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Abstract. In this work we propose a variational multiscale finite element approximation of thermally
coupled low speed flows. The physical model is described by the low Mach number equations, which are
obtained as a limit of the compressible Navier Stokes equations in the small Mach number. In contrast to
the commonly used Boussinesq approximation, this model permits to take volumetric deformation into
account. Although the former is more general than the later, both systems have similar mathematical
structure and their numerical approximation can suffer the same type of instabilities.

We propose a stabilized finite element approximation based on the the variational multiscale method,
in which a decomposition of the approximating space into a coarse scale resolvable part and a fine scale
subgrid part is performed. Modeling the subscale and taking its effect on the coarse scale problem into
account, results in a stable formulation. The quality of the final approximation (accuracy, efficiency)
depends on the particular model.

The distinctive features of our approach are to consider the subscales as transient and to keep the scale
splitting in all the nonlinear terms. The first ingredient permits to obtain an improved time discretization
scheme (higher accuracy, better stability, no restrictions on the time step size). The second ingredient
permits to prove global conservation properties. It also allows us to approach the problem of dealing
with thermal turbulence from a strictly numerical point of view.

Numerical tests show that nonlinear and dynamic subscales give more accurate solutions than classi-
cal stabilized methods.
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1 INTRODUCTION

The general description of a fluid flow involves the solution of the compressible Navier
Stokes Equations. It is widely accepted that these equations provide an accurate description of
any problem in fluid mechanics which may present many different nonlinear physical mech-
anisms. Depending on the physics of the problem under consideration, different simplified
models describing some of these mechanisms can be derived from the compressible Navies
Stokes equations.

Our application is directed to low speed strongly thermally coupled flows which are de-
scribed by the compressible Navier Stokes equations in the low-Mach number limit. This limit
is derived by an asymptotic expansion of the problem variables as power series of the small
parameter γMa2 << 1, where γ denotes the specific heat ratio and Ma the Mach number of
the problem. For details of this asymptotic expansion procedure, see (Principe and Codina,
2009; Majda and Sethian, 1985; Lions, 1996). As a particular result of this process, the total
pressure is split into two parts, the thermodynamic part pth (t) which is uniform in space, and
the hydrodynamic part p (x,t) which is several orders of magnitude smaller than pth and is ne-
glected in the state and energy equations. This leads to a removal of the acoustic modes but
large variations of density due to temperature variations are allowed. This system of equations
is commonly used to describe problems of combustion in the form of deflagrations (i.e., flames
at low speed).

Despite this important difference in the treatment of the incompressibility, the low Mach
number equations present the same mathematical structure of the incompressible Navier Stokes
equations (in the sense that the mechanical pressure is determined from the mass conservation
constraint). Consequently the same type of numerical instabilities can be found, namely the
problem of compatibility conditions between the velocity and pressure finite element spaces,
and the instabilities due to convection dominated flows. These instabilities can be avoided
by the use of stabilization techniques. Stabilized finite element methods (FEM) have been
initially developed for the Stokes (Hughes et al., 1986) and for the convection diffusion reaction
(CDR) problems (Codina, 1998). Later they have been extended to incompressible Navier
Stokes equations (Codina, 2001; Hughes et al., 2004), and for the low Mach approximation
(Principe and Codina, 2007) but the nonlinearity of the problem was not considered in their
design. These extensions were essentially the application to nonlinear transient problems of a
technique developed for linear steady ones.

The design of stabilization techniques considering the transient nonlinear nature of the prob-
lems began with the introduction of dynamic nonlinear subscales in (Codina, 2002; Codina
et al., 2007). Developed in the context of the variational multiscale (VMS) concept introduced
by Hughes (Hughes et al., 1998), the idea is to consider the subgrid scale time dependent and
to consider its effect on all the non-linear terms, resulting in extra terms in the final discrete
scheme. Important improvements in the discrete formulation of the incompressible Navier
Stokes problem have been observed. From a theoretical point of view, the use of transient
subgrid scales explains how the stabilization parameter should depend on the time step size and
makes space and time discretizations commutative and the tracking of the subscales along the
non-linear process provides global momentum conservation for incompressible flows. From a
practical point of view, the use of time dependent non linear subscales results in a more ro-
bust and more accurate method (an unusual combination) as shown by numerical experiments
(Codina, 2002; Codina et al., 2007).

