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Abstract. This paper present two-dimensional numerical simulation of free surface flows
semi-implicit projection method. The semi-implicit schemes are studied with the purpos
introducing them into the GENSMAC method. The viscous terms are treated by Backwar
plicit and Crank-Nicolson methods, and the non-linear convection terms are, explicitly, appr
mated by the high order upwind VONOS (Variable-Order Non-oscillatory Scheme) scheme
boundary conditions for the pressure field at the free surface are treated implicitly, and for
velocity field explicitly. The numerical method is then applied to the simulation of free surt
and confined flows, and the numerical results show that the present technique eliminate
stability restriction in the original explicit method.
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1 INTRODUCTION AND MATHEMATICAL MODEL

In many fluid flow problems, the viscous forces are dominant, and several numerical t
niques have been developed for the solution of this class of flows. In these fluid flow probl
the Reynolds number is often much smaller tHanDue to this fact, numerical techniques
that apply an explicit formulation, as GENSMAC (GENeralized Simplified Marker-And-Ce
method! introduce the parabolic stability restriction, making the time step very small for so
applications, justifying the need for methods with better stability properties. In 1947, Cr
and Nicolson derived the know famous CN method, an unconditionally stable implicit met
to solve the diffusion equation. Approximately ten years lafatroduced the Alternating Di-
rection Implicit method (ADI). Many authors (see, for instad&have contributed to the study
and understanding of implicit and semi-implicit methods for solving the conservation equat
in computational fluid dynamics.

This paper outline a semi-implicit finite difference numerical method for solving inco
pressible viscous free surface fluid flow problems. By using implicit formulation, this mett
eliminates the stability restrictions in the explicit formulation. Therefore, it is proposed a1
dification in the GENSMAC method, adding implicit schemes and treating the boundary «
ditions for the pressure field at the free surface implicitly. As GENSMAC methodology,
time-marching producere is based on the projection methodsd). It is a finite difference
technique based on a staggered grid and solves the full Navier-Stokes equations in prir
variables. In particular, it solves problems with free surfaces.

In non-dimensional conservative form, the mathematical model for incompressible vis:
newtonian fluid flows is

ou 1
— +V.(uu) = —Vp+E

ot
V.u=0, (2)

wheret is time,u = [u(z, y,t), v(x, y,t)] is the velocity fieldp = p(z, y, t) is pressure per unit
of mass and) = (g, g,) is the gravity field. The non-dimensional paramet@es= LU /v and
Fr = U/\/gL are the Reynolds and Froude numbers, respectively, beiagd U the length
and the velocity scales, amds the kinematic viscosity coefficient of the fluid.

1
Viu + Wg, (1)

2 NUMERICAL FORMULATION

The numerical method proposed to solve the Eqgs. (1) and (2) is basically a modificatic
the GENSMAC method. Firstly, a provisional velocity fialds calculated from Eq. (1), that
is,

ou 1 5 1

— = — — 3

ot Revu+Fr2g}’ ®)
wherep is a provisional pressure. Generally, this provisional velocity field is not a solenoi
one, sop # p. Fort = t, it is considered thati(x, t,) andu(x, ¢y) satisfy the same bound-
ary conditions and that on the boundarfx, ;) = U(x,%,). The main modifications in the
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GENSMAC method were the inclusion of the Implicit Formulatioffs)(for two variations in
the projection methods.

The first projection method is based on the solution of the time-discretized Eq. (1), witl
a provisional pressure gradient (Seferred here apressure-free projection meth@d de-
noted byP1). Other modification in this equation is the application of implicit methods for tl
viscous terms. The implicit schemes usedPithwere the Backward Implicitgl) and Crank-
Nicolson CN) methods. In order to improve the temporal accuracy, a 2-step Adams me!
was employed. This method uses BN approximation for the viscous terms and the explic
Adams-Bashforth for the non-linear convective terms of Eq. (3). This method is knowr
Adams-Bashforth/Crank-Nicolso®B/CN). Therefore, applying the methd?il and using the
implicit formulations, Eq. (3) is rewritten in the following way

e P1 - Bl method

i 6t 2~ n n 1 n
u—ﬁv u=u +6t{—v.(uu) +Fr2g}. 4
e P1-CN method
~ 5t 204 o n 1 2,.m 1 n
u—Q—RGVu_u +(5t{ V. (uu) +2—R€Vu +Wg}. (5)

e P1 - AB/CN method

~ 5t 200 o0 3 n 1 n—1
u—Q—ReVu_u +6t{ 2V.(uu) +2V.(uu) +

1 2. 1 n
Using the theory of the projection methods, a general velocity field can be decomposed i
tentativell and the gradient of a potenti®l). In theP1 method, the functionp is calculated in
the whole domain.

