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Abstract. This paper present two-dimensional numerical simulation of free surface flows by
semi-implicit projection method. The semi-implicit schemes are studied with the purpose of
introducing them into the GENSMAC method. The viscous terms are treated by Backward Im-
plicit and Crank-Nicolson methods, and the non-linear convection terms are, explicitly, approxi-
mated by the high order upwind VONOS (Variable-Order Non-oscillatory Scheme) scheme. The
boundary conditions for the pressure field at the free surface are treated implicitly, and for the
velocity field explicitly. The numerical method is then applied to the simulation of free surface
and confined flows, and the numerical results show that the present technique eliminates the
stability restriction in the original explicit method.
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1 INTRODUCTION AND MATHEMATICAL MODEL

In many fluid flow problems, the viscous forces are dominant, and several numerical tech-
niques have been developed for the solution of this class of flows. In these fluid flow problems,
the Reynolds number is often much smaller than1. Due to this fact, numerical techniques
that apply an explicit formulation, as GENSMAC (GENeralized Simplified Marker-And-Cell)
method,1 introduce the parabolic stability restriction, making the time step very small for some
applications, justifying the need for methods with better stability properties. In 1947, Crank
and Nicolson derived the know famous CN method, an unconditionally stable implicit method
to solve the diffusion equation. Approximately ten years later,2 introduced the Alternating Di-
rection Implicit method (ADI). Many authors (see, for instance,3,4) have contributed to the study
and understanding of implicit and semi-implicit methods for solving the conservation equations
in computational fluid dynamics.

This paper outline a semi-implicit finite difference numerical method for solving incom-
pressible viscous free surface fluid flow problems. By using implicit formulation, this method
eliminates the stability restrictions in the explicit formulation. Therefore, it is proposed a mo-
dification in the GENSMAC method, adding implicit schemes and treating the boundary con-
ditions for the pressure field at the free surface implicitly. As GENSMAC methodology, the
time-marching producere is based on the projection methods (5 and6). It is a finite difference
technique based on a staggered grid and solves the full Navier-Stokes equations in primitive
variables. In particular, it solves problems with free surfaces.

In non-dimensional conservative form, the mathematical model for incompressible viscous
newtonian fluid flows is

∂u
∂t

+∇ ¦ (uu) = −∇p+
1

Re
∇2u +

1

Fr2
g, (1)

∇ ¦ u = 0, (2)

wheret is time,u = [u(x, y, t), v(x, y, t)] is the velocity field,p = p(x, y, t) is pressure per unit
of mass andg = (gx, gy) is the gravity field. The non-dimensional parametersRe = LU/ν and
Fr = U/

√
gL are the Reynolds and Froude numbers, respectively, beingL andU the length

and the velocity scales, andν is the kinematic viscosity coefficient of the fluid.

2 NUMERICAL FORMULATION

The numerical method proposed to solve the Eqs. (1) and (2) is basically a modification of
the GENSMAC method. Firstly, a provisional velocity fieldũ is calculated from Eq. (1), that
is,

∂ũ
∂t

=

{
−∇ ¦ (uu)−∇p̃+

1

Re
∇2u +

1

Fr2
g
}
, (3)

wherep̃ is a provisional pressure. Generally, this provisional velocity field is not a solenoidal
one, sop̃ 6= p. For t = t0, it is considered thatu(x, t0) and ũ(x, t0) satisfy the same bound-
ary conditions and that on the boundaryu(x, t0) = ũ(x, t0). The main modifications in the
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GENSMAC method were the inclusion of the Implicit Formulations (IF) for two variations in
the projection methods.