These developments also opened the door to the use of numerical techniques to cope with
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the potential instabilities and to model turbulence at the same time, as pointed out in (Codina,
2002; Codina et al., 2007). This is a natural step as turbulence is originated by the presence
of the nonlinear convective term, as it is well known. The idea of modeling turbulence using
only numerical ingredients actually goes back to (Boris et al., 1992) but it was fully developed
for incompressible flows in (Bazilevs et al., 2007) and for low Mach number flows recently in
(Gravemeier and Wall, 2010a) where quantitative comparisons against direct numerical simu-
lations are presented. It is important to point out, however, that not all the terms arising from
the nonlinear scale splitting are considered in these works. Apart from these results a careful
analysis of the dissipative structure of the variational multiscale method with nonlinear time
dependent subscales was presented in (Guasch and Codina, 2010; Principe et al., 2010), show-
ing the physical interpretation of the method. This analysis was extended to thermally coupled
flows using the Boussinesq approximation in (Codina et al., 2010).

In this article we consider the subgrid scale effect in all the non-linear terms in the low Mach
number flow equations. We also consider the subgrid scales time dependent. It is shown that
the method does not only provide the necessary stabilization of the formulation but also enables
to obtain more accurate solutions than the classical linear approach for an equivalent mesh as
happened for incompressible flows. It is also shown that global conservation properties for
mass, momentum and energy are obtained from the final discrete scheme.

The paper is organized as follows. In section 2, the Low Mach number equations and its
variational formulation is given. Afterwards the VMS formulation through dynamic scale split-
ting is derived in section 3. Time integration schemes are discussed in section 4. It is shown in
section 5 that this formulation provides global mass, momentum and energy conservation when
using equal interpolation spaces for the velocity, pressure and temperature equations. The for-
mulation is tested for a stationary and a dynamic problem in section 6. Conclusions are drawn
in section 7.

2 THE LOW MACH NUMBER EQUATIONS

2.1 Strong problem

Let Ω⊂ Rd,with d = 2, 3, be the computational domain in which the flow takes place during
the time interval [0, T ], and let ∂Ω be its boundary. The initial and boundary value problem to be
considered consists in finding a velocity field u, a hydrodynamic pressure field p, a temperature
field T , and the thermodynamic pressure pth such that

∂ρ

∂t
+∇ · (ρu) = 0 in Ω, t ∈ (0, T ) (1)

ρ
∂u

∂t
+ ρu · ∇u−∇ · (2µε′ (u))+∇p = ρg in Ω, t ∈ (0, T ) (2)

ρcp
∂T

∂t
+ ρcpu·∇T −∇ · k∇T − αT

dpth

dt
= Q in Ω, t ∈ (0, T ) (3)

where ρ denotes the density, µ the viscosity, ε′ (u) = ε (u) − 1
3

(∇ · u) I the deviatoric part
of the rate of deformation tensor ε (u) = ∇su = 1

2

(
∇u+∇uT

)
, I the identity tensor,

g the gravity force vector, cp the specific heat coefficient at constant pressure, k the thermal
conductivity, Q the heat source, and α = −1

ρ
∂ρ
∂T
|p the thermal expansion coefficient. Equations

(1)-(3) represent the mass, momentum and energy conservation respectively. Additionally the
system must be closed by a state equation relating density ρ, thermodynamic pressure pth and
temperature T , of the form

ρ = ρ
(
T, pth

)
(4)
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These equations must be supplied with initial and boundary conditions. Initial conditions are

u = u0 in Ω, t = 0

T = T0 in Ω, t = 0

pth = pth0 in Ω, t = 0

Dirichlet and Neumann boundary conditions for Eqs. (2) and (3) are

u = 0 in ΓuD
T = 0 in ΓTD

(−pI + 2µε′(u)) ·n = tn in ΓuN
kn · ∇T = qn in ΓTN .

where n is the outer unit normal on the boundary. It is assumed that ΓxD ∪ ΓxN = ∂Ω, and
ΓxD ∩ ΓxN = ∅ for x = T,u.

