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Abstract. The level-set method has become a popular approach to tackle two-phase, 
incompressible flow problems. In the standard level-set method the equations are solved in 
both fluids with smoothed fluid properties across the interface. In contrast to the standard 
level set method, the single-phase level set method is concerned with the solution of the flow 
field in the denser phase only. Some of the advantages of such an approach are that the 
interface remains sharp, the computation is performed within a fluid with uniform properties 
and that only minor computations are needed in the air. The location of the interface is 
determined using a signed distance function, exactly as done on the standard level-set 
method, but appropriate interpolations and extrapolations are used at the fluid/fluid interface 
to enforce the jump conditions. In our RANS solver with non-orthogonal grids, very large cell 
aspect ratios appear on the near-wall regions of the flow, which causes the standard 
reinitialization methods to fail. To overcome this problem, a reinitialization procedure has 
been developed that works well with non-orthogonal grids with large aspect ratios. Since the 
grid points in air don’t have a well defined velocity, the time derivatives cannot be treated in 
the Eulerian fashion in points that change from air to water during a time step. This problem 
is dealt with by using a convective extension to obtain the velocities at previous time-steps for 
the grid points in air, which provides a good estimation of the total derivatives. In this paper 
we discuss the details of such implementations. The method was applied to two unsteady 
tests: sloshing in a two-dimensional tank and wave diffraction in a surface ship, and the 
results compared against analytical solutions or experimental data. The method can in 
principle be applied to any problem in which the standard level-set method works, as long as 
the stress on the second phase can be specified and no bubbles appear in the flow during the 
computation. 
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1 INTRODUCTION 

Level set methods are becoming increasingly popular for the solution of fluid problems 
involving moving interfaces1. In the case of fluid/fluid interfaces, the level set methods can 
predict the evolution of complex free surface topologies including waves with larges slopes 
such as spilling and breaking waves, deforming bubbles and droplets, breakup and 
coalescence, etc. Initially introduced by Osher & Sethian2, the level set method has been the 
subject of much research and was used to solve different types of problems; see for instance 
the cited review by Sethian & Smereka1 and the work by Osher & Fedkiw3.  

In many fluid/fluid problems the interface between the fluids can be considered as a free-
boundary, which allows for the computation of the flow on the more viscous and dense fluid 
only. A most important set of problems of this class is the water flow around surface-piercing 
bodies (like ship hulls) and around submerged bodies (as the flow past a submerged 
hydrofoil). Most interface tracking methods solve free-boundary problems with appropriate 
conditions at the interface. Volume of Fluid (VOF) methods solving only the denser phase are 
common4.  

Solving only the water phase in level set methods (here called the single-phase level set 
method) presents several advantages over the classic level set approach (or two-phase level 
set method) in which both fluids are solved. One of them is that in the air phase only 
extension velocities are needed, which makes the problem considerably easier to converge. In 
addition, since we are solving on a single fluid with constant properties, the computation of 
the pressure can be done in a standard way without pressure and velocity oscillations at the 
interface that are common in two-phase level set methods with large density ratios. Single-
phase level-set method can in principle handle any problem that can be solved with two-phase 
level-set methods, as long as two conditions are met. The first condition arises from the fact 
that in single-phase level set methods (or any other method in which we solve only the water 
phase) the continuity condition will not be satisfied on the air phase, thus the method is not 
suitable for problems in which the air phase somehow gets pressurized during the 
computation. This means that the method will yield non-physical results if air is trapped or 
bubbles are formed inside the liquid during the calculation. The second condition, related to 
the first, is that the stresses caused on the liquid phase by the air phase must be negligible 
since, again, we don’t compute in the air and impose those stresses to be known a priori. 
Other than these limitations, the method has no restrictions on surface topology. 

 The main application we pursue in our research program is the computation of the 
viscous free surface flow in large surface-piercing bodies. This is a difficult problem that 
involves complicated three-dimensional geometries, which leads to non-orthogonal 
curvilinear grids with high aspect ratio, very high Reynolds numbers and complex free 
surface topologies. Both surface tracking and surface capturing methods have been used to 
tackle this type of problems.  

