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Abstract. This article presents a new methodology for structural optimal pre-sizing of reinforced 
laminated composite panels under compression, based on a proposal for optimal sizing of integral 
machined metal panels. Collapse stresses and structural efficiency are taken into account in the 
analysis of the panel stability. Numerical examples are developed and compared with finite element 
results to show the applicability of the methodology. 

Mecánica Computacional Vol XXIX, págs. 7209-7222 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1 INTRODUCTION 

Great part of an aircraft structure is composed by thin plates stiffened by longerons or 
stiffeners. These structures are susceptible to buckling failure at critical stress or buckling 
stress, which is usually below the material yield stress. Thus, for this type of structure the 
buckling is a critical failure mode and, therefore, the prediction of the buckling load for 
columns, thin plates and stiffened panels is very important in aircraft design. Nowadays, we 
can see a strong movement in order to expand the use of composite materials in aircraft 
structures, aiming to increase the structural efficiency, that is, increase the capacity of 
supporting loads and reducing structure mass. Therefore, composite panels under 
compression have been extensively studied under various aspects, looking for an increase of 
the structural efficiency, Lanzi (2004), Bisagni et al (2005), Gavazzi and Arakaki (2007). 

Neto (2006) presented an optimization method for integrally machined metal panels under 
compression.  

The objective of this work is to verify if the methodology presented by Neto (2006) is 
suitable for application on typical aeronautical composite reinforced panels. 

So, three different rectangular panels (500mm x 400mm), with two stringers, are 
numerically analyzed by Finite Element Models: 

(a) baseline panel: made of carbon-epoxy, this panel has typical aeronautical dimensions; 
(b) carbon-epoxy panel: based on Neto (2006) results; 
(c) aluminum panel: with the same dimensions of (b). 
Collapse stresses for these panels and its structural efficiencies are presented and 

compared. 

2 FEM MODELING 

 It was used the software MSC. Nastran 2007r1. Both skin and stiffeners were modeled 
with plate CQUAD4 element type. In panels (a) and (b), laminate properties were modeled by 
PCOMP. 

Figure 1 shows the finite element model of the baseline composite panel. 
The compression loads were applied along one edge of the panel through forced 

displacement in the x direction (see Figure 4). In order to translate the forced displacement to 
loads, it was measured the reaction in the opposite edge to the application of the 
displacement. The total applied load is obtained by the summation of the nodal loads, and 
dividing this value by the panel section area it is obtained the applied stress. As boundary 
conditions, it was restricted the freedom degrees 1 and 3 in the loaded edge, the degrees 1, 2 
and 3 in the opposite edge to the application of load and the degrees 2 and 3 in the edges 
parallel to the loading. Note that degrees 1, 2 and 3 are related to translations in the x, y and z 
directions, respectively. 

Linear buckling was analyzed with solution 105 (SOL105), while nonlinear analyzes were 
performed with SOL106. 
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Figure 1: FEM of the baseline composite panel. 

3 FEM ANALYSES 

3.1 Baseline composite panel 

As baseline, it was considered a typical panel of aeronautical application, with 500 mm 
length and T-type stiffener. The stiffener section and panel dimensions are presented in the 
Figure 2. The dimensions are indicated in millimeters. The panel section area is 782.91 mm2. 
The panel is built with carbon pre-impregnated with epoxy resin, whose typical properties are 
presented in the Table 1, for tape and fabric. 

 

 
Figure 2: Stiffener section and panel dimensions (in mm). 
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Mechanical properties 

(MPa) 
Mechanical strength 

(MPa) 

Material 
Thicknes

s 
(mm) 

12 E1 E2 G12 X1t X1c X2t X2c S12 S13 

Tape 0.19 0.32 125450 9450 4700 1815 1241 31 167 107 97 
Fabric 0.21 0.07 60800 58250 4550 621 760 594 707 125 68 

Table 1: Mechanical properties and strength of carbon/epoxy. 

Where: 
12 = Poisson material coefficient for uniaxial stress state in the direction x1 
E1 = material elasticity modulus in the direction x1 
E2 = material elasticity modulus in the direction x2 
G12 = material shear modulus in the plane x1x2 
X1t = material tension strength in the direction x1 
X1c = material compression strength in the direction x1 
X2t = material tension strength in the direction x2 
X2c = material compression strength in the direction x2 
S12 = material shear strength in the plane x1x2 
S13 = material shear strength in the plane x1x3 
The lamination of each panel component is shown in the Figure 3, as well as its thickness. 