Determination of thermodynamic pressure The time dependence of thermodynamic pres-
sure pth (t) has to be determined independently of the Eqs. (1)-(3). For open flows

(
ΓuN 6= ∅

)
the thermodynamic pressure is given by the boundary conditions. For closed flows

(
ΓuN = ∅

)
the thermodynamic pressure is determined through global conservation equations over domain
Ω, taking advantage of the uniformity of pth.

In a closed system without inflow-outflow, the total mass remains constant over time, and pth

may be obtained each time subject to an integral form of the state equation∫
Ω

ρ
(
T, pth

)
dΩ =

∫
Ω

ρ0dΩ (5)

where ρ0 = ρ
(
T0, p

th
0

)
is the initial density field.

In a closed system with inflow-outflow, the thermodynamic pressure may be determined by
an equation obtained as a result of combining Eqs. (1), (3) and (4), given by

αT

γ − 1

dpth

dt
+

γ

γ − 1

αT

K
∇ · u−∇ · (k∇T ) = S (6)

where γ, α and the compressibility coefficient K = 1
ρ
∂ρ
∂p
|T is a thermodynamic function, de-

pending on pth and T . Integrating Eq. (6) over domain Ω yields an ordinary differential equation
for pth as

dpth

dt

∫
Ω

αT

γ − 1
dΩ +

∫
Ω

γ

γ − 1

αT

K
∇ · udΩ =

∫
Ω

QdΩ +

∫
∂Ω

n·k∇TdΓ (7)

subject to initial condition pth (t = 0) = pth0 .

Ideal gases For ideal gases, the state equation is ρ = pth/RT , with R = R
M

, where
R is the universal gas constant and M the mean molecular mass. The thermal expansion and
the compressibility coefficients for ideal gases are α = 1/T and K = 1/pthrespectively.
Considering also uniform mean molecular mass (no combustion), Eqs. (5) and (7) take the
form

pth = pth0

∫
Ω

1
T0

dΩ∫
Ω

1
T

dΩ
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and
|Ω|

(γ − 1)

dpth

dt
+

γ

γ − 1
pth
∫
∂Ω

n · udΓ =

∫
Ω

QdΩ +

∫
∂Ω

n·k∇TdΓ (8)

respectively.

2.2 Variational formulation

To obtain a variational formulation for the system (1)-(3), let us denote by V , Q,W the func-
tional spaces where the solution is sought. When the Boussinesq approximation is considered
they are given byV = L2

(
0, T ;H1 (Ω)d

)
,Q = L1 (0, T : L2 (Ω)), andW = L2 (0, T ;H1 (Ω))

(Codina et al., 2010). For the low Mach number equations, the minimum regularity required is
only known in very particular cases (Lions, 1996). The corresponding space of test functions
will be denoted by V 0, Q0,W0.

The weak form of the problem consists in finding (u, p, T ) ∈ (V , Q,W ) such that(
∂ρ

∂t
, q

)
+ (∇ · (ρu) , q) = 0 ∀q ∈ Q0 (Ω) (9)(

ρ
∂u

∂t
,v

)
+ (ρu·∇u,v)

+ (2µε′ (u) ,∇sv)− (p,∇ · v) = (ρg,v) + (tn,v)ΓuN
∀v ∈ V 0 (10)(

ρcp
∂T

∂t
, w

)
+ (ρcpu·∇T,w)

+ (k∇T,∇w)−
(
αT

dpth

dt
, w

)
= (Q,w) + (qn, w)ΓT

N

∀w ∈ W0 (11)

where (·, ·) = (·, ·)Ω and (·, ·)Γ denote the L2-inner product on Ω and Γ respectively.

