Asociacion Argentina AMCL

de Mecanica Computacional

Mecénica Computacional Vol XXIX, pags. 7147-7157 (articulo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)
Buenos Aires, Argentina, 15-18 Noviembre 2010

SIMULATION OF WAVE PROPAGATION IN SEMI-INFINITE
DOMAINS USING THE FINITE DIFFERENCE METHOD ON A GPU
BASED ON CLUSTER.

Marcelo P. M. Zamith?, Diego N. Brand&d, Mauricio Kischinhesvky? Regina Célia P.
Leal-Toled@?, Otton T. Silveira Filho?, Esteban W. G. Clu&, Anselmo A. Montenegré
and André Bulcad

3nstitute for Computing, Federal Fluminense Universitgisfo da Patria Street, 156 Niter6i, Rio de
Janeiro, Brasil, {mzamith, dbrandao, kisch, leal, ottostedan, anselmo}@ic.uff.br,
http://www.ic.uff.br

bCentro de Pesquisas e Desenvolvimento Leopoldo Américoddide Mello (Cenpes), Petrobras, Av.
Horéacio Macedo, 950, Cidade Universitaria. Rio de JaneBoasil, bulcao@ petrobras.br,
http://www.petrobras.br

Keywords: GPU Computing, Finite Difference Method, Wave PropagatMRI.

Abstract.

The scattering of acoustic waves has been considered da¢giratterest for many areas. Relevant
works are reported in geophysics, medical images, stregtwamage identification, etc. This work
applies the finite difference method to simulate the sdatjeof acoustic waves in semi-infinite non-
homogeneous media. Solving these problems can demand admgpbutational effort and, in some
cases, make the proposed simulation impractical. The apprthrough high performance computing,
using tools as MPI (Message Passing Interface) and GPUgli@r&rocessor Units), can soften this
limitation. This work proposes a solution of such problemusyng a heterogeneous cluster based on
GPUs, taking advantage of its high level of parallelism. @atational results illustrate the viability of
the adopted approach.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

http://www.ic.uff.br
http://www.petrobras.br

7148 M. ZAMITH et.al.

1 INTRODUCTION

Hyperbolic Partial Differential Equations (PDEs) deserdp large variety of physical phe-
nomena governed by wave behavior. The acoustic wave equatibe simplest of such mod-
els, but it can be applied to describe complex problems a® ywavpagation in geophysics
(Michea and D.Komatitschi2010, structures’ damage identificatiofrdrnandes et al2010
and so on.

Numerical methods are necessary to provide approximatésos to real wave propagation
problems. Often, numerical modeling of the scattering @ustic waves requires high-spatial
solution; the discretization of the domain may contain imils of elements, which imposes a
significant computation burden. Thus, the simulation ofteciag of acoustic waves phenom-
ena is a computationally demanding taklekn and Méfire 1996.

In solving large domains, single processor computers angeld and often incapable of
managing the required memory and computational time reqents. In order to improve the
performance of these finite difference methods, it is netgd® explore other computational
strategies such as parallelization, using clusters orgmmuputers.

Parallel environments such as MPI have been extensivetiinseimerical methods to simu-
late large complex problems that describe the scatteriogstic waves simulatiorRamadan et gl.
20049, (Kern and Méfire1996, (Hammonds et al2007).

GPU Computing has become an important choice for many pacalinputational problems,
since the GPUs are potentially more powerful for massivelsajlel computations than the
CPUs. The reason behind the discrepancy in floating-popsluéty between CPUs and GPUs
is that the GPU is specialized for compute-intensive, lyigidrallel computation, since this
Is typically required on graphics rendering. Therefors,atchitecture is designed in such a
way that more transistors are devoted to data processimgdai@ caching and flow control
(NVIDIA , 2008.

Many different non-graphical computation, simulation andnerical problems, including
Protein Structure Predictioh&ngdon and W.Banzhg2008, Solution of Linear Equation Sys-
tems Bolz et al, 2003, Options Pricing Abbas-Turki and Lapeyre2009, Flow Simulation
(Rozen et a].2008, Wave PropagatiorBalevic et al, 2008, (Michea and D.Komatitsgi2010,
have been solved in GPUs.