 In surface tracking methods, the computational grid is fitted to the free surface, and 
therefore is not fixed in time. This type of method can be high order accurate both in space 
and time. The grid deformation process to fit the grid to the free surface works well and is 
robust as long as the free surface deformation remains small. Examples of successful 
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applications for free surface ship flows include resistance computation without5 and with 
propellers6, forward speed diffraction7,8, roll decay motion9 and pitching and heaving motion 
in regular head seas10. Unfortunately, as the deformation of the free surface increases it is 
difficult to prevent grid quality deterioration and computation breakdown. One of the main 
conclusions drawn after the Gothenburg 2000 workshop on ship hydrodynamics11 was that 
level-set methods show promising results and further research for surface capturing methods 
should be pursued to overcome the limitations of surface-tracking methods. 

Besides level set methods, surface capturing methods include volume of fluid (VOF) 
methods12, front tracking methods13, and other variations in which a color or volume fraction 
function is computed. Among others, notable examples of the application of surface capturing 
methods for flows around floating bodies are in Azcueta et. al.14, where a surface capturing 
method is used to simulate the flow around a surface piercing blunt body, and in Sato et al.15, 
who studied pitching and heaving on linear incident waves.  

Level set methods have been applied for both submerged and surface-piercing body 
problems. Both single and two-phase level set methods have been used16 to study the flow 
around submerged two-dimensional hydrofoil in steady-state. Complicated three-dimensional 
flows around container ships using the two-phase level set approach with body-fitted 
coordinates have been solved17,18,19. Three-dimensional flows around ships have been tackled 
in steady-state using a single-phase level set method20. We note that all these single-phase 
methods are devised and used for steady-state applications only. 

In this paper we present an unsteady single-phase level set method for viscous, 
incompressible flow. The computation of the total time derivative is a key issue to make the 
method time-accurate. The implementation of the overall scheme is discussed.   

We test the method against two two-dimensional and one three-dimensional unsteady 
cases: a linear progressive wave, the sloshing in a steady tank, and the wave diffraction by a 
ship. Results are compared against analytical or experimental data showing good agreement. 

2 LEVEL SET APPROACH 

We discuss first the standard level set method for incompressible free surface viscous 
flows, originated about ten years ago21. We call this method the two-phase level set, since the 
solution is obtained in both fluids. In a two-phase flow, the instantaneous local equations of 
motion within each fluid can be written as22: 

 1 2k k
k k k k

k k

p
t

µ
ρ ρ

∂
+ ⋅∇ = − ∇ + ∇⋅ +

∂
v v v D g  (1) 

 0k∇⋅ =v  (2) 

 
where the subscript k = l or g indicates the phase present at a given point in space, which in 
our case can be either liquid or gas. v , p  and D  are the velocity, pressure and rate of 
deformation tensor, kρ  and kµ  are the density and viscosity of fluid k, and g is the gravity 
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acceleration. At the interface, the interfacial boundary conditions or jump conditions apply. In 
the case of immiscible fluids we can write: 

 [ ] ( )2 ip µ σ κ σ− + ⋅ = − +∇I D n n  (3) 

where the bracket means l – g and the normal n is taken from the liquid to the gas. The second 
term on the right hand side of Eq. (3) is the stress due to gradients on surface tension or 
Marangoni effect23, usually important when large gradients of temperature are present, as in 
boiling flow. i∇  denotes the gradient in the local free surface coordinates. The interfacial 
curvature κ is computed from: 

 κ = ∇ ⋅n  (4) 

The jump conditions (3) can be integrated into the equations of motion (1) and (2), 
resulting in a body force concentrated in the interface of a single incompressible fluid with 
variable properties24: 