3 SPACE DISCRETIZATION BY SCALE SPLITTING

Let us consider a finite element partition {K} with ne elements of the computational domain
Ω, from which we can construct finite element spaces for the velocity, pressure and temperature
in the usual manner. We will denote them by V h ⊂ V ,Qh ⊂ Q andWh ⊂ W , respectively. We
will assume that they are all built from continuous piecewise polynomials of the same degree k.

Let us split the continuous space Y = V ×Q×W as Y = Y h⊕Ỹ ,where Ỹ = Ṽ ×Q̃×W̃
is the subgrid space, that can be in principle any space to complete Y h = V h×Qh×Wh in Y .
The continuous unknowns split as

u = uh + ũ (12)
p = ph + p̃ (13)
T = Th + T̃ (14)

where the components with subscripts h belong to the corresponding finite element spaces, and
the components with the˜correspond to the subgrid space. These additional components are
what we will call subscales. Each particular variational multiscale method will depend on the
way the subscales are approximated. We will consider these subscales time dependent and we
will keep the previous decompositions (12)-(14) in all the terms of the variational problem (9)
- (11). As we shall see, this has important consequences in the modeling of thermally coupled
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turbulent flows. The only approximation we will make for the moment is to assume that the
subscales vanish on the interelement boundaries, ∂Ωe. This happens for example if one assumes
subscales as bubble functions, or that their Fourier modes correspond to high wave numbers, as
it is explained in (Codina, 2002).

Substituting decompositions (12)-(14) in the variational problem (9) -(11), taking the tests
functions in the corresponding finite element spaces and integrating some terms by parts, it is
found that the solution (uh, Th, ph) ∈ V h ×Qh ×Wh must satisfy(

∂ρh

∂t
, qh

)
−
(
ρhuh,∇qh

)
+
(
ρhn · uhqh

)
∂Ω
−
(
ρhũ,∇qh

)
= 0 (15)

(
ρh
∂uh
∂t

,vh

)
+
(
ρh (uh + ũ) ·∇uh,vh

)
+ (2µε′ (uh) ,∇svh)− (ph,∇ · vh) +

(
ρh
∂ũ

∂t
,vh

)
−
(
ũ,− ∂ρ

h

∂t
vh + ρh (uh + ũ) ·∇vh −∇h· (2µε (vh))

)
− (p′,∇ · vh) =

(
ρhg,vh

)
+ (tn,vh)ΓuN

(16)(
ρhcp

∂Th
∂t

, wh

)
+
(
ρhcp (uh + ũ) ·∇Th, wh

)
+ (k∇Th,∇wh)−

(
α
dpth

dt
Th, wh

)
+

(
ρhcp

∂T̃

∂t
, wh

)

−
(
T̃ , α

dpth

dt
wh − cp

∂ρh

∂t
wh + ρh (uh + ũ) · ∇wh −∇h · (k∇wh)

)
= (Q,wh) + (qn, wh)ΓT

N

(17)

for any tests function (vh,qh, wh) ∈ (V 0,h, Q0,h,W0,h). The symbol ∇h indicates that the
integral is carried over the finite element interiors, and not over the edges, that is(

T̃ ,∇h · (k∇wh)
)

=
∑
K

(
T̃ ,∇ · (k∇wh)

)
(18)

Applying the scale splitting to the state equation (4) we get the relation

ρh = ρ
(
Th + T̃ , pth

)
(19)

used to give a closure to system (15) - (17). In the numerical examples it is shown that keeping
the temperature subscale in the state equation improves the accuracy of the scheme. Notation
ρh indicates that the obtained density for the discrete problem is different from density in the
continuous problem. The use of a superscript instead of a subscript is because density does not
belongs to any of the introduced finite element spaces.