Few years ago, scientific computing based on GPU archiettas developed using shader
languages in combination with some graphics APIs, withredltertex and pixel shader limita-
tions and idiosyncrasies. Recently, the architecturesRifi&Shave been rearranged in order to
make it easier to program general purpose problems usitgdawices, starting a new paradigm
for scientific computing, known as GPU Computing.

GPUs have a hierarchical memory structure divided as: ¢labgture and shared. The
shared memory has a large velocity of access, almost equivial the velocity of accessing the
registers. Texture memory is slower than the shared ones biinhost twice as faster as global
memory. On the other hand, it follows a read only paradignob@l memory is readable and
writeable and can be accessed by any thread and processyrtana, which is important for
communication between different threads.

Two of the most popular languages for programming in pdr&llRU Computing paradigm
are CUDA (Compute Unified Device Architecture) from nVidM\(IDIA , 2008 and OpenCL
(Open Computing Languagd)VIDIA , 2003.

Finite-difference Methods (FDM) in the time domain (FDTDgavidely used to solve the
problem of simulating the scattering of acoustic waves misafinite non-homogeneous media

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecénica Computacional Vol XXIX, pags. 7147-7157 (2010) 7149

and some approaches about this technique are already rdaggiiegy GPUs Balevic et al,
2008, (Michea and D.Komatitsgl2010, (Micikevicius, 2009.

This paper presents a parallel implementation for the esgatj of 2-D acoustic waves in
semi-infinite non-homogeneous medium in heterogeneosslbased on GPUs.

The paper is organized as follows. Acoustic wave equatiah some aspects about Fi-
nite Difference Method (FDM) are described in SectibbnThe GPU architecture and CUDA
paradigm are discussed in Secti@nSection4 presents the cluster architecture and some as-
pects about the computational implementation in CUDA fa& EPM. Numerical results are
presented in Sectidh Section6 includes the conclusions and some directions for futurekwor

2 ACOUSTIC WAVE EQUATION

The wave equation is a second order linear differential guavhich describes the behavior
of sound waves over time, amongst other types of waves, vdtllenéthem describe a medium
perturbation. The acoustic wave field is describedAiy, v, z,t) andu(z, y, z,t), where P
Is the pressure field and is the particle’s displacement. The relation between presand
particle’s displacement is given by (z, vy, z,t) = —kVu(x,y, z,t) with k representing the
volumetric compression module. One of the hypotheses ahthael considered here is that the
pressure field is invariable itaxis, which implies the partial derivative in relation4as zero.
Thus, the (2-D) wave equation with a constant volumetric m@ssion is given by:

2
= () VP + f(a,0,1))
where,P = P(z,y,t), z andy are cartesian coordinatesis time, ¢ is the velocity acoustic
wave andf(z,y, t) is the source term.

In the classical approach, the change of velocity fi¢ld y) represents the change of medium
and it allows to generate both reflection and diffraction aves.

To numerically solve the partial differential equation Eq(l), we first discretize it into a
set of finite-difference equations by replacing partial\ggives with central differences. A
central-difference approximation can be derived from tagldr series Mitchell, 1969. Thus,
using a second order approximation for space and time, asgum= Ax = Ay andt = nAt,
Eq.(Q) is rewritten as:

n+1 __ n n—1 n n n n n
PRy =2PG) — Pigy + APy + Py — 405 + Plijoy + Pije) 2)

2
where, A = (%) andn = 1, 2, ... represents slice time.

In general, approximations more accurate for the derigatiwply that more neighboring
points are required and therefore more expensive the egicnlmay become. However, not
only the precision must be analyzed, we must also consi@esttbility criteria that are impor-
tant to ensure the convergence for certain width of the alaiesh.

2.1 Numerical Stability

The stability of the explicit FDM for second ordefD wave propagation is given by the
Courant-Friedrichs-Lewy condition (CFL condition). This condition requiresaththe do-

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

7150 M. ZAMITH et.al.

main of dependence of the PDE must lie within the domain okddpnce of the finite differ-
ence scheme for each mesh point of an explicit finite diffeeescheme for the acoustic wave
equation. Thus, the CFL condition that guarantees thelgyabithis case is iitchell, 1969:

- ()<

where s is the domain dimension, here- 2.