 ( ) ( )1 2 ip
t

µ σ κ σ δ φ
ρ ρ

∂
+ ⋅∇ = − ∇ + ∇⋅ + + +∇

∂
v v v D g n  (5) 

where φ  is a distance to the interface function, positive in liquid and negative in gas. The 
location of the interface is therefore the zero level set of the function φ , known as the level 
set function. Since the free surface is a material interface (in absence of interfacial mass 
transfer such as evaporation or condensation), then the equation for the level set function is: 

 0
t
φ φ∂
+ ⋅∇ =

∂
v  (6) 

and from the level set function we can compute the normal as: 

 φ
φ

∇
= −

∇
n  (7) 

Since the fluid properties in Eq. (5) change discontinuously across the interface, and the 
concentrated surface tension force also becomes infinite in an infinitesimal volume, direct 
solution of Eq. (5) is naturally difficult. Two approaches are usually followed to overcome 
these difficulties.  

In standard level set methods, the interface is smoothed across a finite thickness region, 
usually a few grid points thick. The fluid properties and the delta function are modified as20: 

 ( ) ( ) ( )g l g Hρ φ ρ ρ ρ φ= + −  (8) 

 ( ) ( ) ( )g l g Hµ φ µ µ µ φ= + −  (9) 
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 ( ) ( )d H
d

φ
δ φ

φ
=  (10) 

where the smoothed Heaviside function is usually expressed as: 

 ( )
( )

( ) ( )
( )

0
0.5 1 sin

1

H
φ α

φ φ α π φ α π φ α

φ α

⎧ < −
⎪

= + + ≤⎡ ⎤⎨ ⎣ ⎦
⎪ >⎩

 (11) 

with α  the half-thickness of the properties transition region. An important step is to maintain 
the level set function a distance function within the transition region at all times. This is 
achieved by the reinitialization step, discussed later in this paper. 

One drawback of the level set method is the introduction of the transition region. This 
results in smearing of the flow properties and variables, forcing them to be continuous at the 
interface regardless of the appropriate jump conditions. In the Ghost Fluid Method the jump 
conditions are introduced implicitly on the formulation by solving for a “ghost” fluid across 
the interface25,26. This approach, though easy to implement, forces the solution of two fluid 
fields on each grid node, one for each fluid. This results in additional computational cost that 
can be very demanding in large 3-D computations. 

It is then desirable for many applications to be able to solve a single-phase problem in a 
fixed grid, capturing the interface with appropriate enforcement of the jump conditions, and 
still retaining the advantages of level set methods. These applications generally involve air-
water flows in which the density and viscosity ratios are about 1000 and 75, respectively. 
Under these conditions, the interface can be taken as shear stress free for most applications, as 
frequently done with interface tracking algorithms. In this way the computational domain to 
solve the RANS equations is restricted to the grid points in water plus a few nodes in air to 
enforce the jump conditions, with the consequent economy of resources. A second advantage 
is that the continuity equation is enforced always in a single fluid, thus allowing the use of 
standard collocated methods without the usual pressure and velocity oscillations that occur at 
the interface between fluids with a large density ratio1, p. 355. Such a method is the single-phase 
level set method16,20. In this paper we discuss how to compute time derivatives at the interface 
on a single-phase level set method in order to make it appropriate for unsteady problems. 

3 UNSTEADY SINGLE-PHASE LEVEL SET METHOD DETAILS 

The key points of a single-phase level-set method are the derivation and implementation of 
the jump conditions, the reinitialization of the level-set as a distance function and the 
computation of the total time derivatives. Discussion on these subjects follows. 