Once the velocity subscale is approximated in the momentum equation (16), it provides ad-
ditional terms than those that appear in classical stabilized finite element method, and some non
standard terms in the sense that they are usually neglected. The terms involving the velocity
subgrid scale arising from the convective term in the momentum equation

(
ρhũ · ∇uh,vh

)
−
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(
ũ, ρh (uh + ũ) ·∇vh

)
can be understood as the contribution from the Reynolds- and cross-

stress terms of a LES approach. Therefore, modeling ũ implies modeling the subgrid scale
tensor. The last row in (16) comes from the contribution of pressure subscale, that reinforces
mass balance, and the contribution from the external forces. Similar comments to those made
for the momentum equation apply to the energy equation (17). Once the temperature subscale
is approximated it provides additional terms that appear in classical stabilized methods. The
terms involving the velocity and temperature subgrid scale arising from the convective term(
ρhcpũ·∇Th, wh

)
−
(
T̃ , ρh (uh + ũ) · ∇wh

)
can be understood as the contribution from the

Reynolds- and cross- stress terms of a LES approach, see (Codina et al., 2010). In the mass
equation (15) the fourth term provides pressure stability once the velocity subscale is approxi-
mated.

To get the final numerical scheme we approximate the subscales in the element interiors.
The finite element equations can be understood as the projection of the original equations onto
the finite element spaces. The equations for the subscales are obtained by projecting onto their
corresponding spaces Ỹ . If P̃ denotes the projection onto any of these spaces, the subscales
equations are written as

P̃
(
ρh∇ · ũ− ρhα (uh + ũ) · ∇T̃

)
= P̃ (Rc) (20)

P̃

(
ρh
∂ũ

∂t
+ ρh (uh + ũ) ·∇ũ−∇ · (2µε′ (ũ)) +∇p̃

)
= P̃ (Rm) (21)

P̃

(
ρhcp

∂T̃

∂t
+ ρhcp (uh + ũ) ·∇T̃ −∇ · k∇T̃

)
= P̃ (Re) (22)

where

Rc = −∂ρ
h

∂t
− ρh∇ · uh + ρhα (uh + ũ) · ∇Th (23)

Rm = ρhg−ρh∂uh
∂t
− ρh (uh + ũ) ·∇uh +∇ · (2µε′ (uh))−∇ph (24)

Re = Q+ α
(
Th + T̃

) dpth
dt
− ρhcp

∂Th
∂t
− ρhcp (uh + ũ) ·∇Th +∇ · (k∇Th) (25)

are the residuals of the finite element unknowns in the momentum, continuity and heat equation,
respectively. Eqs. (20)-(22) need to be solved within each element Ωe and completed with
proper boundary conditions.

It is important to remark that modeling the gradients of the subscales is more involved than
modeling the subscales themselves. Note that although all the unknowns are being split in Eqs.
(15) - (17), those equations do not contain any subscale gradient nor any density gradient. This
has been achieved by a proper by-parts integration of the continuous problem (9) - (11).

Approximation of the subscales Up to this point the only approximation introduced is to
assume that the subscales vanish on the element boundaries. This approximation is not sufficient
to obtain a numerical method because the space of subscales is still infinite dimensional (the
“broken” space ∪KH1

0 (K), for example) and therefore the subscale problem (20)-(22) is as
difficult as the original continuous problem. To deal with the subscales problem we will adopt a
simple approximation that can be found, for example, in (Codina, 2002) and references therein.
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The differential equations (20)-(22) over each element domain Ωe can be written in vectorial
form as

P̃

(
M

∂Ũ

∂t
+ LŨ

)
=P̃ (R) in Ωe

where Ũ ≡
[
ũ,p̃, T̃

]
, L is a differential vector operator, M is the (d+ 2) × (d+ 2) diagonal

matrixM =diag
(
ρhId, 0, ρcp

)
, where Id is the d×d identity matrix, andR ≡ [Rm,Rc, Re]. In

the present work we will consider the space of subscales as that of the residuals, that is we will
consider P̃ = I (the identity) when applied to the finite element residuals. Another possibility,
advocated in (Codina, 2002), consists in taking P̃ as the projection onto the space orthogonal
to the finite element space. This leads to better accuracy and a clear identification of the energy
transfer mechanisms between the finite element scales and the subscales (Principe et al., 2010).