It is important to mention here that the material direction 1 was oriented along the panel 
length direction. Then, a tape ply with 0° direction has its fibers oriented along the panel 
length. 

 
Figure 3: Lamination of the baseline composite panel. 

The results of the Nastran linear buckling solution, SOL105, show that the panel critical 
buckling stress is Fcr = 17.2 MPa. Figure 4 shows the first five buckling modes. 
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Figure 4: Panel buckling modes (SOL105). 

Considering the finite element model of the baseline composite panel shown in the 
previous section, a 4.0 mm forced displacement in the x direction was applied and the panel 
was analyzed by the non linear solution of the Nastran, SOL106. By this way, it is aimed to 
obtain the collapse stress of the panel. 

The results of the non linear solution are shown in the Table 2. It is presented the load 
ratio, the end shortening of the panel and the load associated with each load ratio. The load 
ratio is defined as the rate between the load in each step of loading and the total applied load. 

Figure 5 presents a graphic that illustrates the results of the non linear solution. In this type 
of graphic, widely used in references to post-buckling of composite panels, such as Lanzi 
(2004), the different buckling modes are identified by a reduction of the curve slope, i.e., a 
reduction of structural rigidity. 

In order to identify the collapse of the panel, besides of the graphic presented in the Figure 
5, it was also calculated the Tsai-Wu failure index at each load ratio. By the criterion of the 
first ply failure, it is considered that the laminate failures when the first ply failure. So, it was 
considered that there was the collapse of the panel when the failure index of a ply of the panel 
laminates has reached the value 1. 

When the panel end shortening has reached 2.0 mm the failure index was 0.91, and for end 
shortening equal to 2.1 mm the failure index was 1.641. Thus, it is verified that the collapse of 
the panel took place between these two points. Conservatively it is assumed the collapse with 
the end shortening of 2.0 mm, which according to the Table 2 is associated with a load of 
121946 N. This point is identified in the graph presented in the Figure 5. Dividing this value 
of collapse load (Pc) by the section area of the panel (A), it is obtained the collapse stress (Fc). 
It is also considered a structural efficiency (EE) equal to the collapse load divided by the mass 
of the panel (M). The mass was calculated using the density ( = 1.6x10-6 kg/mm3) and the 
volume of the panel (section area times the length L). Thus, we have: 
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A = 782.91 mm2   Pc = 121946 N 
L = 500 mm   Fc = 156 MPa 
M = 0.626 kg   EE = 194802 N/kg 
 

Load 
ratio 

End 
shortening 

(mm) 
P (N) 

Load 
ratio 

End 
shortening 

(mm) 
P (N) 

0.000 0.0 0 0.325 1.3 86595 
0.025 0.1 9716 0.350 1.4 91937 
0.050 0.2 18318 0.375 1.5 97188 
0.075 0.3 26043 0.400 1.6 102347 
0.100 0.4 33551 0.425 1.7 107409 
0.125 0.5 40849 0.450 1.8 112371 
0.150 0.6 47943 0.475 1.9 117223 
0.175 0.7 54261 0.500 2.0 121946 
0.200 0.8 60383 0.525 2.1 126482 
0.225 0.9 64346 0.53125 2.125 127565 
0.250 1.0 70040 0.53438 2.1375 128095 
0.275 1.1 75646 0.53594 2.14375 128353 
0.300 1.2 81165 0.53672 2.14687 128473 

Table 2: Non linear solution results for the baseline composite panel. 
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Figure 5: Non linear solution results for the baseline composite panel. 
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3.2 Idealized composite panel with the optimal dimensions of Neto (2006) 

Neto (2006) considered the panel as a structural component subjected only to axial 
compressive loads – the single assumed hypothesis. The aluminum Al7050-7451 plate 2.75” 
was assumed for the purposes of his study. The panel geometry is defined as a function of five 
design variables: panel length L, web width bs, flange height bw, web thickness ts and flange 
thickness tw. Figure 6 presents a sketch of the panel section as well as its reference coordinate 
system.  
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Figure 6: Panel geometry. 

