDA architecture,
CPU is defined as host a GPU as a device.

When a kernel starts running based on the execution configuration and according to the
function arguments, the host continues to the next line of code, after the kernel launches. At
this point, both the CUDA device and host are simultaneouslyrunning their separate programs.
Nevertheless, it is possible to artificially synchronize both host and kernel programs.

A typical structure of a CUDA program is composed by the stepsillustrated in Fig.2:

1. copy of data from the main host memory to the GPU memory;

2. the host invokes the kernel;

Mecánica Computacional Vol XXIX, págs. 7147-7157 (2010) 7151

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



3. the kernel runs concurrently in different threads in the device;

4. the results stored in GPU memory are copied back to the CPU.

Not all problems can be solved efficiently in CUDA. Problems which are computation-
intensive and that involve processing large data sets usingthe same code (Single Instruction
Multiple Data paradigm) are natural candidates to be parallelized on GPUs. Developing an
appropriate parallel algorithm that suits the CUDA programming model may be very difficult.
Besides, there are two main challenges in modelling an efficient CUDA program: breaking the
problem appropriately into many sub-problems that can run concurrently in several independent
threads and dealing appropriately with CUDA memory hierarchy, so that no overhead is intro-
duced due to an inappropriate choice of data distribution, order of access and communication
strategies.

Figure 2: Processing Flow on Cuda (HBeonLabs, 2009).

4 GPU-BASED CLUSTER

In practical problems that numerical methods are employed,in particular the finite differ-
ence method, there are a lot of points to be calculated, in some cases this quantity can reach in
a billions order, for instance in seismic modeling. The simulation of such problems requires a
computer powerful, in many cases supercomputers. The memory demand is another require-
ment of these problems, which can become unfeasible the solution on GPU. However, a cluster
based on GPUs is a cheap alternative for this.

In this context, this work presents a approach of a cluster architecture, where each node
(CPU) has, at least, one GPU. In this hybrid-cluster the GPUsare responsible for all mathemat-
ical processing of the simulation, while MPI is used to provide the communication between the
nodes.

Although the GPUs are different in performance and memory size, all of them have to be of
the same brand, because CUDA language is a solution only to nVidia GPUs, on the other hand
the CAL language runs only on ATI GPUs. Another solution is the OpenCL language, which is a
framework for writing programs that execute across heterogeneous platforms, as ATI, NVIDIA
and CPUs. In this work, the CUDA language is adopted for the cluster is constituted only by
Nvidia GPUs.

M. ZAMITH et.al.7152

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



The hybrid-cluster is composed by two parts. The first is responsible for simulating the
numerical method,i.e., calculating the value of each domain point. This is done on GPUs with
the CUDA language. The second is responsible for guaranteeing the correct communication
among the nodes, thus MPI is employed. Thus, for each time instant the GPUs calculate the
unknown values and then the communication phase, takes place. In the latter, each node sends
to others the values required for the next time instant.

The architecture of a GPU is organized by CUDA to work as a GPU cluster inside a CPU.
This architecture defines CPU as a host and GPU as a device. Furthermore, the memory is
defined as a host memory (CPU memory) and as a memory device (GPU memory). The GPU
stream processors is tided in a set of multiprocessor and it can process a kernel instance, i.e., a
thread. The kernel code is written for GPU (in CUDA language)(NVIDIA , 2008).

The number of stream processors depends on GPU model and the parallelism level is directly
related with it. Since the instances of the kernel (threads)are organized in groups called blocks,
each one is processed by one multiprocessor. The threads of blocks are processed in batch.

The communication bandwidth and space in memory are always bottlenecks (Zamith et al.,
2010). All data must be sent to the host memory before processing by GPU. GPU memory is
small when compared with hostś memory. In addition to that, part of the memory is allocated
for visualization tasks in some GPU models, except for Teslawhich is completely dedicated to
GPU Computing. The memory of the GPU has a hierarchy, which describes features in size
and time access. As mentioned earlier, it is arranged in texture, constant, global share and local
memory. Although the shared memory access is as fast as a register, the sharing occurs only
among threads in the same block. Moreover, the maximum size of shared memory allowed is
16Kb per block (NVIDIA , 2010). Thus, the strategy here adopted is the use of shared memory,
so as to improve the time processing. The use of shared memoryimplies that, in order to copy
data from global memory to shared memory, a synchronizationcommand immediate follows the
copy operation, so that all threads can access data correctly. Basically, the kernel is composed by
two steps: the first is the synchronization step between shared and global memory, as described
above; the second one is responsible for defining the new value of the unknown.