We consider the algebraic approximation L ≈ τ−1 in each Ωe,where τ is an (d+2)×(d+2)
diagonal matrix. Taking τ =diag(τmId, τc, τe) the approximation to the subscales equations
(20)-(22) within each element of the finite element partition reads

1

τc
p̃ = Rc (26)

ρh
∂ũ

∂t
+

1

τm
ũ = Rm (27)

ρhcp
∂T̃

∂t
+

1

τe
T̃ = Re (28)

In this way, the subscales are approximated at every finite element in a closed form in terms of
the finite element residuals. The stabilization parameters are computed as

τc =
h2

c1ρhτm
=

µ

ρh
+
c2

c1

|uh + ũ|h (29)

τm =

(
c1
µ

h2
+ c2

ρh|uh + ũ|
h

)−1

(30)

τe =

(
c1
k

h2
+ c2

ρhcp|uh + ũ|
h

)−1

(31)

where h is the element size and c1 and c2 are algorithmic constants (we have adopted c1 = 4
and c2 = 2 in the numerical experiments using linear elements).

It is important to remark that (27) and (28) are nonlinear equations as the velocity subscale
contributes to the advection velocity in momentum and energy residuals and also in the stabi-
lization parameters τm, τe. The temperature subscale contributes through ρh to the residuals and
to coefficients τm, τe.

When the time derivative of the subscales is neglected, we will call them quasi-static, whereas
otherwise we will call them dynamic. The semi-discrete in space formulation is now complete,
but contrarily to what happens with linear quasi-static subscales it is not possible to obtain a
closed-form expression for dynamic subscales and insert them into (15)-(17) to obtain a prob-
lem for the finite element unknowns only. Before discretizing in time we cannot go any further
than saying that the problem consists in solving (15)-(17) together with (26)-(28). This final
semidiscrete system of equations is highly nonlinear, even more when nonlinear subscales are
considered. However, it is not the purpose of the present work to discuss how to linearize it.
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The linearization scheme introduced in (Principe and Codina, 2007) is applied to Eqs. (15)-(17)
and the nonlinear terms in (27) and (28) are treated by fixed-point-like strategies, although other
possibilities can be devised.

4 TIME DISCRETIZATION

Any time integration scheme can now be applied to discretize in time both equations (15)
- (17), together with Eqs.(27) - (26). To be specific, we will consider the trapezoidal rule.
Let ∆t be the time step size of a uniform partition of the time interval [0, T ] , 0 = t0 <
t1 < ... < tN = T. Functions approximated at time tn will be identified with the superscript
n. For a generic function f, we will use the notation δfn := fn+1 − fn, δtf

n = δfn/∆t,
fn+θ = θfn+1 + (1− θ) fn, 0 ≤ θ ≤ 1.

The time discretization of the finite element equations (15)-(17) is standard and therefore
we restrict our attention to the subgrid scales equations. As it is discussed in (Codina et al.,
2007) the time integration for the subscales could be less accurate than for the finite element
equations without affecting the accuracy of the scheme. Discretization in time of the subscales
equations(26)-(28) yields to

p̃n+θ = τn+θ
c Rn+θ

c (32)

ũn+θ =

(
ρh

θ∆t
+

1

τn+θ
m

)−1(
Rn+θ
m +

ρhũn

θ∆t

)
(33)

T̃ n+θ =

(
ρhcp
θ∆t

+
1

τn+θ
e

)−1
(
Rn+θ
e +

ρhcpT̃
n

θ∆t

)
(34)

From these expressions, we see that the residual of the momentum and energy equations are
multiplied respectively by

τtm =

(
ρh

θ∆t
+

1

τn+θ
m

)−1

(35)

τte =

(
ρhcp
θ∆t

+
1

τn+θ
e

)−1

(36)

These can be considered the stabilization parameters for the transient Low Mach equations.
Expressions with asymptotic behavior similar to coefficients τtm, τte in terms of h, µ, |uh +
ũ|, and ∆t can be often found in the literature (see e.g. (Gravemeier and Wall, 2010b)). It
is important to note that if the stabilization parameter depends on ∆t and subscales are not
considered time dependent, the steady-state solution will depend on the time step size. This
does not happen if expressions (33) and (34) are used. It can be checked that, when steady
state is reached the usual expressions employed for stationary problems are recovered, namely
ũ = τmP̃ (Rm), and T̃ = τeP̃ (Re). From the point of view of the algebraic solver, to use
τ tm, τ te instead of τm, τ e is crucial for the conditioning of the system matrix.