The first projection method is based on the solution of the time-discretized Eq. (1), without
a provisional pressure gradient (see,5 referred here aspressure-free projection methodand de-
noted byP1). Other modification in this equation is the application of implicit methods for the
viscous terms. The implicit schemes used inP1 were the Backward Implicit (BI) and Crank-
Nicolson (CN) methods. In order to improve the temporal accuracy, a 2-step Adams method
was employed. This method uses theCN approximation for the viscous terms and the explicit
Adams-Bashforth for the non-linear convective terms of Eq. (3). This method is known as
Adams-Bashforth/Crank-Nicolson (AB/CN). Therefore, applying the methodP1 and using the
implicit formulations, Eq. (3) is rewritten in the following way

• P1 - BI method

ũ− δt

Re
∇2ũ = un + δt

{
−∇ ¦ (uu)n +

1

Fr2
gn

}
. (4)

• P1 - CN method

ũ− δt

2Re
∇2ũ = un + δt

{
−∇ ¦ (uu)n +

1

2Re
∇2un +

1

Fr2
gn

}
. (5)

• P1 - AB/CN method

ũ− δt

2Re
∇2ũ = un + δt

{
−3

2
∇ ¦ (uu)n +

1

2
∇ ¦ (uu)n−1 +

1

2Re
∇2un +

1

Fr2
gn

}
. (6)

Using the theory of the projection methods, a general velocity field can be decomposed into a
tentativeũ and the gradient of a potential∇ψ. In theP1method, the functionψ is calculated in
the whole domain.

The second projection method used in this work is based on the method with the provisional
pressure gradient as in Eq. (3) (see,6 referred toincremental-pressure projection methodsand
denoted here byP2). In the same manner as in the method ofP1, the viscous terms were taken
implicitly. Equation (3) forP2becomes

• P2 - BI method

ũ− δt

Re
∇2ũ = un + δt

{
−∇ ¦ (uu)n −∇p̃+

1

Fr2
gn

}
. (7)

• P2 - CN method

ũ− δt

2Re
∇2ũ = un + δt

{
−∇ ¦ (uu)n +

1

2Re
∇2un −∇p̃+

1

Fr2
gn

}
. (8)
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• P2 - AB/CN method

ũ− δt

2Re
∇2ũ = un+δt

{
−3

2
∇ ¦ (uu)n +

1

2
∇ ¦ (uu)n−1 +

1

2Re
∇2un −∇p̃+

1

Fr2
gn

}
.

(9)

The development of theP2method usingIF is similar to theP1method, with the difference
that nowp̃ 6= 0 will be calculated. In the GENSMAC method, the Poisson equation forψ

∇2ψ = ∇ ¦ ũ, (10)

is applied for the whole domain containing fluid, with the appropriate boundary conditions
described in.1 For theP1andP2methods usingIF, besides the Poisson equation, a new equation
is imposed on the potentialψ for the fluid free surface. This new equation is calculated from
the equation of the pressure at the free surface. At the free surface, it is necessary to impose
conditions on the velocity and pressure. These conditions, considering absent surface tension,
are summarized as

(T ¦ n) ¦ n = 0, (11)

(T ¦ n) ¦ m = 0, (12)

wheren = (nx, ny) is the normal vector, external to the free surface, andm = (mx,my) is the
tangent vector to the free surface. Substituting the total tensorT = −pI + τ , whereτ is the
stress tensor andI the identity tensor, in Eqs. (11) and (12) we obtain

−p+
2

Re

[
∂u

∂x
n2
x +

∂v

∂y
n2
y +

(
∂u

∂y
+
∂v

∂x

)
nxny

]
= 0, (13)

2
∂u

∂x
nxmx + 2

∂v

∂y
nymy +

[
∂u

∂y
+
∂v

∂x

]
(nymx + nxmy) = 0. (14)

The equations forψ, which is related top through Eq. (22) forP1 or Eq. (23) forP2, at
the free surface are derived from Eq. (13) with all dependent variables discretized implicitly
in time, that is, the boundary conditions at the free surfaces are also taken implicitly. The
reason for the implicit discretization is that it was observed that: whereas for confined flows
(with no free surface), the discretization of just the viscous terms in the time leveln + 1 is
enough to make the method stable, it did not happen for problems with free surfaces, where the
implicit discretization of the boundary conditions is necessary. The construction of the implicit
equations for the variableψ will be presented below.