2.2 Semi-Infinite Domains

The scattering wave equation is theoretically solved in a-fiidite medium. However in
computing models the size of memory computer is limited Whiequires that artificial fron-
tiers must be introduced to the model. This non-realistict@or implies in wave reflection
of borders of domain. The solution, in the case of punctuale® is a explicit approxima-
tion. This approach consist in increasing the domain, soatdicial reflections do not appear
in the simulation. However this solution implies in a highhgautational cost. For instance,
in geophysics’ simulations, the domain dimension is vergdathus the process can become
infeasible.

Aiming to simulate semi-infinite domains, this work consgléhe boundaries conditions
proposed byReynoldg(1978. Such conditions are determined by decomposing the ueitim
sional scalar wave equation, obtaining the product of twms$e each one representing the
spread of the wavefront in one direction. Equatfbbrepresents this condition when the wave
propagation occurs to the right. The boundaries conditionthe left direction can be obtained
analogouslyReynolds1978. The conditions in the top and the bottom of model are giwen b
Dirichlet conditions Golub and Ortegdl 997).

orP 10P
- 4
on ¢ ot @)

wherer: is the normal vector.

2.3 Source Function

The choice of an appropriate source function is essentieDil. The frequence of pulse
affects diretly the numerical dispersion of the methBor@ing and Lines1997. Thus, the
pulse is prescribed in according to Ex.

f(x,y,t):1—2><<tx\/E%>X7TxC'F> (5)

whereC'F’ represents the cut frequency and the time instant.

3 CUDA AND GPU COMPUTING

CUDA enables inexpensive multi-threaded GPUs programm®ige of the advantages of
programming in CUDA instead of conventional Shader languag@gramming is that it allows
one to work with familiar programming concepts while deysty software that can run on
a GPU, avoiding the performance overhead of graphics layds Ay compiling the software
directly to the hardwaredobbs 2008.

CUDA has several advantages over traditional general gerpomputation on GPUSs, such
as: scattered reads - code can read from arbitrary addiassesory; shared memory - CUDA

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecanica Computacional Vol XXIX, pags. 7147-7157 (2010) 7151

exposes a fast shared memory region which can be shared aliffengnt threads; faster down-
loads and read-backs to and from the GPU and full supporhteger and bitwise operations,
including integer texture lookup&I{/IDIA , 2008. Besides all this memory facilities of GPU,
CUDA does not cater memory access by CPU. This constraininesjthe CPU to previously
copy the data from its memory to the GPU.

The GPU used for running CUDA is based on an unified architectie., there is a set
of general stream processors for both vertex and pixel progr Due to the fact that CUDA
organizes this set of stream processors in a set of mulégemr cores, it is possible to run
multiple threads concurrently. The threads are arrangetbirks, which have their own shared
memory space for sharing among their threads, as well asmealtiprocessor can process one
block 1. Therefore, the level of parallelism is enhanced througiper arrangement of the GPU
model, blocks and threads per blocks. The block set is named g

Figure 1: CUDA's execution configuratioBélevic et al, 2008.

CUDA enables application programming in an extension of@Hanguage (C for CUDA).
In fact, a CUDA program is a set of C functions, named kerréist can be invoked by the
host, and are executed on the degiaénstance of the kernel in parallel. In CUDA architecture,
CPU is defined as host a GPU as a device.

When a kernel starts running based on the execution configarand according to the
function arguments, the host continues to the next line decafter the kernel launches. At
this point, both the CUDA device and host are simultaneousiyning their separate programs.
Nevertheless, it is possible to artificially synchronizétbeost and kernel programs.

A typical structure of a CUDA program is composed by the stibypstrated in Fig2:

1. copy of data from the main host memory to the GPU memory;

2. the host invokes the kernel;

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

7152 M. ZAMITH et.al.

3. the kernel runs concurrently in different threads in theick;
4. the results stored in GPU memory are copied back to the CPU.

Not all problems can be solved efficiently in CUDA. Problembisl are computation-
intensive and that involve processing large data sets ubmgame code (Single Instruction
Multiple Data paradigm) are natural candidates to be peia#id on GPUs. Developing an
appropriate parallel algorithm that suits the CUDA progmaimg model may be very difficult.
Besides, there are two main challenges in modelling an efficCUDA program: breaking the
problem appropriately into many sub-problems that can amtarrently in several independent
threads and dealing appropriately with CUDA memory hidrgrso that no overhead is intro-
duced due to an inappropriate choice of data distributiotieoof access and communication
strategies.