5 GLOBAL CONSERVATION PROPERTIES

The aim of this section is to obtain global conservation statements similar to those holding for
the continuous problem (1)-(3) but not necessary for the discrete one. To do that it is necessary
to consider the finite element spaces without Dirichlet boundary conditions and an augmented
problem that also contains the tractions at the Dirichlet boundaries as unknowns (Hughes et al.,
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2000). This permits to take constant test functions (see below) and to arrive to conservation
statements in terms of the tractions and flows at the boundaries.

5.1 Mass conservation

Taking the test function qh = 1 in the mass equation (15) global mass conservation follows
immediately ∫

Ω

∂ρh

∂t
dΩ = −

∫
∂Ω

n·ρhuhdΓ (37)

5.2 Momentum Conservation

Taking the tests function vh = (1, 0, 0) ; (0, 1, 0) and (0, 0, 1) in (the augmented problem
corresponding to) the finite element momentum equation (16), multiplying them respectively
by unit vectors pointing in the coordinate directions and adding them, we get∫

Ω

ρh
∂

∂t
(uh + ũ) dΩ +

∫
Ω

ρh (uh + ũ) ·∇uhdΩ

+

∫
Ω

ũ
∂ρh

∂t
dΩ =

∫
Ω

ρhgdΩ +

∫
∂Ω

tndΓ (38)

When using equal interpolation spaces for the velocity components and pressure equations, we
can take the test function equal to velocity components qh = vh,i in the discrete mass equation
(15). Therefore, we get the relation∫

Ω

ρh (uh + ũ) ·∇uhdΩ =

∫
Ω

(
∂ρh

∂t

)
uhdΩ +

∫
∂Ω

(n · uh) ρhuhdΓ

Replacing in (38) we arrive to∫
Ω

ρh
∂

∂t
(uh + ũ) +

∫
Ω

(uh + ũ)
∂ρh

∂t
dΩ

=

∫
Ω

ρhgdΩ +

∫
∂Ω

(
tn − (n · uh) ρhuh

)
dΓ

If momentum is defined as p = ρhuh + ρhũ, with the contributions due to the finite element
and the subscales components, we get the following conservation equation∫

Ω

∂p

∂t
dΩ =

∫
Ω

ρhgdΩ +

∫
∂Ω

tn − (n · uh) ρhuhdΓ (39)

This equality indicates that the change of the total momentum over the system is equal to the
total force over the system plus the traction and momentum fluxes over the boundary ∂Ω. Note
that Eq.(39) holds independently of the subscale approximation.

5.3 Energy conservation

Taking the test function wh = 1 in (the augmented problem corresponding to) the finite
element energy equation (17) we get
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∫
Ω

(
ρhcp

∂

∂t

(
Th + T̃

)
+ ρhcp (uh + ũ) ·∇Th + T̃ cp

∂ρh

∂t

)
dΩ

=

∫
Ω

(
Q+ α

(
Th + T̃

) dpth
dt

)
dΩ +

∫
∂Ω

qndΓ (40)

When using equal interpolation spaces for the temperature and pressure equations (Wh =
Qh), we can take qh = Th in the discrete mass equation (15) to obtain∫

Ω

ρh (uh + ũ) ·∇ThdΩ =

∫
Ω

(
∂ρh

∂t

)
ThdΩ +

∫
∂Ω

ρhn · uhThdΓ

Replacing this equality in (40) we get the relation∫
Ω

cp
∂

∂t

(
ρh
(
Th + T̃

))
dΩ =

∫
Ω

(
Q+ α

(
Th + T̃

) dpth
dt

)
dΩ (41)