The second projection method used in this work is based on the method with the provis
pressure gradient as in Eq. (3) (Seferred toincremental-pressure projection methoatsd
denoted here b#?2). In the same manner as in the methodPaf the viscous terms were taken
implicitly. Equation (3) forP2 becomes

e P2 - Bl method

~ 5t 2~ n n ~ 1 e}
u—§Vu—u +5t{—v.(uu) VerWg}' @)
e P2 - CN method
a— iV2l] =Uu" 40t —V.(uu)" + LV2u” —Vp+ L " (8)
SRe” U7 ' 2Re PrERY
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e P2 - AB/CN method

~ 6t 204 3 n 1 n—1
u—2—R€Vu—u +(5t{—2v.(uu) +2V.(uu) +

1 2. n ~ 1 n
2—R€VU —Vp+F—7ag}.
9)

The development of thB2 method usindF is similar to theP1 method, with the difference
that nowp # 0 will be calculated. In the GENSMAC method, the Poisson equatiow for

Vi =V.0Q, (10)

is applied for the whole domain containing fluid, with the appropriate boundary conditi
described irt. For theP1andP2methods usingf, besides the Poisson equation, a new equati
is imposed on the potential for the fluid free surface. This new equation is calculated fro
the equation of the pressure at the free surface. At the free surface, it is necessary to ir
conditions on the velocity and pressure. These conditions, considering absent surface te
are summarized as

(T.n).n=0, (11)
(T.en).m=0, (12)

wheren = (n,,n,) is the normal vector, external to the free surface, ang (m,, m,) is the
tangent vector to the free surface. Substituting the total tehser—pl + 7, wherer is the
stress tensor andthe identity tensor, in Egs. (11) and (12) we obtain

2 |[Ou 5, Ov , ou Ov
_ = - -4 = 1
P+ Toe [axnm + 8yny + (8?J + 83:) nxny] 0, (13)
ou ov ou  Ov

The equations fot), which is related tg through Eqg. (22) folP1 or Eq. (23) forP2, at
the free surface are derived from Eqg. (13) with all dependent variables discretized impli
in time, that is, the boundary conditions at the free surfaces are also taken implicitly.
reason for the implicit discretization is that it was observed that: whereas for confined fl
(with no free surface), the discretization of just the viscous terms in the timeevel is
enough to make the method stable, it did not happen for problems with free surfaces, whe
implicit discretization of the boundary conditions is necessary. The construction of the img
equations for the variable will be presented below.

Initially, notice that equation (13) discretized implicitly in the time reads

2 aun-l-l avn-l-l 8un+1 8’Un+1
_n+l i 2 2 + Ny,

Re | Ox et dy "y dy + ox

= 0. (15)

The implicit equation (15) couples the presspr@nd the velocities andv on the free sur-
face. Hence, the linear system for those unknown cannot be solved independently. This r
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the implicit method very expensive. In order to uncouple those system we have to elimi
the velocitiesu andv from Eq. (15) leaving it solely in term gf(or «). In order to do this we
shall use the continuity equation (2) and the relationship betweard given by the projec-
tion method. We shall be describing below how to achieve this uncoupling. To illustrate
practical use of equation (15) fgrat the free surface, consider the case where cells on the 1
surface (SURFACE cells) possess one or more faces in contact with cells with no fluid (EM|
cells), as illustrated in Fig. 1. More details about the classification of cells in the mesh ca
found in’
For the configuration of the Fig. 1, the vector= (1,0) and Eq. (15) can be reduced to

" 2 [Oourtt
p“zﬁ(%)' (16)
S E

S E

Figure 1: Configuration of a computational cell showing a free surface cells in contact, on its right hand face.
an empty cell.