3.1 Dimensionless equations 

Since we work on a single fluid, the RANS equations can be non-dimensionalized as usual: 
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 1
Reeff

p
t

⎛ ⎞∂
+ ⋅∇ = −∇ +∇⋅ ∇ +⎜ ⎟⎜ ⎟∂ ⎝ ⎠

v v v v S  (12) 

where S includes any volumetric source with the exception of the gravity, which is lumped 
with the pressure to define the non-dimensional piezometric pressure: 

 2 2
0

absp zp
U Frρ

= +  (13) 

In Eqs. (12) and (13) absp  is the absolute pressure, Reeff is the effective Reynolds number 
and Fr is the Froude number, defined as: 

 0Reeff
t

U L
ν ν

=
+

 (14) 

 0UFr
g L

=  (15) 

where 0U  is the free-stream velocity and L is the characteristic length. tν  is the turbulent 
viscosity, that in our approach,  is obtained after solving the blended k ω−  model of 
turbulence27. Since we are considering an incompressible fluid, the continuity equation reads: 

 0∇⋅ =v  (16) 

To capture the location of the interface, we solve the level set function, Eq. (6). 

3.2 Jump conditions 

In a single-phase level set approach the jump conditions at the interface between two 
fluids, Eq. (3), must be treated as a boundary condition enforced explicitly. The jump 
condition on any direction tangential to the free surface is25: 

 ( ) ( ) 0µ µ∇ ⋅ ⋅ + ∇ ⋅ ⋅ =⎡ ⎤⎣ ⎦v n t v t n  (17) 

Neglecting the viscosity in air, and since t is an arbitrary vector perpendicular to the 
normal to the interface, we obtain the boundary conditions for the velocity at the interface: 

 0∇ ⋅ =v n  (18) 

Normal to the interface, the jump condition in dimensional form can be written as: 

 ( )2abs ip µ σκ σ− ∇ ⋅ ⋅ = +∇ ⋅⎡ ⎤⎣ ⎦v n n n  (19) 

In water/air interfaces we can approximate the pressure as constant in the air. Also, 
because of Eq. (18), the second term on the left hand side of Eq. (19) is zero. Thus the jump 
condition reduces to: 
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 abs ip σκ σ= +∇ ⋅n  (20) 

We also choose at this point to neglect the surface tension effects, because for the class of 
problems in which we are interested the curvature of the free surface is small. This is not a 
limitation of the model and surface tension can be easily included, as done by Di Mascio et 
al.20. Introducing Eq. (13), we must impose at the fluid/fluid interface: 

 2

zp
Fr

=  (21) 

3.3 Pressure condition at the free surface 

In a surface capturing approach the free surface is not located at the grid points and 
therefore an interpolation scheme must be devised to enforce the interfacial pressure 
condition at the interface location, Eq. (21). The free surface itself can be easily identified by 
locating the change in sign of φ  between two contiguous grid points along any coordinate 
line. 

We have then in our method three types of grid points. Grid points in water with all the 
first neighbors in water will be computed without any special treatment and need no 
additional consideration. Grid points in air can have any pressure value, and then we choose 
to enforce there Eq. (21) where z is now the vertical coordinate at the point. For points in 
water in which at least one of the neighbors is in air the following discussion applies. 

For any grid point p in water that has a neighbor in air na, the interfacial pressure condition 
of Eq. (21) is enforced locally. Referring to Fig. 1, the relative distance between the grid point 
in water and the interface is: 

 p

p na

φ
η

φ φ
=

−
 (22) 

thus, interpolating along the line joining the points p and na and using Eq. (21) we obtain for 
the interfacial pressure: 

 
( )

int 2

1 p naz z
p

Fr
η η− +

=  (23) 

The pressure at the neighbor in air can then be found by extrapolation from the pressure 
values at the points h and at the interface, where h is located halfway between the local point 
p and the opposite neighbor in water to na, shown as nw in Fig. 1: 

 ( )int int
( , int)

( , int) ( , )
na

na h
p p h

distp p p p
dist dist

= − +
+

r
r r r

 (24) 

where ( ) 2h p nwp p p= +  and ( ) 2h p nw= +r r r . This scheme can be easily implemented on a 
subroutine that computes the matrix coefficients for the pressure Poisson equation, by 
plugging Eq. (24) on every neighbor in air. Since all the necessary neighbors to enforce the 
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interfacial pressure condition are the same necessary to build the pressure matrix (for typical 
19 point stencils), no additional connectivity has been added and therefore can be 
implemented in multi-block codes with no modifications on the existing inter-block 
information transfer scheme. This is especially attractive in parallel implementations. 
 