It is also defined the compressive allowable stress Fc as the minimum stress between those 
evaluated regarding each one of the four criteria that concur to the structural stability – 
section crippling Fcc, web buckling Fcb_web, flange buckling Fcb_flange and column collapse Fcr. 

Below it is presented the methodology used by Neto (2006). 
Section crippling: The crippling allowable stress is calculated using Gerard Method. Eq. 

(1) describes the crippling allowable stress Fcc of an arbitrary section, where: Fcy is the yield 
compressive stress, E is the elasticity modulus, A is the section area and t is the section 
thickness.  
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The remaining variables of Eq. (1) are dependent on specific section shapes and 
considering the panel geometry – a T-section with straight unloaded edges – they result in g = 
3,  = 0.67 and m = 0.40. Since the panel geometry presents independent web thickness ts and 
flange thickness tw, the mean section thickness t is calculated as presented in Eq. (2). 
Additionally Gerard recommends the cut-off of crippling allowable stress at 0.8 Fcy. 
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Web buckling and flange buckling: The web and the flange are analyzed as simple 
supported plates under axial loads in accordance with plate theory. Figure 7 presents the 
geometry of a generic plate and its loads, where b is the element width and a is the element 
length. 
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Figure 7: Simple supported plate under axial loads. 

Eq. (3) presents the calculation of buckling failure stress Fcb, where E is the elasticity 
modulus,  is the Poisson coefficient, t is the thickness and Kc is the buckling coefficient – 
dependent on the plate boundary conditions. 
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Eq. (4) presents the calculation of the buckling coefficient Kc for a simple supported plate 
– or the panel web – where m represents the sequence of integers from 1 up to infinity. So, 
Eq. (4) defines a series of Kc(m) values for each ratio a/b of the panel. The effective buckling 
coefficient Kc is the lowest value of this series; and Kc = 4.0 can be assumed for practical 
purposes if a/b > 4. 
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Eq. (5) presents the calculation of the buckling coefficient Kc for a simple supported 
flange, due to Lundquist & Stowell. 
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Eq. (6) results from equalizing the buckling allowable stress of web Fcb_web to the buckling 

allowable stress of flange Fcb_flange, where L is the panel length, bs is the web width, bw is the 
flange height, ts is the web thickness and tw is the flange thickness – as defined in Figure 6. 
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It must be observed that Eq. (6) leads to a dependency of the flange height bw on the 
remaining variables of panel geometry (L,bs,ts,tw) – described in Eq. (7) – as a result of the 
concurrence of web and flange buckling design criteria. 
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Column collapse: The panel is also verified as simple supported column under axial loads 
in accordance with Euler theory. The Euler formula for the column allowable stress Fcr is 
presented in Eq. (8) where (L’/) is the slenderness ratio. 
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In the case of a simple supported panel, the slenderness ratio is a pure geometrical property 
whose calculation is fully described in Eq. (9) up to Eq. (12) and referred to Figure 6. 
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The dual nature of the problem: It is expected to an efficient structural arrangement of 
panels the capability to endure the loads that the aircraft are subjected to and also to cover its 
whole external surface at least mass cost. It is a paradox, i.e., opposite expectations which 
characterize the complex duty to the structural conception. So, the generalized approach to 
the problem addresses to the best compromise solution between light weight and high 
mechanical strength of the integrally machined panels.  

The equivalent thickness teq, as presented in Eq. (13), is initially defined in this sense. This 
variable is directly related to the resulting mass of the panel. 
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It is also defined the compressive allowable stress Fc, as presented in Eq. (14), which is the 
minimum stress between those evaluated, regarding each one of the four criteria that concur 
to the structural stability – section crippling Fcc, web buckling Fcb_web, flange buckling 
Fcb_flange and column collapse Fcr. 
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Optimization: The objective function, of maximizing eqc tFEff 
, is defined in Eq. (15), 

while the design space is presented in Eq. (16). 

     

 








A

bF
ttbbLEff

ttbbLEff

sc
wsws

wsws

),,,,(

),,,,(max

      (15) 

M e c á n i c a  C o m p u t a c i o n a l  V o l  X X I X ,  p á g s .  7 2 0 9 - 7 2 2 2  ( 2 0 1 0 )7 2 1 7

C o p y r i g h t  ©  2 0 1 0  A s o c i a c i ó n  A r g e n t i n a  d e  M e c á n i c a  C o m p u t a c i o n a l  h t t p : / / w w w . a m c a o n l i n e . o r g . a r















sws

sss

s

ttt

btb

LbL

25.0

2.0005.0

4.01.0

      (16) 

It must be observed that Eq. (15) enables the panel geometry to reach the best compromise 
solution between the maximum compressive allowable stress and the minimum mass, keeping 
coherence with the purposes of the dual nature of the problem. 