Initially, notice that equation (13) discretized implicitly in the time reads

−pn+1 +
2

Re

[
∂un+1

∂x
n2
x +

∂vn+1

∂y
n2
y +

(
∂un+1

∂y
+
∂vn+1

∂x

)
nxny

]
= 0. (15)

The implicit equation (15) couples the pressurep and the velocitiesu andv on the free sur-
face. Hence, the linear system for those unknown cannot be solved independently. This makes
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the implicit method very expensive. In order to uncouple those system we have to eliminate
the velocitiesu andv from Eq. (15) leaving it solely in term ofp(or ψ). In order to do this we
shall use the continuity equation (2) and the relationship betweenp andψ given by the projec-
tion method. We shall be describing below how to achieve this uncoupling. To illustrate the
practical use of equation (15) forψ at the free surface, consider the case where cells on the free
surface (SURFACE cells) possess one or more faces in contact with cells with no fluid (EMPTY
cells), as illustrated in Fig. 1. More details about the classification of cells in the mesh can be
found in.7

For the configuration of the Fig. 1, the vectorn = (1, 0) and Eq. (15) can be reduced to

pn+1 =
2

Re

(
∂un+1

∂x

)
. (16)

S

S E

E

Figure 1: Configuration of a computational cell showing a free surface cells in contact, on its right hand face, with
an empty cell.

From the continuity equation Eq. (2) discretized at the time leveln+ 1 we get

∂un+1

∂x
= −∂v

n+1

∂y
, (17)

which when substituted into (16) produces

pn+1 = − 2

Re

(
∂vn+1

∂y

)
. (18)

In agreement with the mathematical formulation of the projection methods, the final velocity
field can be compute from the equation

u = ũ−∇ψ, (19)

and in this way, the final field velocity in they direction, is given by

vn+1 = ṽ − ∂ψn+1

∂y
. (20)
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Substituting (20) into (18) yields

pn+1 = − 2

Re

(
∂ṽ

∂y
− ∂2ψn+1

∂y2

)
. (21)

In agreement with theP1 formulation,p̃ = 0 in the whole domain, therefore the equation for
computing the final pressure field in this method is

pn+1 =
ψn+1

δt
, (22)

while for the methodP2 it is

pn+1 = p̃+
ψn+1

δt
. (23)

After substituting (21) into (22) the equation for the potentialψ at the free surface for the
methodP1, is given by

ψn+1 − 2δt

Re

(
∂2ψn+1

∂y2

)
= −2δt

Re

(
∂ṽ

∂y

)
. (24)

For the methodP2substitution of (21) into (23) produces

ψn+1 − 2δt

Re

(
∂2ψn+1

∂y2

)
= −2δt

Re

(
∂ṽ

∂y

)
− δtp̃, (25)

which will be used for the calculation ofψ at the free surface in each case. The construction
of the equations forψ in the other cases where the S cell is in contact with E cells is similar.
Notice that Eqs. (24) and (25) together with the Poisson equation (10) give a linear system for
ψ, which is uncouple from the other two system for the velocitiesu andv.

The application ofP1 andP2 methods for the implicit formulations in GENSMAC result in
3 sparse linear systems: 2 due to the equations that calculate the intermediary velocity and 1
due to the calculation of the potentialψ. When the implicit formulations are applied, for the
BI, CN or AB/CN methods, the viscous terms are taken implicitly, and for this it is necessary
to solve systems for velocities̃u and ṽ. The linear systems resulting from Eqs. (4)–(9) are
sparse, positive defined and symmetric. Due to those properties, an efficient method is the
Conjugated Gradient (CG) method. The linear system forψ is sparse, but non-symmetric,
and therefore the method used was the Bi-Conjugated Gradients with Preconditioning (BCGP).
Besides the method BCGP other alternatives recommended in the literature for sparse problems
exist: the GMRES (Generalized Minimum Residual) and PCGS (Preconditioned Conjugate
Gradient Squared) are two examples. More details of the numerical methods using implicit
formulations and boundary conditions at the free surfaces can be found in.7
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2.1 Stability of P1and P2Methods

The stability restriction imposed for explicit treatment of the viscous terms requires that

δtvisc ≤ Re

2

(
1

(δx)2
+

1

(δy)2

)−1

, (26)

whereδx andδy are the grid spacing. The application of Implicit Formulations for the viscous
terms as in Eqs. (4)–(9), can, in principle, remove the restriction (26). Therefore, the restrictions
on δt for P1andP2usingIF are more relaxed than in the original GENSMAC code.