From the continuity equation Eq. (2) discretized at the time levell we get

aun—i-l 8vn+1
which when substituted into (16) produces
2 [Ovnt!
pn+1 — _E ( ay ) ) (18)

In agreement with the mathematical formulation of the projection methods, the final velc
field can be compute from the equation

u=u-— vV, (19)
and in this way, the final field velocity in thedirection, is given by

awn—}—l
oy
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Substituting (20) into (18) yields

2 (0v OFnTt
ntl 2 [ 22 2
P Re (8y y? > ' &

In agreement with th@1formulation,p = 0 in the whole domain, therefore the equation fo
computing the final pressure field in this method is

n+1
ntl — v 22
while for the methodP2it is .
n+1 — 5 2
p Pt (23)
After substituting (21) into (22) the equation for the potentiaht the free surface for the
methodP1, is given by
206t Q%Y 26t OV
n+l =YY N
v Re ( Oy ) Re <6‘y> ' &9
For the methodP2 substitution of (21) into (23) produces
20t (9%t 20t [ Ov
n+l =77 N o ~
v Re ( Oy? ) Re <8y> 01D, (25)

which will be used for the calculation af at the free surface in each case. The constructi
of the equations fot) in the other cases where the S cell is in contact with E cells is simil
Notice that Egs. (24) and (25) together with the Poisson equation (10) give a linear systel
1, which is uncouple from the other two system for the velocitiesdo.

The application oP1 andP2 methods for the implicit formulations in GENSMAC result in
3 sparse linear systems: 2 due to the equations that calculate the intermediary velocity
due to the calculation of the potential When the implicit formulations are applied, for the
Bl, CN or AB/CN methods, the viscous terms are taken implicitly, and for this it is necess
to solve systems for velocities andv. The linear systems resulting from Egs. (4)—(9) ar
sparse, positive defined and symmetric. Due to those properties, an efficient method
Conjugated Gradient (CG) method. The linear systemy/fas sparse, but non-symmetric,
and therefore the method used was the Bi-Conjugated Gradients with Preconditioning (BC
Besides the method BCGP other alternatives recommended in the literature for sparse prc
exist: the GMRES (Generalized Minimum Residual) and PCGS (Preconditioned Conju
Gradient Squared) are two examples. More details of the numerical methods using im
formulations and boundary conditions at the free surfaces can be fodnd in.
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2.1 Stability of P1and P2 Methods
The stability restriction imposed for explicit treatment of the viscous terms requires that
Re [ 1 1\
5tvisc S “a ) 26
(o or) (20

wheredx andéy are the grid spacing. The application of Implicit Formulations for the visco
terms as in Egs. (4)—(9), can, in principle, remove the restriction (26). Therefore, the restric
on ¢t for P1andP2 usinglF are more relaxed than in the original GENSMAC code.

2.2 Solution Procedure

The sequence of steps in the solution procedure purports updating the discreet vari
starting from an initial time,,. The algorithm is described as follow:

e Step I FortheP1method, as the pressure gradigfmtis eliminated from the formulation
and the velocity at the free surfaces is calculate from Eq. (14). Fét2ineethod, besides
the calculation of the velocity at the free surfaces, the pressure gradient is conse
p = p", wherep™ is the pressure calculated in the previous time from Eq. (13);

e Step 2 Calculate an intermediary velocity field(x,¢) in t = ¢, + dt. When theP1
method is used, Egs. (4), (5) and (6) can be used. Similarly, wheR2hmethod is
applied, Egs. (7), (8) and (9) can be used;

e Step 3 Solve the Poisson equation (10) for the potentiah the regions that contains
fluid, and at the free surface, calculatefrom new equation derived from Eq. (13).
Details of the boundary conditions for the Poisson equation and the equatiahatftre
free surfaces can be foundin;

e Step 4 Compute the corrected velocity field from Eq. (19);

e Step 5 Compute the final pressure field. For th& method, the pressure is compute:
from Eq.(22) and for th®2 method, the equation is (23);

e Step 6 Update the marker particles positions. The last step in the calculation is mo
the marker patrticles to their new positions. This is performed by solving

dx ﬂ_

R - 27
ikl and praill (27)

by Euler’s method. The fluid surface is defined by a list containing these particles ant
visualization of this boundary is obtained by connecting them by straight lines.
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3 DISCRETIZATION OF THE MATHEMATICAL MODEL