The optimization results are presented in Neto (2006). The set of results characterizes the 
panel geometry (tw/ts, ts/bs and tw/ts) and its respective compressive allowable stress Fc for 
each given value to the design parameter bs/L. 

Here, in this item, it is intended to build a composite panel with the optimal dimensions 
presented in the work of Neto (2006) and to evaluate its collapse stress. This collapse stress 
will be compared with those of the baseline panel and the one obtained to the metallic panel 
with same geometry. 

Among the geometric relationships to the optimal solution found by Neto (2006), the one 
chosen here for analysis is shown in Table 3. This relation was chosen to keep coherence with 
the size of the baseline panel. The baseline panel is 500 mm long (L) and the distance 
between stiffeners is equal to 200 mm (bs), which provides the geometric relation bs/L = 0.4. 

 
bs/L = 0.4000 L = 500.0 mm 
bw/bs = 0.2207 bs = 200.0 mm 
ts/bs = 0.03223 bw = 44.1 mm 
tw/ts = 0.685 ts = 6.45 mm 

Fc = 280.3 MPa tw = 4.42 mm 

Table 3: Neto (2006) relations and idealized composite panel geometry. 

The composite panel was built by distributing the fibers in a manner to meet the geometry 
presented above. Since the tape and the fabric thicknesses are fixed, there is a small difference 
between the optimal dimensions and the final dimensions obtained for the composite panel. 
However, these differences are minimal and do not influence the results of the analysis. The 
Figure 8 shows the final dimensions obtained for the composite panel and the laminate of the 
skin and of the stringer. 

 
Figure 8: Composite panel with the optimal dimensions of Neto (2006). 
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The finite element model was built using CQUAD4 elements to represent the skin and the 
stringers. It is important to emphasize that the model constructed for this analysis is not the 
same presented before as baseline panel, because here it is considered a panel with the same 
cross section of Neto (2006). The Figure 9 shows the finite element model of the composite 
panel with the optimal dimensions of Neto (2006). 

 
Figure 9: FEM of the composite panel with the optimal dimensions of Neto (2006). 

The results of the non linear solution are shown in the Table 4. It is presented the load 
ratio, the end shortening of the panel and the load associated with each load ratio. 

The Figure 10 presents a graphic that illustrates the results of the non linear solution.  
In order to identify the collapse of the panel, besides of the graphic presented in the Figure 

10, it was also calculated the Tsai-Wu failure index at each load ratio. By the criterion of the 
first ply failure, it is considered that the laminate failures when the first ply failure. So, it was 
considered that there was the collapse of the panel when the failure index of a ply of the panel 
laminates has reached the value 1. 

When the panel end shortening has reached 0.9 mm the failure index was 0.986, indicating 
the panel collapse. The end shortening of 0.9 mm, according to Table 4, is associated with a 
load of 510717 N. This point is identified in the graph presented in the Figure 10. Dividing 
this value of collapse load (Pc) by the section area of the panel (A), it is obtained the collapse 
stress (Fc). It is also considered a structural efficiency (EE) equal to the collapse load divided 
by the mass of the panel (M). The mass was calculated using the density ( = 1.6x10-6 
kg/mm3) and the volume of the panel (section area times the length L). Thus, we have: 

 
A = 2964.49 mm2   Pc = 510717 N 
L = 500 mm   Fc = 172 MPa 
M = 2.372 kg   EE = 215311 N/kg 
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Load 
ratio 

End 
shortening 

(mm) 
P (N) 

Load 
ratio 

End 
shortening 

(mm) 
P (N) 