2.2 Solution Procedure

The sequence of steps in the solution procedure purports updating the discreet variables,
starting from an initial timetn. The algorithm is described as follow:

• Step 1: For theP1method, as the pressure gradient∇p̃ is eliminated from the formulation
and the velocity at the free surfaces is calculate from Eq. (14). For theP2method, besides
the calculation of the velocity at the free surfaces, the pressure gradient is conserved,
p̃ = pn, wherepn is the pressure calculated in the previous time from Eq. (13);

• Step 2: Calculate an intermediary velocity field̃u(x, t) in t = tn + δt. When theP1
method is used, Eqs. (4), (5) and (6) can be used. Similarly, when theP2 method is
applied, Eqs. (7), (8) and (9) can be used;

• Step 3: Solve the Poisson equation (10) for the potentialψ in the regions that contains
fluid, and at the free surface, calculateψ from new equation derived from Eq. (13).
Details of the boundary conditions for the Poisson equation and the equations forψ at the
free surfaces can be found in;7

• Step 4: Compute the corrected velocity field from Eq. (19);

• Step 5: Compute the final pressure field. For theP1 method, the pressure is computed
from Eq.(22) and for theP2method, the equation is (23);

• Step 6: Update the marker particles positions. The last step in the calculation is moving
the marker particles to their new positions. This is performed by solving

dx

dt
= u and

dy

dt
= v, (27)

by Euler’s method. The fluid surface is defined by a list containing these particles and the
visualization of this boundary is obtained by connecting them by straight lines.
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3 DISCRETIZATION OF THE MATHEMATICAL MODEL

Equations (1) and (2) are approximated in a staggered mesh. In this mesh, the pressure
is stored at cell centers and the components of the velocityu andv are stored in the middle
of the lateral faces. As in,1 the viscous terms and the pressure gradient in Eqs. (4)–(9) are
approximated by central differences, whereas the time derivatives are approximated by forward
differences (Euler explicit). The convective terms are discretized by the VONOS scheme (see8),
which is a bounded upwind technique. For solving the conservation equations, the Freeflow2D
(see9) simulation environment was used. This systems is composed of three module: a modeling
module (modeler) a simulation module (simulator, which implements the full Navier-Stokes
equations and mass conservation equation) and the visualization module (visualizator).

4 NUMERICAL EXPERIMENTS

In this section, numerical results using the implicit formulations are presented. The main aim
in the comparison is assessing the efficiency ofP1 andP2 methods usingBI, CN andAB/CN
formulations, in relation the explicit method for problems withRe < 1. In relation to the
explicit method, the results are encouraging, in terms of accuracy and efficiency. The following
test cases are considered.

4.1 Hagen-Poiseuilleflow

The validation of the numerical results usingP1 andP2 methods withIF was performed
on the flow of a fluid between two parallel plates. In this test case, comparisons between the
numerical solutions and analytical solution are feasible (seen10). In this simulation, it is consid-
ered two parallel plates separated by a distanceL = 1, forming a channel, that in the beginning
is empty and the fluid is injected in the entrance region of the channel with parabolic velocity
profile. TheP1andP2methods usingIF were applied using three meshes, defined respectively
as coarse (M1, whereδx = δy = 0.1m); middle (M2, whereδx = δy = 0.05m), and fine (M3,
whereδx = δy = 0.025m) meshes. It can be observed from Fig. (2) that the numerical results
are similar to the analytical solution, that is, the numerical values obtained by theP1 andP2
methods usingIF, on the three meshes, are in good agreement with the analytical solution. In
order to show the convergence of the methods presented in this work the relative error (Er), in
the l2 norm, between the numerical solutions and the analytical was calculated. These results
are presented in Tab. (1). In table (2) is presented the CPU time for the timet = 20s in the
meshM2. For creep flow problems, theIF was more stable than the original explicit method.
Table (3) shows theδt allowed by implicit and explicit formulations. The methods that use the
formulationBI admitted values ofδt larger than the other formulations. When theRe decreases,
the restriction on the time step for the explicit method Eq. (26) was overcome by theP1 and
P2 methods usingIF. From Tab. (3), it can be seen that the methods using the formulationBI
demanded aδt about500 the500000 larger times than the explicit method, whenRe decreases,
while the formulationsCN andAB/CNpresentedδt about20 times bigger, independent ofRe.