 
Figure 1: calculation of the neighbor pressure to enforce the pressure boundary condition. 

 

3.4 Reinitialization 

In two-phase level set methods, the distance function is reinitialized periodically to keep it 
a smooth distance function and have a transition region uniform in thickness. The 
reinitialization step is extremely important in single-phase level set methods but for different 
reasons: the normal must be accurately evaluated at the interface because it is used in the 
boundary conditions and it must also be reasonable everywhere in air since it is used to 
extend the velocities into the air to transport the level set function. The reinitialization step is 
thoroughly described by Carrica et al.28, and will be summarized here. 

We extend the method of Adalsteinsson & Sethian29 to three dimensional curvilinear grids 
to obtain a good signed distance for the first neighbors to an interface (the beginning set of 
their close points). In curvilinear grids with very large aspect ratio (in boundary layer grids 
can be as large as 105) we cannot use the distance to the first neighbor to define the 
geometrical distance to the interface. In very large aspect ratios the closest interface might lie 
several grid points away in some direction. Moreover, the closest interface might be in a 
different block, and thus that information belongs to a different processor in a typical domain 
decomposition parallel implementation. To account for this problem we search along the three 
grid lines for an interface, including higher-order neighbors. Once the close-point 
reinitialization is performed, we solve the implicit equation: 

0φ =

p

wn

an

w a te r η

intp

h

air
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 ( )0signφ φ⋅∇ =n  (25) 

where n is in this case the normal pointing to the fluid being reinitialized. Since n is either 
φ∇  or φ−∇ , Eq. (25) is an eikonal equation and propagates information from the interface 

outwards. The corresponding Dirichlet boundary conditions for (25) are given by the value of 
φ  at the close points. 

3.5 Computing the total time derivatives 

The proper computation of the total time derivative terms near the interface is a problem in 
single-phase level set techniques. To understand this, consider an interface moving vertically, 
as shown in Fig. 2, where we want to compute the total derivative at point p. At the current 
time shown, the point p is in water and in the previous time step was in air. Since we are 
using an Eulerian approach, the local time derivative at point p is expressed as a first-order 
approximation as: 

 t t t

t t
ϕ ϕϕ −∆−∂

≅
∂ ∆

 (26) 

where ϕ  is any velocity or turbulence variable. The problem appears because t tϕ −∆  was in air 
on the previous time step and therefore its value does not satisfy the field equations since it 
was computed using the extension of Eq. (18). Previous authors16,20 recognize this limitation 
and deal with steady-state problems only. Notice that in the standard two-phase level set 
method we can have a problem of similar origin. We use for our analysis the velocities, 
though all the variables should be computed across the interface on the same way. 

In single-phase level set approaches we have a sharp interface, and thus we have to find a 
suitable velocity for the previous time-steps to assign to the grid point previously in air. One 
possibility is to use the extended velocity as the previous time-step velocity (or time steps in a 
higher order scheme). However, this extended velocity will not result in the right total 
derivative. An extension that will yield a good approximation of the total derivative is 
presented below. 

Let’s consider a particle belonging to the free surface that at time 't t− ∆  during the time 
step advancing from t t−∆  to t  crosses a grid point, marked as p in Fig. 3. From 't t−∆  to t, 
the total derivative of the velocity is: 

 
( ) int

1

, '
'

p t tt tD
Dt t t

−∆− ∆ −
=

∆ −∆

u r uu  (27) 

where ( ), 'p t t−∆u r  is the velocity of the particle on the interface that at 't t−∆  is exactly on 

grid point p, and int
t t−∆u  is the velocity of the same particle at t t−∆ . This is a Lagrangian 

evaluation of the acceleration.  
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' 0t tφ −∆ =

0t tφ −∆ =

0tφ =

int
t tu −∆

air

water

p

 
Figure 2: computation of the time derivative at a grid point that is changing fluid. 