0.025 0.1 61237 0.575 2.3 981189 
0.050  0.2 122473 0.5875 2.35 989537 
0.075 0.3 183709 0.600 2.4 997485 
0.100 0.4 244944 0.60625 2.425 1001344 
0.125 0.5 306179 0.6125 2.45 1005141 
0.150 0.6 367410 0.61562 2.4625 1007020 
0.175 0.7 428625 0.61641 2.46563 1007487 
0.200 0.8 469284 0.61719 2.46875 1007954 
0.225 0.9 510717 0.61797 2.47187 1008420 
0.250 1.0 551484 0.61875 2.475 1008887 
0.275 1.1 591564 0.61953 2.47813 1009351 
0.300 1.2 630965 0.62031 2.48125 1009814 
0.325 1.3 669694 0.62109 2.48438 1010278 
0.350 1.4 707744 0.62187 2.4875 1010740 
0.375 1.5 745086 0.62266 2.49062 1011202 
0.400 1.6 781659 0.62344 2.49375 1011663 
0.425 1.7 817323 0.62422 2.49688 1012124 
0.450 1.8 851774 0.62578 2.50312 1013043 
0.475 1.9 884440 0.62734 2.50938 1013960 
0.500 2.0 914415 0.62891 2.51563 1014875 
0.525 2.1 940662 0.63047 2.52187 1015787 
0.550 2.2 962685 0.63125 2.525 1016243 

Table 4: Non linear solution results for the composite panel with the optimal dimensions of Neto (2006). 
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Figure 10: Non linear solution results for the composite panel with the optimal dimensions of Neto (2006). 

3.3 Metallic panel with the optimal dimensions of Neto (2006) 

It is considered here the metallic panel from Neto (2006) with the geometric relationships 
shown in the Table 3. Based on these geometric relationships and considering the same 
coverage area of the baseline panel (L = 500 mm and bs = 200 mm) it is obtained the panel 
dimensions, as already shown previously and presented below: 

L = 500.0 mm 
bs = 200.0 mm 
bw = 44.1 mm 
ts = 6.45 mm 
tw = 4.42 mm 
According to Neto (2006) this panel is built with the aluminum alloy 7050-T7451 and has 

a collapse stress equal to 280.3 MPa. The aluminum alloy 7050-T7451 has density equal to  
= 2.83x10-6 kg/mm3, MMPDS-04 (2008). 

Considering the section area of the panel it is possible to calculate the collapse load (Pc). 
With the density, the section area (A) and the panel length (L) it is calculated the mass of the 
panel (M). Thus, it is possible to calculate its structural efficiency (EE), defined as the 
collapse load divided by the mass of the panel. Then, we have: 

A = 2969.84 mm2   Pc = 832447 N 
L = 500 mm   Fc = 280.3 MPa 
M = 4.202 kg   EE = 198107 N/kg 

4 COMPARATIVE RESULTS 

Table 5 presents a summary of the compressive collapse results to the composite and 
metallic panels evaluated in the previous sections. 
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Panel A (mm2) L (mm) M (kg) Pc (N) Fc (MPa) EE (N/kg) 

(a) baseline 782.91 500 0.626 121946 156 194802 
(b) idealized 2964.49 500 2.372 510717 172 215311 
(c) metallic 2964.49 500 4.202 832447 280 198107 

Table 5: Summary of failure results to the composite and metallic panels. 

Comparing the structural efficiency EE of the baseline composite panel with the efficiency 
of the idealized composite panel, it is verified that the second panel has efficiency about 11% 
higher than the efficiency of the baseline panel. While the baseline panel supports a load 
equal to 194 kN for each kilogram of its mass before the collapse, the idealized composite 
panel supports 215 kN for each kilogram.  

Now, making a comparison between idealized composite panel with the aluminum alloy 
Al7050-7451 panel, it is noticed that the composite panel is about 8% more efficient than the 
metallic panel. The metallic panel supports a collapse load higher than the composite does, 
being 832 kN for the metallic against 511 kN for the composite. However, due to the fact that 
the density of the aluminum is higher than the density of the carbon-epoxy, the structural 
efficiency EE of the metallic structure is lower than that of a similar composite structure. 

5 CONCLUSIONS 

The idealized composite panel presented a structural efficiency around 11% higher than 
the EE of the baseline panel. The idealized composite panel is also 8% more efficient than the 
metallic panel; comparing both panels with the same dimensions – the optimal dimensions of 
Neto (2006) – and manufactured from different material technologies. 

Based on the results of this article, it is believed that the results obtained by Neto (2006) 
can be extended to the case of composite panels, but it is suggested a more detailed and 
careful investigation in future works.  
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