Main CPU

Memory 1
Copy processin; g data
i Instruct the processing
(+) 2
Copy the result
Memory
for GPU
Execute parallel
GPU in_each core
(GeForce 8800) 3
[T
75 o
o |
mmme

Processing flow
on CUDA

|

Figure 2: Processing Flow on CuddBeonLabs2009.

4 GPU-BASED CLUSTER

In practical problems that numerical methods are employegarticular the finite differ-
ence method, there are a lot of points to be calculated, iresm@ses this quantity can reach in
a billions order, for instance in seismic modeling. The datian of such problems requires a
computer powerful, in many cases supercomputers. The nyedswnand is another require-
ment of these problems, which can become unfeasible thé@ohn GPU. However, a cluster
based on GPUs is a cheap alternative for this.

In this context, this work presents a approach of a clustehmitcture, where each node
(CPU) has, at least, one GPU. In this hybrid-cluster the G&gsesponsible for all mathemat-
ical processing of the simulation, while MPI is used to pdaihe communication between the
nodes.

Although the GPUs are different in performance and memas, sill of them have to be of
the same brand, because CUDA language is a solution onlyithan@PUs, on the other hand
the CAL language runs only on ATI GPUs. Another solution s@penCL language, whichis a
framework for writing programs that execute across hetemegus platforms, as ATI, NVIDIA
and CPUs. In this work, the CUDA language is adopted for thstel is constituted only by
Nvidia GPUs.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecénica Computacional Vol XXIX, pags. 7147-7157 (2010) 7153

The hybrid-cluster is composed by two parts. The first is @aspple for simulating the
numerical method,e., calculating the value of each domain point. This is done Btu&with
the CUDA language. The second is responsible for guarargebe correct communication
among the nodes, thus MPI is employed. Thus, for each timanhghe GPUs calculate the
unknown values and then the communication phase, takes.dlathe latter, each node sends
to others the values required for the next time instant.

The architecture of a GPU is organized by CUDA to work as a GRister inside a CPU.
This architecture defines CPU as a host and GPU as a devicéheFRuore, the memory is
defined as a host memory (CPU memory) and as a memory devid# ii@&pory). The GPU
stream processors is tided in a set of multiprocessor arahipoocess a kernel instance, i.e., a
thread. The kernel code is written for GPU (in CUDA langua@&IDIA , 2008.

The number of stream processors depends on GPU model anarilelsm level is directly
related with it. Since the instances of the kernel (threadsprganized in groups called blocks,
each one is processed by one multiprocessor. The threadtsctaBlare processed in batch.

The communication bandwidth and space in memory are alwatyiebecks Zamith et al,
2010. All data must be sent to the host memory before processimgRlJ. GPU memory is
small when compared with h&simemory. In addition to that, part of the memory is allocated
for visualization tasks in some GPU models, except for Teslieh is completely dedicated to
GPU Computing. The memory of the GPU has a hierarchy, whidcridzes features in size
and time access. As mentioned earlier, it is arranged imtextonstant, global share and local
memory. Although the shared memory access is as fast asstarghe sharing occurs only
among threads in the same block. Moreover, the maximum $igeaved memory allowed is
16Kb per block NVIDIA , 2010. Thus, the strategy here adopted is the use of shared mgmory
SO as to improve the time processing. The use of shared meampkhgs that, in order to copy
data from global memory to shared memory, a synchronizatbommand immediate follows the
copy operation, so that all threads can access data cgrrBestically, the kernel is composed by
two steps: the first is the synchronization step betweereshamnd global memory, as described
above; the second one is responsible for defining the neve wdlthe unknown.

Indeed, hierarchy structure is applied to optimize the csvinemory access. The strategy
adopted is to use three matrices to represent each time plice vectors that represent the
outline boundaries. The model presented in this worR(is?, At?). i.e., uses five neighbors at
time stept — 1 and only one at — 2. In oder to minimize the global memory access, only the
data from time instant— 1 are copied from global to shared memory.

Since each node must know the outline boundaries of its beighvectors of the informa-
tions in its neighbors are defined. In each step of simulatierpart of the domain in device
memory is copied to host memory followed by a synchronizitep swhere these vectors are
sent to neighbors and others are received through MP1 ARIs FIg. 3 illustrates it.