Indeed, hierarchy structure is applied to optimize the devicés memory access. The strategy
adopted is to use three matrices to represent each time slice, plus vectors that represent the
outline boundaries. The model presented in this work isO(h2, ∆t2). i.e., uses five neighbors at
time stept − 1 and only one att − 2. In oder to minimize the global memory access, only the
data from time instantt − 1 are copied from global to shared memory.

Since each node must know the outline boundaries of its neighbors, vectors of the informa-
tions in its neighbors are defined. In each step of simulationthe part of the domain in device
memory is copied to host memory followed by a synchronizing step, where these vectors are
sent to neighbors and others are received through MPI APIs. The Fig.3 illustrates it.

Despite the fact that MPI offers several synchronization statements, the barrier function is
adopted. Furthermore, CUDA has only one sync object and it isinvoked to synchronize threads
of same block. This procedure is done in three steps. The firstone is the synchronize between
device and host,i.e., the copying of data from device to the host. The second is theMPI
synchronization and the last one is a copy from host to device. Thus, each GPU processes a
slice of the domain. Fig.3 shows an illustration of this communication scheme.

4.1 Finite Difference Method on GPU

Such described, the kernel with shared memory is more efficient than the other based on
texture memory.The former is divided in two steps: The first copies the pressure values in the

Mecánica Computacional Vol XXIX, págs. 7147-7157 (2010) 7153

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 3: MPI - Send / receive messages

current timeP n
(i,j) from the global memory to the shared memory; the second one uses Eq.2 to

calculate the values in the next timeP n+1
(i,j) . Besides, according to Eq.2, only points in time

instantt need to be loaded in shared memory.
The approach considered has each new valueP n+1

(i,j) computed by only one thread. Hence,
the2-D domain is divided in blocks and threads per blocks, observing the constraints described
in NVIDIA (2010). The maximum number of blocks that can be allocated is65, 535 with 512
threads for each one, giving a total of33, 553, 920 points.

Some experiments were done to identify the bottlenecks as well as the best arrangement of
threads and threads per blocks of the simulation. We detected that a blocksize of32×16 gives a
better result than a blocksize of16× 32. Such difference in processing time is due to coalesced
memory accesses and the number of threads within the warp (Zamith et al., 2010).

The kernel configuration defines a2-D block with32 threads in one dimension and16 threads
in the other.

Shared memory’s size is based on the number of threads plus a region called buffer border
whose size is two times the neighborhood size correspondingto the2-D stencil’s size. One
should be aware that there is a16kb limit in the size of the shared memory per block.

Each thread copies its data in the current time from the global memory to the shared memory.
Besides, the threads at the border of a block also copy data corresponding to the data of its two
neighbors which belong to a neighboring block. By doing this, the shared memory structure
has all data necessary to compute new values of the points inside a block without any additional
access to the global memory. In other words, it guarantees that all threads are able to access the
memory addresses corresponding to instantt from shared memory necessary to define the new
point value.

By using the additional buffer region the computation can bedone with optimal memory
access time.

One should be aware that this strategy has a limitation that depends on the neighborhood
considered in the finite difference discretization method.A larger neighborhood suggests a
smaller number of threads to account for the limit of available shared memory depending on the
hardware specification.

M. ZAMITH et.al.7154

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



5 NUMERICAL RESULTS

The test network is composed by three computers. One of them uses an Intel Quad Core
with 2.4GHz, 4GB and nVidia Tesla C1060 GS graphic card. The other two computers use
an Intel Core 2 dual with 2.4 GHz, 2GB of memory and nVidia GeForce 8800 GTS graphic
card. All computers use the Ubuntu 9.10 operation system (64bits) and OpenMPI. The network
bandwidth is 1.0 Gbits. The server computer is the one with the Quad Core processor, while the
others act as clients.

Steps 32x16 16x16 16x32 X Y Gsample 32x16 Gsample 16x16 Gsample 16x32

10000 3,8716400 4,1563500 5,0819700 1024 1024 2,71 2,52 2,06
50000 19,2819900 20,7243800 25,3448770 1024 1024 2,72 2,53 2,07

100000 38,5077900 41,4066700 50,6085400 1024 1024 2,72 2,53 2,07

Table 1: Simulations to determine of the best arrangement ofblocks and threads per block.