C. Oishi, J. Cuminato, V. Ferreira, M. Tomé, A. Castelo, N. Mangiavacchi
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Table 1: Results ofδt and error (Er) for Hagen-Poiseuilleflow for Re = 0.1 in the meshesM1, M2 andM3.

Method M1 M2 M3
δt(s) Er δt(s) Er δt(s) Er

Explicit 1.0× 10−4 2.5E−05 2.5× 10−5 1.8E−06 6.25× 10−6 1.3E−07
P1-BI 1.25× 10−3 7.1E−04 2.5× 10−4 3.7E−05 6.25× 10−5 3.2 E−06
P1-CN 2.0× 10−3 5.6E−04 5.0× 10−4 4.5E−05 1.25× 10−4 3.2E−06

P1-AB/CN 2.0× 10−3 1.6E−04 5.0× 10−4 2.5E−05 1.25× 10−4 2.1E−06
P2-BI 1.0× 10−2 2.5E−05 1.25× 10−2 1.8E−06 6.25× 10−3 1.2E−07
P2-CN 2.0× 10−3 2.5E−05 5.0× 10−4 1.8E−06 5.0× 10−4 1.1E−07

P2-AB/CN 2.0× 10−3 2.5E−05 5.0× 10−4 1.8E−06 5.0× 10−4 1.1E−07

Table 2: Results of error (Er), δt and CPU time forHagen-Poiseuilleflow for Re = 0.1 in the meshM2.

Method Er δt(s) CPU time-(m:s)
Explicit 1.8691× 10−6 2.5× 10−5 104 : 40
P1-BI 3.6879× 10−5 2.5× 10−4 25 : 08
P1-CN 4.5363× 10−5 5.0× 10−4 22 : 41

P1-AB/CN 4.5363× 10−5 5.0× 10−4 30 : 41
P2-BI 1.8689× 10−6 1.25× 10−2 5 : 20
P2-CN 1.8691× 10−6 5.0× 10−4 24 : 01

P2-AB/CN 1.8691× 10−6 5.0× 10−4 25 : 29

Table 3: Limit of stability forδt(s) in Hagen-Poiseuilleflow over the meshM2, with values different forRe.

Method Re = 0.1 Re = 0.01 Re = 0.001 Re = 0.0001
Explicit 2.5× 10−5 2.5× 10−6 2.5× 10−7 2.5× 10−8

P1-BI 1.25× 10−2 1.25× 10−2 1.25× 10−2 1.25× 10−2

P1-CN 5.0× 10−4 5.0× 10−5 5.0× 10−6 5.0× 10−7

P1-AB/CN 5.0× 10−4 5.0× 10−5 5.0× 10−6 5.0× 10−7

P2-BI 1.25× 10−2 1.25× 10−2 1.25× 10−2 1.25× 10−2

P2-CN 5.0× 10−4 5.0× 10−5 5.0× 10−6 5.0× 10−7

P2-AB/CN 5.0× 10−4 5.0× 10−5 5.0× 10−6 5.0× 10−7
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Figure 2: Comparison between numerical solutions obtained byP1 andP2 methods usingIF and analytical so-
lution, over three grids andRe = 0.1. a)-c) P1 method using the formulationsBI, CN andAB/CN, andd)-f) P2
method using the formulationsBI, CN andAB/CN, respectively.
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4.2 Impinging Jet

In spite of the purpose of this work to be solving free surface flow at low Reynolds num-
ber applying implicit techniques, tests were also accomplished in problems at high Reynolds
number showing the efficiency of those methods for problems at moderate Reynolds number.
The implicit schemes introduced in the previous section were employed to simulate the flow
of an impinging jet onto an impermeable rigid surface, under gravity. For this problem, the
Reynolds number, based on the inlet velocityU = 1.0m/s and nozzle diameterL = 0.010m,
is Re = 5 × 103, and the Froude number isFr = 3.19254. The grid used was800 × 40 cells
(δx = δy = 0.00050m).