 
From 't t− ∆  to t we can use the Eulerian acceleration, since from that time on the grid 

point p is in water: 

 
( ) ( ) ( ) ( )

2

, , '
, ,

'
p p

p p

t t tD t t
Dt t

− −∆
= + ⋅∇

∆

u r u ru u r u r  (28)  

Since both total derivatives are computed within the same time step advancing from t t−∆  

to t, we set 
1 2

D D
Dt Dt

=
u u  and solve for the unknown velocity ( ), 'p t t−∆u r  to obtain: 

 
( ) ( ) ( )

int, ' , ,p t t
p p

tD t t t
Dt t t

−∆− ∆
= + ⋅∇

∆ ∆

u r uu u r u r  (29) 

Notice that the ratio 't t∆ ∆  can be computed from the level set function as: 

 
( )

( ) ( )
,'

, ,
p

p p

tt
t t t t

φ

φ φ
∆

=
∆ − −∆

r

r r
 (30)  

 Thus, accordingly to Eqs. (29) and (30), the total time derivative in grid points in 
which the level set function changes from air to water is replaced by: 

 
( ) ( )

( ) ( ) ( ) ( )
int, ,

, ,
, ,

p t t p
p p

p p

t tD t t
Dt t t t t

φ

φ φ
−∆−

= + ⋅∇
∆ − −∆

u r u ru u r u r
r r

 (31) 

where the interfacial particle velocity at t t−∆ , int
t t−∆u , remains to be determined. Notice that if 
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in Eq. (31) we replace this velocity by the velocity at point p on the previous time step we 
obtain the following expression: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
, , ,

, ,
, ,

p p p
p p

p p

t t t tD t t
Dt t t t t

φ

φ φ

− −∆
= + ⋅∇

∆ − −∆

u r u r ru u r u r
r r

 (32) 

The implementation of Eq. (32) requires an easy modification to the convective term and 
that we load on the points in air the interfacial velocity of the particle that will pass through 
grid point p, and assign that to the previous time step velocity. This second step is achieved 
by simply extending the variables not with the normal but with the velocity itself: 

 ( ) ( ), , 0p pt t t t−∆ ⋅∇ −∆ =u r u r  (33) 

which performs convective extension, thus assigning the interfacial velocity properly. We 
should be aware that Eq. (33) does not satisfy the normal zero gradient boundary conditions, 
and thus all the extensions in air during a given time-step must be carried out using Eq. (18). 
Once the time-step is converged, the extension of Eq. (33) is performed and loaded, only in 
air, as the previous time-step velocity. 

4 IMPLEMENTATION 

The single-phase level set model was implemented in the code CFDShip-Iowa30, a parallel 
unsteady RANS code. The code uses body-fitted structured multi-block grids with ghost cells 
and chimera interpolations to accommodate complex geometries. Thorough discussion of the 
status and methods used on the code can be found in Wilson et al.31. 

5 NUMERICAL EXAMPLES 

Since the aim of this paper is an unsteady method, we concentrate in unsteady example 
problems. The method has been tested on steady-state three-dimensional problems, including 
the flow around a surface ship model DTMB 5415 for different Froude numbers31.  

The numerical method described in the previous sections has been applied to two unsteady 
cases: sloshing in a 2-D tank and a 3-D wave diffraction problem for a surface combatant.  

5.1 Viscous wave in a 2-D tank 

We consider a tank with a length that is twice the depth of the still water level, in which a 
viscous fluid is allowed to oscillate freely. The grid is comprised of 4 blocks each with 51x46 
grid points in the x and z directions respectively and the extents are ( )1,1−∈x  and 

( )1.0,1−∈z . At 0=t  the free surface has a sinusoidal profile of small amplitude 0ζ  and 
wavelength d2 , which in our case is represented by: 

 ( )0 1 0.01 sin
2

xx πζ ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (34) 
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The free surface is then released and the wave elevation shows an amplitude decay in time 
( )tx,ζ . In order to simulate an infinite wave, we impose slip conditions at the lateral walls and 

at the bottom of the computational domain. Since the velocities are very small at the bottom, 
the boundary condition there has very little effect. 