The first tests are applied to identify which is the best arrangement of blocks and threads per
block. It is a single core CPU,i.e., without MPI. Thus, three tests are done with arrangement of
threads per block:32 × 16, 16 × 16 and16 × 32. The best results are shown by arrangement
of 32 × 16, as presented in table1. The hardware used is the Tesla 1060 and CPU quadcore.
One can notice that the best arrangement is32 × 16 since this one exhibits the lowest time
of processing and the highest gigasamples,i.e., this configuration gives2.7 gigasample. A
gigasample is the number of calculations that can be performed per second, that is,10−9 ×
(number_points_X × number_points_Y × number_points_T )/(computing_time).

X per node X Y Number of points Simulation step Processing time (s) Gsample(s)

1024 3072 1024 3145728 1000 29,83 0,11
2048 6144 2048 12582912 1000 62,01 0,2
4096 12288 4096 50331648 1000 151,84 0,33
1024 3072 1024 3145728 2000 59,87 0,11
2048 6144 2048 12582912 2000 123,25 0,2
4096 12288 4096 50331648 2000 300,48 0,34
1024 3072 1024 3145728 3000 91,99 0,1
2048 6144 2048 12582912 3000 184,42 0,2
4096 12288 4096 50331648 3000 455,01 0,33
1024 3072 1024 3145728 4000 120,29 0,1
2048 6144 2048 12582912 4000 248,17 0,2
4096 12288 4096 50331648 4000 602,62 0,33
1024 3072 1024 3145728 5000 149,15 0,11
2048 6144 2048 12582912 5000 306,82 0,21
4096 12288 4096 50331648 5000 755,76 0,33
1024 3072 1024 3145728 6000 184,21 0,1
2048 6144 2048 12582912 6000 374,83 0,2
4096 12288 4096 50331648 6000 900,38 0,34
1024 3072 1024 3145728 7000 210,89 0,1
2048 6144 2048 12582912 7000 430,13 0,2
4096 12288 4096 50331648 7000 1052,76 0,33
1024 3072 1024 3145728 8000 239,8 0,1
2048 6144 2048 12582912 8000 491,5 0,2
4096 12288 4096 50331648 8000 1213,4 0,33
1024 3072 1024 3145728 9000 280,33 0,1
2048 6144 2048 12582912 9000 586,89 0,19
4096 12288 4096 50331648 9000 1385,04 0,33
1024 3072 1024 3145728 10000 310,03 0,1
2048 6144 2048 12582912 10000 624,83 0,2
4096 12288 4096 50331648 10000 1541,74 0,33

Table 2: Results of scalability with MPI-GPU approach.

Mecánica Computacional Vol XXIX, págs. 7147-7157 (2010) 7155

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



The second test presents the scalability given by MPI and combination of this technique with
GPU. The network latency and bandwidth are the bottlenecks (Zamith et al., 2010). The MPI
can be used for breaking the GPU constraint of domain size, though. This is illustrated by table
2.

6 CONCLUDING REMARKS AND PROSPECTIVE WORK

Although GPU can be a powerful hardware applicable to massively parallel mathematical
problems, its own hardware such as memory, bandwidth as wellas the own language adopted,
is limited. Since CUDA is applied for GPUs from NVIDIA, whichthis work employed, the
source code is not portable for other platforms. For instance, ATI developed its own language,
called CAL (Compute Abstraction Layer). Nowadays, OpenCL is a framework that provides
cross platform heterogeneous programming targetting GPUsand multicore-CPUs as well, with
the same source code. The domain scale can be worked out with many other GPUs, either by
employing one single CPU or by employing several CPUs. This latter was the case in the work
presented herein. In the first case, all GPUs are plugged on the same motherboard whereas in
the latter a network structure is employed. In this case the connection speed should be carefully
chosen in order not to harm the overall computing time.

As a forthcoming work the use of adaptive time is to be employed. This strategy shall be
valuable in order to save computing time. This occurs because in some regions of the domain,
the CFL condition can be served with smaller time steps than in others, due to heterogeneities.
An additional and related feature to be discussed is the choice of efficient and effective load
balancing heuristics for domain partition, in the context of time adaptivity.

Summarizing, this work employed a scientific problem of industrial interest, namely the
scattering of acoustic waves in heterogeneous media, as a testbed for studying the efficient
application of GPU Computing for FDM discretization of mathematical problems. The use of
MPI provided an efficient way for reaching domain scalability.

Acknowledgements

The authors gratefully acknowledge Petrobrás, CNPq, CAPESand FAPERJ for the financial
support of this work.