Figures 3 and 4 show a comparison between the numerical solution and the exact solution
derived by.11 This picture shows the non-dimensional free surface of the fluid(h/0.5L) plotted
against the non-dimensional distance(x/0.5L)Re−1. The numerical results were produced by
the implicit numerical schemes and plotted at timet = 4.0s. One can see from this picture that
there is a good agreement between the numerical solution and Watson’s exact solution. It is also
worth noting that, for convergence study, this problem was solved by using two other coarser
meshes. It is also noticed that for this problem, the numerical results obtained by theP1 and
P2 methods are very similar. For flow withRe = 5000, the value ofδt used by the implicit
formulations, it wasn’t very superior to that of the explicit method, because the condition of
stability Eq. (26), has the number of Reynolds as factor, not restricting the temporary step
too much for the explicit method. The value of theδt allowed by the explicit method it was
1.5625 × 10−5s, while for the methodsP1 andP2 usingIF, the restriction of the stability was
based on the CFL(Courant-Friedrichs-Lewy) condition, determiningδt = 6.0 × 10−5s. In this
problem, the implicit formulations toBI, CN andAB/CN, allowed the sameδt.

4.3 Simulation of Container Filling

In this test case, it is considered the problem of container filling of a newtonian fluid with
Re = 0.1. In this simulation a comparison of CPU time was made using theP1andP2methods
with IF, and the explicit method. For these models, a meshδx = δy = 0.00050m was used for
all the methods. The gravitational field acts on the flow and the final time of the simulations was
t = 5s. An illustration is presented in Fig. (5) where the behavior of the flow can be observed.
The results obtained by theP1method, using theBI, CN andAB/CNformulations and those by
P2 method using theBI andAB/CN formulations were very similar to those of theP2 method
using theCN formulation.

In Fig. (5) one of the results is presented. The comparison between the methods that use
the implicit and explicit formulations, verifying the value ofδt allowed for each method, the
number of iterations and the CPU time for the timet = 0.28s, can be seen in Tab. (4). Again,
the implicit formulations overcame the restriction of stability of the original explicit method.
These methods used less iterations to obtain the solution at the timet = 0.28s.
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Figure 3: Comparison between Watson’s exact solution and the numerical solution for the impinging jet, with
Re = 5× 103 : a)-c)P1method using the formulationsBI, CN andAB/CN, respectively.
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Figure 4: Comparison between Watson’s exact solution and the numerical solution for the impinging jet, with
Re = 5× 103 : a)-c)P2method using the formulationsBI, CN andAB/CN, respectively.
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Figure 5: Numerical simulation of container filling, withRe = 0.1 and simulation timet = 0.28s, for theP2
method using theCN formulation.

Table 4: Results for simulation of container filling. Input data employed:L = 0.05m,U = 1.0 ms−1, Re = 0.1
andt = 0.28s.

Method δt(s) Number of iteration CPU time-(m:s)
Explicit 5.0× 10−7 559998 430 : 59
P1-BI 3.0× 10−5 11200 41 : 52
P1-CN 1.0× 10−5 28000 99 : 16