This problem was studied analytically by Wu et al.32, who solved the linearized Navier-
Stokes equations. The solutions are expressed for different (small) Reynolds numbers 
( ν= dgdRe ) as a function of a dimensionless time expressed as dgt=τ . In our 
method we obtain the same non-dimensionalization by setting 1=Fr  and using the same 
initial amplitude as in the analytical problem. In addition, Eatock Taylor et al.33 provide 
numerical solutions to this problem using a Pseudo-Spectral Matrix Element Method, which 
is deemed to be very accurate, though the authors use linearized free surface conditions. 
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Figure 3: wave amplitude evolution at the center in a two-dimensional tank (Re=100) 

 
To evaluate quantitatively the performance of our numerical method, we compare against 

the analytical and the pseudo-spectral method solutions33 at Re=100 in Fig. 3. We see that the 
single-phase method does an excellent job in predicting both the amplitude and phase of the 
analytical solution outperforming the pseudo spectral method predictions. 

A higher Reynolds number solution (Re=2000) is shown in Fig. 4, compared against the 
analytical solution32. In this case, the single-phase level set method shows slight phase and 
amplitude differences. We note that the analytical solution neglects the nonlinear terms in the 
Navier-Stokes equations and uses a linearized free surface boundary condition, which might 
lead to error at this Reynolds number. This error, however, has not been quantified. 
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Figure 4: wave amplitude evolution at the center in a two-dimensional tank (Re=2000) 

 

5.2 Forward speed diffraction on a surface ship 

This problem is attractive as a benchmark because it involves considerable complications 
with respect to the previous case. Consider a ship moving with constant speed in the presence 
of regular head waves, that is, the ship and the waves move in opposite directions. Wilson & 
Stern7 and Rhee & Stern8 have performed numerical simulations of this problem using 
surface-tracking methods, Cura Hochbaum & Vogt19 have used the standard level set method. 

This case has been experimentally studied for a DTMB 5512 model. Unsteady free surface 
elevation, resistance, heave force and pitch moments34,35 and velocities36 were measured. Free 
surface elevations and velocities were measured only at medium Froude number ( 28.0=Fr ), 
long wavelength ( L5.1=λ ) and low wave steepness ( 025.0=kA ). Thus, these conditions 
were selected for comparison with the numerical method. Since the model ship has a length 

mL 048.3= , a Froude number 28.0=Fr  corresponds to 6Re 4.65 10= .  
In order to simulate the boundary layer turbulence using the ω−k  model, a fine near wall 

discretization is necessary, with spacing around L610− . This makes the design of the 
computational grid difficult, since an orthogonal grid is convenient in the far field to avoid 
deformation of the incoming wave. This problem can be overcome using a body-fitted grid 
for the boundary layer and an orthogonal grid for the far-field using overset grids with 
Chimera37 interpolation. In our case we chose to use an 8 block boundary layer body-fitted 
grid, a 16 block close-field orthogonal grid and a 8 block far-field orthogonal grid, for a total 
of 32 blocks and approximately 2,000,000 grid points. The overall grid, shown in Fig. 5, 
extends from 1−=x  to 2=x , ( )1,0∈y , taking advantage of the symmetry of the problem 
about the centerplane 0=y , and ( )1.0,1−∈z , with the ship located between 0=x  to 1=x . 
Ghost cells were used for interblock coupling inside each of the three main grid systems.  
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Figure 5: grid used for the wave diffraction problem. 