Despite the fact that MPI offers several synchronizati@teshents, the barrier function is
adopted. Furthermore, CUDA has only one sync object andnvaked to synchronize threads
of same block. This procedure is done in three steps. Theofiesis the synchronize between
device and hosti.e., the copying of data from device to the host. The second isMRé
synchronization and the last one is a copy from host to devidais, each GPU processes a
slice of the domain. Fig3 shows an illustration of this communication scheme.

4.1 Finite Difference Method on GPU

Such described, the kernel with shared memory is more effitien the other based on
texture memory.The former is divided in two steps: The ficgties the pressure values in the

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

7154 M. ZAMITH et.al.

|
|
Processor (: Processor 1

A

| |
| |
: Processor 2 : Processor 3

v oy oy

N

Receive U Send

Send Receive

Figure 3: MPI - Send / receive messages

current tlmeP" from the global memory to the shared memory; the second cee kg2 to

calculate the values in the next tlhﬂ%}f)l. Besides, according to E®, only points in time
instantt need to be loaded in shared memory.

The approach considered has each new v ¥ computed by only one thread. Hence,
the2-D domain is divided in blocks and threads per blocks, obegrthe constraints described
in NVIDIA (2010. The maximum number of blocks that can be allocatethj$35 with 512
threads for each one, giving a total3¥, 553, 920 points.

Some experiments were done to identify the bottlenecks #sas/i¢he best arrangement of
threads and threads per blocks of the simulation. We detéicse a blocksize a$2 x 16 gives a
better result than a blocksize t6 x 32. Such difference in processing time is due to coalesced
memory accesses and the number of threads within the warpith et al, 2010.

The kernel configuration defineQeD block with 32 threads in one dimension ahé threads
in the other.

Shared memory’s size is based on the number of threads peganrcalled buffer border
whose size is two times the neighborhood size corresportditige 2-D stencil’s size. One
should be aware that there id@kb limit in the size of the shared memory per block.

Each thread copies its data in the current time from the ¢loleanory to the shared memory.
Besides, the threads at the border of a block also copy dataspmnding to the data of its two
neighbors which belong to a neighboring block. By doing,thie shared memory structure
has all data necessary to compute new values of the poindg ia®lock without any additional
access to the global memory. In other words, it guarantegsththreads are able to access the
memory addresses corresponding to instdram shared memory necessary to define the new
point value.

By using the additional buffer region the computation cardbae with optimal memory
access time.

One should be aware that this strategy has a limitation thpéds on the neighborhood
considered in the finite difference discretization methddlarger neighborhood suggests a
smaller number of threads to account for the limit of avddahared memory depending on the
hardware specification.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecénica Computacional Vol XXIX, pags. 7147-7157 (2010) 7155

5 NUMERICAL RESULTS

The test network is composed by three computers. One of tlsa® an Intel Quad Core
with 2.4GHz, 4GB and nVidia Tesla C1060 GS graphic card. Timerotwo computers use
an Intel Core 2 dual with 2.4 GHz, 2GB of memory and nVidia GeEB800 GTS graphic
card. All computers use the Ubuntu 9.10 operation systemit®4and OpenMPI. The network
bandwidth is 1.0 Gbits. The server computer is the one witibhad Core processor, while the
others act as clients.

Steps 32x16 16x16 16x32 X Y Gsample 32x16| Gsample 16x16| Gsample 16x32
10000 | 3,8716400| 4,1563500(5,0819700| 1024 | 1024 2,71 2,52 2,06
50000 | 19,2819900| 20,7243800| 25,3448770| 1024 | 1024 2,72 2,53 2,07
100000 | 38,5077900| 41,4066700| 50,6085400| 1024 | 1024 2,72 2,53 2,07

Table 1: Simulations to determine of the best arrangemenibaks and threads per block.

The first tests are applied to identify which is the best ayeament of blocks and threads per
block. Itis a single core CPU.e., without MPI. Thus, three tests are done with arrangement of
threads per block32 x 16, 16 x 16 and16 x 32. The best results are shown by arrangement
of 32 x 16, as presented in table The hardware used is the Tesla 1060 and CPU quadcore.
One can notice that the best arrangemeri2is< 16 since this one exhibits the lowest time
of processing and the highest gigasampies, this configuration give&.7 gigasample. A
gigasample is the number of calculations that can be peddrper second, that igp—? x
(number_points_X x number_points_Y x number_points_T')/(computing_time).