Equations (1) and (2) are approximated in a staggered mesh. In this mesh, the pre
is stored at cell centers and the components of the velacdapdv are stored in the middle
of the lateral faces. As ihthe viscous terms and the pressure gradient in Egs. (4)—(9)
approximated by central differences, whereas the time derivatives are approximated by foi
differences (Euler explicit). The convective terms are discretized by the VONOS schefi)e (s
which is a bounded upwind technique. For solving the conservation equations, the Freeflc
(seé) simulation environment was used. This systems is composed of three module: a moc
module (modeler) a simulation module (simulator, which implements the full Navier-Sto
equations and mass conservation equation) and the visualization module (visualizator).

4 NUMERICAL EXPERIMENTS

In this section, numerical results using the implicit formulations are presented. The main
in the comparison is assessing the efficiencyPdfand P2 methods usinddl, CN and AB/CN
formulations, in relation the explicit method for problems witla < 1. In relation to the
explicit method, the results are encouraging, in terms of accuracy and efficiency. The follo
test cases are considered.

4.1 Hagen-Poiseuilleflow

The validation of the numerical results usiRgd and P2 methods withlF was performed
on the flow of a fluid between two parallel plates. In this test case, comparisons betwee
numerical solutions and analytical solution are feasible (Sgem this simulation, it is consid-
ered two parallel plates separated by a distanee 1, forming a channel, that in the beginning
is empty and the fluid is injected in the entrance region of the channel with parabolic velc
profile. TheP1andP2 methods usindgfF were applied using three meshes, defined respectiv
as coarseNl1, wheredz = dy = 0.1m); middle M2, wheredx = éy = 0.05m), and fine 13,
wherejx = oy = 0.025m) meshes. It can be observed from Fig. (2) that the numerical res
are similar to the analytical solution, that is, the numerical values obtained iylthad P2
methods usindF, on the three meshes, are in good agreement with the analytical solutior
order to show the convergence of the methods presented in this work the relativeeeyran (
thel; norm, between the numerical solutions and the analytical was calculated. These re
are presented in Tab. (1). In table (2) is presented the CPU time for the tim20s in the
meshM2. For creep flow problems, tH& was more stable than the original explicit methoc
Table (3) shows thét allowed by implicit and explicit formulations. The methods that use tl
formulationBl admitted values aft larger than the other formulations. When thedecreases,
the restriction on the time step for the explicit method Eqg. (26) was overcome (/1thad
P2 methods usingF. From Tab. (3), it can be seen that the methods using the formulatior
demanded at about500 the 500000 larger times than the explicit method, wh&a decreases,
while the formulationsCN andAB/CN presentedt about20 times bigger, independent &le.
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Table 1: Results oft and error Er) for Hagen-Poiseuilldlow for Re = 0.1 in the mesheM1, M2 andM3.

Method M1 M2 M3
0t(s) Er 0t(s) Er 0t(s) Er

Explicit 1.0 x 107* | 2.5E—05 | 2.5 x 107° | 1.8E—06 | 6.25 x 107° | 1.3E—07

P1-BI 1.25 x 1072 | 7.1E—04 | 2.5 x 107* | 3.7TE—05 | 6.25 x 107° | 3.2 E—06

P1-CN 2.0%x 107% | 5.6E—04 | 5.0 x 107* | 4.5E-05 | 1.25 x 10™* | 3.2E—06
P1-AB/CN | 2.0 x 1073 | 1.6E—04 | 5.0 x 10~* | 2.5E—05 | 1.25 x 10~* | 2.1E—06

P2-BI 1.0x 1072 | 2.5E—05| 1.25 x 1072 | 1.8E—06 | 6.25 x 1073 | 1.2E—07

P2-CN 2.0x 1073 | 25E-05| 5.0 x 107* | 1.8E—06 | 5.0 x 107* | 1.1E—-07
P2-AB/CN| 2.0 x 1073 | 2.5E—05 | 5.0 x 10* | 1.8E—06 | 5.0 x 10=* | 1.1E-07

Table 2: Results of erroff), 6t and CPU time foiHagen-Poiseuilldlow for Re = 0.1 in the meshM2.