REFERENCES

Abbas-Turki L.A. and Lapeyre B. American options pricing onmulti-core graphic cards.Inter-
national Conference on Business Intelligence and Financial Engineering, 0:307–311, 2009.

Balevic A., Rockstroh L., Tausendfreund A., Patzelt S., Goch G., and Simon S. Accelerating
simulations of light scattering based on finite-differencetime-domain method with general
purpose gpus.Computational Science and Engineering, IEEE International Conference on,
0:327–334, 2008.

Bolz J., Farmer I., Grinspun E., and SchrÃűoder P. Sparse matrix solvers on the gpu: con-
jugate gradients and multigrid. InACM Transactions on Graphics: Proceedings of ACM
SIGGRAPH, pages 917–924. 2003.

Bording R.P. and Lines L.R.Seismic Modeling and Imaging with the Complete Wave Equation.
Course Notes Series Society of Exploration Geophysicist, 8edition, 1997.

Dobbs D. Cuda, supercomputing for the masses: Part 1.Avalible at:
http://www.ati.com/developer/techpapers.html, pages 1–7, 2008.

Fernandes K., NETO A.S., Tenembaum R.A., and STUTZ L. A damage assessment strategy

M. ZAMITH et.al.7156

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



based on a sequential algebraic algorithm. In17 ICSV: Proceedings of the 17th International
Congress on Sound and Vibration. 2010.

Golub G. and Ortega J.Scientific Computing and Differential Equations: an Introduction to
Numerical Methods. Academic Press, 1 edition, 1991.

Hammonds J.S., Saied F., and Shannon M.A. Solving coupled 3-d paraxial wave and thermal
diffusion equations with mixed-mode parallel computations. Parallel Computing, 33(1):43–
53, 2007.

HBeonLabs. Cuda– compute unified device architecture. Avalible at:
http://www.hbeonlabs.com/detailcuda.htm, 2009.

Kern M. and Méfire S.M. Parallel solution of the wave equationusing higher order finite el-
ements. In D. Kaeli and M. Leeser, editors,MPIDC’ 96: Proceedings of the Second MPI
Developers Conference, page 125. 1996.

Langdon W.B. and W.Banzhaf. A simd interpreter for genetic programming on gpu graphics
cards. InLecture Notes in Computer Science: Genetic Programming, pages 73–85. Springer
Berlin-Heidelberg, 2008.

Michea D. and D.Komatitsch. Accelerating a three-dimensional finite-difference wave propa-
gation code using gpu graphics cards.Geophysical Journal International, 182:389â̆AŞ402,
2010.

Micikevicius P. 3d finite difference computation on gpus using cuda. In D. Kaeli and M. Leeser,
editors,ACM, Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units, pages 79–84. 2009.

Mitchell A. Computational Methods in Partial Differential Equations. John Wiley and Sons,
1969.

NVIDIA. Opencl. Avalible at: http://developer.nvidia.com/object/opencl.html, 2003.
NVIDIA. Nvidia - cuda compute unified device architecture.Programming guide, NVIDIA,

2008.
NVIDIA. NVDIA - CUDA Programming Guide. NVIDIA, 2010.
Ramadan O., Akaydin1 O., Salamah M., and Oztoprak A.Y. Parallel implementation of

the wave-equation finite-difference time-domain method using the message passing inter-
face. InComputer and Information Sciences: ISCIS 2004, pages 810–818. Springer Berlin-
Heidelberg, 2004.

Reynolds A. Boundary condition for the numerical solution of wave propagation problems.
Geophysics, 43(1):1099–1110, 1978.

Rozen T., Boryczko K., and Alda W. A gpu-based method for approximate real-time fluid flow
simulation.Machine Graphics and Vision International Journal, 17(3):267–278, 2008.

Zamith M.P., ao D.B., Madeira D., Clua E., Kischinhevsky M.,Leal-Toledo R., Montenegro
A., and ao A.B. Performance evaluation of optimized implementations of finite difference
method for wave propagation problems on gpu architecture.To appear in Proceedings of
First Workshop on Applications for Multi and Many Core Architectures - WAMMCA, 2010.

Mecánica Computacional Vol XXIX, págs. 7147-7157 (2010) 7157

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	INTRODUCTION
	Acoustic Wave Equation
	Numerical Stability
	Semi-Infinite Domains
	Source Function

	Cuda and GPU Computing
	GPU-based Cluster
	Finite Difference Method on GPU

	Numerical Results
	Concluding remarks and prospective work