X per node X Y Number of points| Simulation step| Processing time (s) Gsample(s)
1024 3072 | 1024 3145728 1000 29,83 0,11
2048 6144 | 2048 12582912 1000 62,01 0,2
4096 12288 | 4096 50331648 1000 151,84 0,33
1024 3072 | 1024 3145728 2000 59,87 0,11
2048 6144 | 2048 12582912 2000 123,25 0,2
4096 12288 | 4096 50331648 2000 300,48 0,34
1024 3072 | 1024 3145728 3000 91,99 0,1
2048 6144 | 2048 12582912 3000 184,42 0,2
4096 12288 | 4096 50331648 3000 455,01 0,33
1024 3072 | 1024 3145728 4000 120,29 0,1
2048 6144 | 2048 12582912 4000 248,17 0,2
4096 12288 | 4096 50331648 4000 602,62 0,33
1024 3072 | 1024 3145728 5000 149,15 0,11
2048 6144 | 2048 12582912 5000 306,82 0,21
4096 12288 | 4096 50331648 5000 755,76 0,33
1024 3072 | 1024 3145728 6000 184,21 0,1
2048 6144 | 2048 12582912 6000 374,83 0,2
4096 12288 | 4096 50331648 6000 900,38 0,34
1024 3072 | 1024 3145728 7000 210,89 0,1
2048 6144 | 2048 12582912 7000 430,13 0,2
4096 12288 | 4096 50331648 7000 1052,76 0,33
1024 3072 | 1024 3145728 8000 239,8 0,1
2048 6144 | 2048 12582912 8000 491,5 0,2
4096 12288 | 4096 50331648 8000 1213,4 0,33
1024 3072 | 1024 3145728 9000 280,33 0,1
2048 6144 | 2048 12582912 9000 586,89 0,19
4096 12288 | 4096 50331648 9000 1385,04 0,33
1024 3072 | 1024 3145728 10000 310,03 0,1
2048 6144 | 2048 12582912 10000 624,83 0,2
4096 12288 | 4096 50331648 10000 1541,74 0,33

Table 2: Results of scalability with MPI-GPU approach.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

7156 M. ZAMITH et.al.

The second test presents the scalability given by MPI andamation of this technique with
GPU. The network latency and bandwidth are the bottlenecamth et al, 2010. The MPI
can be used for breaking the GPU constraint of domain sipegt This is illustrated by table
2.

6 CONCLUDING REMARKS AND PROSPECTIVE WORK

Although GPU can be a powerful hardware applicable to mabksparallel mathematical
problems, its own hardware such as memory, bandwidth asase¢le own language adopted,
is limited. Since CUDA is applied for GPUs from NVIDIA, whidnis work employed, the
source code is not portable for other platforms. For insaAg| developed its own language,
called CAL (Compute Abstraction Layer). Nowadays, Open€la iframework that provides
cross platform heterogeneous programming targetting Gfldsnulticore-CPUs as well, with
the same source code. The domain scale can be worked out aithh other GPUSs, either by
employing one single CPU or by employing several CPUs. Titel was the case in the work
presented herein. In the first case, all GPUs are pluggedeosaime motherboard whereas in
the latter a network structure is employed. In this case dmaection speed should be carefully
chosen in order not to harm the overall computing time.

As a forthcoming work the use of adaptive time is to be empdoyEhis strategy shall be
valuable in order to save computing time. This occurs bexausome regions of the domain,
the CFL condition can be served with smaller time steps thasthers, due to heterogeneities.
An additional and related feature to be discussed is thecehaf efficient and effective load
balancing heuristics for domain partition, in the conteidime adaptivity.

Summarizing, this work employed a scientific problem of isiial interest, namely the
scattering of acoustic waves in heterogeneous media, astlzetefor studying the efficient
application of GPU Computing for FDM discretization of mathatical problems. The use of
MPI provided an efficient way for reaching domain scalailit

Acknowledgements

The authors gratefully acknowledge Petrobras, CNPq, CARES-APERJ for the financial
support of this work.