P1-AB/CN 1.0× 10−5 28000 106 : 18
P2-BI 6.0× 10−5 8960 21 : 41
P2-CN 1.0× 10−5 28000 92 : 51

P2-AB/CN 1.0× 10−5 28000 96 : 25

4.4 Comparison with experimental results

Finally, in this test case, qualitative comparisons between numerical results with the exper-
iments described by12 is assessed. For this model, a mesh ofδx = δy = 0.00050m was used
for all the methods, with the gravitational field acting on the flow and the final time wast = 5s.
Figure (6) presents the comparison between the numerical solution and an experimental config-
uration. In this figure, the numerical method used was theP2 method with theBI formulation.
The other methods that use the implicit formulations are not displayed because they presented
results similar to theP2 method using the formulationBI. The implicit formulations presented,
as previously, larger values forδt, overcoming the restriction of the explicit method described
by.12 As an illustration, in Figs. (7) and (8) it is shown comparisons between original explicit
method and theP1andP2methods usingIF, for theu andv velocities.
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a)

b)

c)

d)

Figure 6: Experimental solution (left) and numerical (right) solution by usingP2method with theBI formulation.
a)t = 0.14s,b)t = 0.22s,c)t = 0.26s andd)t = 0.34s.
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Figure 7: Comparison of velocity fieldu for t = 0.14s. Methods:a) Explicit, b)-d) P1 using theBI, CN and
AB/CN formulations, respectively, ande)-g)P2using theBI, CN eAB/CN formulations.
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Figure 8: Comparison of velocity fieldv for t = 0.14s. Methods:a) Explicit, b)-d) P1 using theBI, CN and
AB/CN formulations, respectively, ande)-g)P2using theBI, CN eAB/CN formulations.
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5 CONCLUSION

The main purpose of this work is the design and analysis of implicit numerical schemes,
which can be used in conjunction with the GENSMAC method for the simulation of transient
viscous incompressible newtonian flows. A modification was made to the implicit treatment of
boundary conditions for pressure at the free surface. The implicit formulations presented satis-
factory results for unsteady free surface flows. The validation showed the comparison between
the analytical solution and the numerical solution of theP1 andP2 methods usingIF. The nu-
merical results show the capacity of this semi-implicit methods in simulate fluid flow with free
surface. However, theCN andAB/CN formulations introduced numerical oscillations, and as a
consequence, the value ofδt allowed was more restricted than that of theBI formulation. More
details about the numerical oscillations of the methodCN can be found in13 and.3 Although
the CN andAB/CN formulations have allowed a time step larger than that of the original ex-
plicit method, theBI formulation proved to be stable allowing values ofδt very large. Care
is recommended in choosing the time step so that numerical accuracy is not affected. In all
the simulations, the implicit formulations overcame the value of the time step of the explicit
method and, in some cases, theδt was approximately500000 times larger than the one of the
explicit method. TheP1 andP2 methods using the implicit formulations presented similar er-
rors to those of the explicit method with a very smaller number of iterations. The processing
time demanded by the implicit formulations was significantly smaller than those of the explicit
formulation. Therefore, theP1 andP2 methods using the implicit formulations showed to be
capable of solving viscous problems with free surfaces.
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[1] M. F. Tomé and S. McKee. Gensmac: A computational marker-and-cell method for
free surface flows in general domains.Journal of Computational Physics, 110, 171–186
(1994).

[2] D.W. Peaceman and H.H. Rachford. The numerical solution of parabolic and elliptic
diferential equations.Journal Soc. Indust. Appl. Math, 3, 28–41 (1955).

[3] S. Turek. A comparative study of some time-stepping techniques for the incompressible
navier-stokes equations: From fully implicit nonlinear schemes to semi-implicit projection
methods.International Journal for Numerical Methods in Fluids, 22, 987–1011 (1996).

[4] W.R. Briley and H. McDonald. An overview and generalization of implicit navier-stokes
algorithms and approximate factorization.Comput. & Fluid, 30, 807–828 (2001).

[5] A.J. Chorin. A numerical method for solving incompressible viscous flow problems.Jour-
nal of Computational Physics, 2, 12–26 (1967).

[6] P. M. Gresho. On the theory of semi-implicit projection methods for viscous incompress-

C. Oishi, J. Cuminato, V. Ferreira, M. Tomé, A. Castelo, N. Mangiavacchi

1928



ible flow and its implemention via a finite element method that also introduces a nearly
consistent mass matrix.International Journal for Numerical Methods in Fluids, 11, 587–
620 (1990).
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