Method Er 0t(s) CPU time-(m:s)
Explicit | 1.8691 x 107¢ | 2.5 x 107 104 : 40
P1-BI 3.6879 x 107° | 2.5 x 107 25: 08
P1-CN | 4.5363 x 107° | 5.0 x 10~* 22 : 41
P1-AB/CN| 4.5363 x 107° | 5.0 x 10~* 30 : 41
P2-BI 1.8689 x 1076 | 1.25 x 1072 5:20
P2-CN | 1.8691 x 1076 | 5.0 x 10~* 24 : 01
P2-AB/CN| 1.8691 x 1075 | 5.0 x 10~ 25 : 29

Table 3: Limit of stability foré¢(s) in Hagen-Poiseuilldlow over the mesi?2, with values different foRe.

Method Re =0.1 Re =0.01 | Re=0.001 | Re = 0.0001
Explicit | 25 x 107 | 25 x107° | 25 x 1077 | 2.5 x 107®
P1-BI 1.25x 1072 | 1.25 x 1072 | 1.25 x 1072 | 1.25 x 1072
P1-CN | 50x107* | 5.0 x10™® | 5.0 x107% | 5.0 x 1077
P1-AB/CN| 5.0 x 107 | 5.0 x 10™° | 5.0 x 107 | 5.0 x 1077
P2-BI 1.25 x 1072 | 1.25 x 1072 | 1.25 x 1072 | 1.25 x 1072
P2-CN | 50x10™* | 5,0x107® | 5.0 x107% | 5.0 x 1077
P2-AB/CN| 5.0 x107* | 5.0 x10™® | 5.0 x 107 | 5.0 x 1077
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Figure 2. Comparison between numerical solutions obtaineldlbgnd P2 methods usindgF and analytical so-
lution, over three grids an&e = 0.1. a)-c) P1 method using the formulatiordl, CN and AB/CN andd)-f) P2
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4.2 Impinging Jet

In spite of the purpose of this work to be solving free surface flow at low Reynolds nt
ber applying implicit techniques, tests were also accomplished in problems at high Reyr
number showing the efficiency of those methods for problems at moderate Reynolds nui
The implicit schemes introduced in the previous section were employed to simulate the
of an impinging jet onto an impermeable rigid surface, under gravity. For this problem,
Reynolds number, based on the inlet velodity= 1.0m/s and nozzle diameter = 0.010m,
is Re = 5 x 103, and the Froude number i§r = 3.19254. The grid used wag00 x 40 cells
(0, = 9, = 0.00050m).

Figures 3 and 4 show a comparison between the numerical solution and the exact so
derived by!! This picture shows the non-dimensional free surface of the flyid.5L) plotted
against the non-dimensional distariag0.5L) Re~!. The numerical results were produced b
the implicit numerical schemes and plotted at titne 4.0s. One can see from this picture tha
there is a good agreement between the numerical solution and Watson’s exact solution. Iti
worth noting that, for convergence study, this problem was solved by using two other coi
meshes. It is also noticed that for this problem, the numerical results obtained By Hrel
P2 methods are very similar. For flow witRe = 5000, the value ofét used by the implicit
formulations, it wasn’t very superior to that of the explicit method, because the conditiol
stability Eq. (26), has the number of Reynolds as factor, not restricting the temporary
too much for the explicit method. The value of theallowed by the explicit method it was
1.5625 x 10~°s, while for the methodP1 andP2 usinglF, the restriction of the stability was
based on the CFL(Courant-Friedrichs-Lewy) condition, determitiing 6.0 x 10~°s. In this
problem, the implicit formulations tBl, CN andAB/CN allowed the samét.

4.3 Simulation of Container Filling

In this test case, it is considered the problem of container filling of a newtonian fluid v
Re = 0.1. In this simulation a comparison of CPU time was made usingthendP2 methods
with IF, and the explicit method. For these models, a mgsk §, = 0.00050m was used for
all the methods. The gravitational field acts on the flow and the final time of the simulations
t = 5s. An illustration is presented in Fig. (5) where the behavior of the flow can be obser
The results obtained by tH&l method, using th&l, CN andAB/CNformulations and those by
P2 method using th&| and AB/CN formulations were very similar to those of tR& method
using theCN formulation.