REFERENCES

Abbas-Turki L.A. and Lapeyre B. American options pricingraalti-core graphic carddnter-
national Conference on Business Intelligence and Findritmgineering 0:307-311, 20009.
Balevic A., Rockstroh L., Tausendfreund A., Patzelt S., IGc, and Simon S. Accelerating
simulations of light scattering based on finite-differeticee-domain method with general
purpose gpusComputational Science and Engineering, IEEE Internatid®anference on

0:327-334, 2008.

Bolz J., Farmer I., Grinspun E., and SchrAdioder P. Sparsexsolvers on the gpu: con-
jugate gradients and multigrid. IACM Transactions on Graphics: Proceedings of ACM
SIGGRAPHpages 917-924. 2003.

Bording R.P. and Lines L.RSeismic Modeling and Imaging with the Complete Wave Equatio
Course Notes Series Society of Exploration Geophysicistlion, 1997.

Dobbs D. Cuda, supercomputing for the masses: Part 1.Avalible at:
http://www.ati.com/developer/techpapers.htpalges 1-7, 2008.

Fernandes K., NETO A.S., Tenembaum R.A., and STUTZ L. A daresgessment strategy

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXIX, pags. 7147-7157 (2010) 7157

based on a sequential algebraic algorithmlTiCSV: Proceedings of the 17th International
Congress on Sound and Vibratid2010.

Golub G. and Ortega JScientific Computing and Differential Equations: an Intnation to
Numerical MethodsAcademic Press, 1 edition, 1991.

Hammonds J.S., Saied F., and Shannon M.A. Solving coupkg&-axial wave and thermal
diffusion equations with mixed-mode parallel computasidparallel Computing33(1):43—
53, 2007.

HBeonLabs. Cuda— compute unified device architecture. Avalible at:
http://www.hbeonlabs.com/detailcuda.h2009.

Kern M. and Méfire S.M. Parallel solution of the wave equatisimg higher order finite el-
ements. In D. Kaeli and M. Leeser, editoMPIDC’ 96: Proceedings of the Second MPI
Developers Conferengpage 125. 1996.

Langdon W.B. and W.Banzhaf. A simd interpreter for genetmgpamming on gpu graphics
cards. InLecture Notes in Computer Science: Genetic Programpages 73—-85. Springer
Berlin-Heidelberg, 2008.

Michea D. and D.Komatitsch. Accelerating a three-dimemasidinite-difference wave propa-
gation code using gpu graphics cardaeophysical Journal International82:389§$402,
2010.

Micikevicius P. 3d finite difference computation on gpuswgstuda. In D. Kaeli and M. Leeser,
editors,ACM, Proceedings of 2nd Workshop on General Purpose Progess Graphics
Processing Unitspages 79-84. 20009.

Mitchell A. Computational Methods in Partial Differential Equationdohn Wiley and Sons,
1969.

NVIDIA. Opencl. Avalible at: http://developer.nvidia.com/object/opkntnl, 2003.

NVIDIA. Nvidia - cuda compute unified device architecturBrogramming guide, NVIDIA
2008.

NVIDIA. NVDIA - CUDA Programming GuideNVIDIA, 2010.

Ramadan O., Akaydinl O., Salamah M., and Oztoprak A.Y. RaArahplementation of
the wave-equation finite-difference time-domain methomhgishe message passing inter-
face. InComputer and Information Sciences: ISCIS 208&ges 810-818. Springer Berlin-
Heidelberg, 2004.

Reynolds A. Boundary condition for the numerical solutidnn@ve propagation problems.
Geophysics43(1):1099-1110, 1978.

Rozen T., Boryczko K., and Alda W. A gpu-based method for apionate real-time fluid flow
simulation.Machine Graphics and Vision International Journal/(3):267-278, 2008.

Zamith M.P., ao D.B., Madeira D., Clua E., Kischinhevsky Meal-Toledo R., Montenegro
A., and ao A.B. Performance evaluation of optimized implatagons of finite difference
method for wave propagation problems on gpu architectieappear in Proceedings of
First Workshop on Applications for Multi and Many Core Argutures - WAMMCA2010.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

	INTRODUCTION
	Acoustic Wave Equation
	Numerical Stability
	Semi-Infinite Domains
	Source Function

	Cuda and GPU Computing
	GPU-based Cluster
	Finite Difference Method on GPU

	Numerical Results
	Concluding remarks and prospective work