 
The initial conditions are set for a sinusoidal progressive wave with amplitude 006.0=A , 

as in the experimental conditions. The boundary conditions are summarized in table 1.  
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Eq. (37) 0k =  
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Re y

ω
β +

=  
0U =  0V =  0W =  

Table 1: boundary conditions for the forward speed diffraction problem 

 
The computation was started at t = 0, with sudden imposition of the initial and boundary 
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conditions, which causes an acceleration transient. The time step was chosen to be 0.00683, 
so that each wave period was discretized in 80 time steps. The initial transient is due to the 
time needed for the ship boundary layer to grow and for the Kelvin waves to develop, but an 
essentially periodic solution was achieved after about 3 non-dimensional time units, 
equivalent in our non dimensionalization to an advance of three ship lengths L. After the 
periodic solution was achieved, 5 more periods were run. 

We will concentrate in this paper on comparisons with free surface elevations and wake 
velocities. We chose to compare against quarter periods at  / 0,1/ 4,1/ 2t T =  and 3/4. The 
phase is set in such a way that at the beginning of the period T the crest of the wave is 
coincident with the bow of the ship, 0=x . Since the wavelength is L5.1=λ , the far-field 
crest will be located at 75.0,375.0=x  and 1.125 for 2/1,4/1/ =Tt  and 3/4, respectively. 

 

 

 
Figure 6: experimental, surface tracking and level-set free-surface solutions for t/T=0. 

 
The free surface elevation predicted by the single-phase level-set method is compared 

against the experimental data and surface-tracking simulations7 for the periodic state at t/T = 0 
in Fig. 6. The single-phase level set results show an excellent agreement with the 
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experimental data capturing appropriately the Kelvin waves and the near-hull features of the 
free surface. Compared to the surface-tracking results, the single-phase level set shows much 
better agreement with the experimental data. The surface-tracking computations were made 
on a coarser grid (750,000 grid points), which could partially account for the poorer results. 
Notice, however, that the implementation of overset grids with surface tracking methods 
would be complicated and expensive, since the interpolation coefficients would need to be 
recomputed every time the grid moves, several times per time step, at every time step in an 
unsteady problem. Thus, in surface capturing methods much better quality grids can be used. 

Fig. 7 shows the elevations from the experimental data and the level set computations for 
the other three quarter periods: 2/1,4/1/ =Tt  and 1/4. Again, excellent agreement with the 
experimental data is evident, though the elevation gradients appear to be slightly smoothed, 
resulting in some underprediction of the crests and troughs on the Kelvin wave. Contrarily, 
the wave elevation on the stern is slightly overpredicted.  

6 CONCLUSIONS 

An unsteady single-phase level-set method has been presented. The method relies on the 
level set function to detect the interface, and on velocity extensions and pressure 
interpolations to enforce the jump conditions at the interface. The computation of the time 
derivatives to properly evaluate the total derivatives is discussed in detail. The method is 
tested against three unsteady cases: an inviscid linear progressive wave, the viscous sloshing 
in a two-dimensional tank and the flow around a surface ship under regular head waves. In the 
three cases the method has performed very well compared to either analytical or experimental 
results. 

The presented method has several potential advantages against the standard two-phase 
level set method, and of course some disadvantages. One of the advantages is that the 
computation takes place only in water, with potential important savings computing simpler 
equations in air. In addition, the computation is performed in a fluid with constant properties, 
avoiding the problem related with large density ratios in two-phase level set methods. Since 
the jump conditions are imposed explicitly, no transition zone appears. As for the 
shortcomings, the method does not solve the fluid equations in air and therefore no problems 
in which air entrapment occurs can be solved. In addition, the stresses on the liquid caused by 
the air must be negligible or specified somehow. 

In principle any problem that is not restricted by the limitations previously stated can be 
tackled with the unsteady single-phase level-set method. This includes surface-piercing 
bodies with large-amplitude waves or motions, steep waves, etc. Linear and nonlinear 
problems can be solved since we retain the nonlinear terms on the equations and on the jump 
conditions. 
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Figure 7: experimental and level-set free-surface solutions for t/T=0.25,0.5 and 0.75. 
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