In Fig. (5) one of the results is presented. The comparison between the methods th:
the implicit and explicit formulations, verifying the value &f allowed for each method, the
number of iterations and the CPU time for the time 0.28s, can be seen in Tab. (4). Again
the implicit formulations overcame the restriction of stability of the original explicit methc
These methods used less iterations to obtain the solution at the tnfe28s.
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Figure 3: Comparison between Watson’s exact solution and the numerical solution for the impinging jet,
Re = 5 x 103 : a)-c) P1 method using the formulatiorgl, CN andAB/CN respectively.
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Figure 4: Comparison between Watson’s exact solution and the numerical solution for the impinging jet,
Re = 5 x 103 : a)-c) P2method using the formulatiorgl, CN andAB/CN respectively.
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ol

Figure 5: Numerical simulation of container filling, witRe = 0.1 and simulation timg¢ = 0.28s, for theP2
method using th€N formulation.

Table 4: Results for simulation of container filling. Input data employed: 0.05m, U = 1.0 ms™!, Re = 0.1
andt = 0.28s.

Method 0t(s) Number of iteration | CPU time-(m:s)
Explicit | 5.0 x 1077 559998 430 : 59
P1-BI 3.0x107° 11200 41 : 52
P1-CN 1.0 x 107 28000 99 : 16
P1-AB/CN| 1.0 x 1075 28000 106 : 18
P2-BI 6.0 x 107° 8960 21 : 41
P2-CN | 1.0x107° 28000 92 :51
P2-AB/CN| 1.0 x 107° 28000 96 : 25

4.4 Comparison with experimental results

Finally, in this test case, qualitative comparisons between numerical results with the e
iments described By is assessed. For this model, a mesh,of= §, = 0.00050m was used
for all the methods, with the gravitational field acting on the flow and the final time wass.
Figure (6) presents the comparison between the numerical solution and an experimental ¢
uration. In this figure, the numerical method used was?Benethod with theBI formulation.
The other methods that use the implicit formulations are not displayed because they pres
results similar to thé2 method using the formulatioBl. The implicit formulations presented,
as previously, larger values fot, overcoming the restriction of the explicit method describe
by.!? As an illustration, in Figs. (7) and (8) it is shown comparisons between original expl
method and th®1 andP2 methods usingf, for theu andwv velocities.
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d)

Figure 6: Experimental solution (left) and numerical (right) solution by uBiBgnethod with theBl formulation.
ayt = 0.14s,b)t = 0.22s,c)t = 0.26s andd)t = 0.34s.
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Figure 7: Comparison of velocity field for ¢ = 0.14s. Methods:a) Explicit, b)-d) P1 using theBl, CN and
AB/CNformulations, respectively, are)-g) P2 using theBl, CN e AB/CNformulations.
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Figure 8: Comparison of velocity field for ¢ = 0.14s. Methods:a) Explicit, b)-d) P1 using theBl, CN and
AB/CNformulations, respectively, are)-g) P2 using theBl, CN e AB/CNformulations.
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5 CONCLUSION

The main purpose of this work is the design and analysis of implicit numerical scher
which can be used in conjunction with the GENSMAC method for the simulation of transi
viscous incompressible newtonian flows. A modification was made to the implicit treatmer
boundary conditions for pressure at the free surface. The implicit formulations presented
factory results for unsteady free surface flows. The validation showed the comparison bet
the analytical solution and the numerical solution of BieandP2 methods usindfF. The nu-
merical results show the capacity of this semi-implicit methods in simulate fluid flow with fi
surface. However, thEN andAB/CN formulations introduced numerical oscillations, and as
consequence, the value @fallowed was more restricted than that of Bleformulation. More
details about the numerical oscillations of the meti@\ can be found it* and® Although
the CN and AB/CN formulations have allowed a time step larger than that of the original ¢
plicit method, theBl formulation proved to be stable allowing valuesdfvery large. Care
is recommended in choosing the time step so that numerical accuracy is not affected.
the simulations, the implicit formulations overcame the value of the time step of the exp
method and, in some cases, titevas approximatelp00000 times larger than the one of the
explicit method. Thé?1 andP2 methods using the implicit formulations presented similar €
rors to those of the explicit method with a very smaller number of iterations. The proces
time demanded by the implicit formulations was significantly smaller than those of the exg
formulation. Therefore, th®1 andP2 methods using the implicit formulations showed to b
capable of solving viscous problems with free surfaces.
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