+

∫
∂Ω

(
qn − n · uhρhcpTh

)
dΓ

which is the discrete counterpart of energy conservation equation (3) integrated over domain Ω.
In the case of ideal gases (taking pth = ρhR

(
Th + T̃

)
withR = γ−1

γ
cp and α = 1/

(
Th + T̃

)
)

equation (41) gets written as

|Ω|
γ − 1

dpth

dt
+

γpth

γ − 1

∫
∂Ω

n · uhdΓ =

∫
Ω

QdΩ +

∫
∂Ω

qndΓ (42)

which is the discrete version of equation (8), implying global energy conservation. For ideal
gases the specific internal energy is e = cpT/γ = 1

γ−1
pth/ρ. So, for the low Mach approxima-

tion internal energy per unit volume ρe is uniform and directly proportional to thermodynamic
pressure pth. According to that, we define at the discrete level, the discrete internal energy per
unit volume as ρheh = 1

γ−1
pth = ρhcp

(
Th + T̃

)
/γ. Replacing this definition in Eq. (42), we

arrive to the first law for open systems in terms of the internal energy∫
Ω

∂
(
ρheh

)
∂t

dΩ =

∫
Ω

QdΩ +

∫
∂Ω

n·
(
k∇Th − uhρheh − uhpth

)
dΓ (43)

that indicates that the change of internal energy of the system is equal to the heat power added
to the system plus the work done over the system (W = −

∫
∂Ω
n · uhpth = −pth

∫
Ω
∇ · uhdΩ)

plus the boundary fluxes of heat and internal energyn·k∇Th andn·uhρheh. It has been proved
recently in (Codina et al., 2010) that for the Boussinesq approximation global conservation of
energy is obtained when nonlinear and orthogonal subscales are used.

6 NUMERICAL EXAMPLES

In this section we present two examples already considered in the literature. The first is
an example of the behavior of the formulation for the stationary equations, whereas the other
is a transient compressible flow at low speed. In both examples we consider an ideal gas with
constant values of R = 287.0 J

Kg K and cp = 1004.5 J
Kg K . The formulation presented in this paper

will be compared to the algebraic subgrid scale (ASGS) method, as presented in (Principe and
Codina, 2007), which is reduced to the GLS method (Heuveline, 2003) when linear elements
are used. Bilinear interpolated elements Q1 are used in both examples for velocity, pressure and
temperature equations.
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6.1 Natural convection in a cavity

This flow example was also considered in e.g., (Heuveline, 2003; Principe and Codina, 2007;
Gravemeier and Wall, 2010b). The problem domain is Ω = [0, L] × [0, L] with L = 1 m.
Adiabatic boundary conditions are prescribed for upper and lower walls (qn = kn · ∇Th = 0) .
The left wall is maintained at a fixed temperature TH and the right wall at temperature TC . The
initial thermodynamic pressure and temperatures are pth0 = 101325Pa, T0 = 600K, yielding an
initial uniform density of ρ0 = 0.58841Kg/m3. In contrast to the Boussinesq approximation, in
low Mach approximation the stationary solution depends on the initial thermodynamic pressure
pth0 . The dimensionless Prandtl and Rayleigh numbers are fixed to Pr = cpµ

k
= 0.71, Ra =

2
||g||ρ20
µ2

ε = 106, where ε = TH−TC
TH+TC

= 0.6 .The viscosity is µ = 10−3 Kg
m s . Boundary left and right

wall temperatures are TH = 960K and TC = 240K satisfying the relation (TH + TC) /2 = T0.
Zero Dirichlet boundary conditions for the velocity are assumed on all boundaries.

The results were obtained using a mesh of 20 × 20 uniform elements. The reference solu-
tion was obtained using a grid of 180 × 180 uniform elements with the ASGS method. The
streamlines and temperature solutions are depicted in Fig. 1.

Figure 1: Streamlines and Temperature solutions

Cuts of velocity and temperature solutions for different stabilization methods are depicted in
Fig. 2 using a mesh of 20× 20 elements. The compared stabilization methods are:

• The method in the present paper containing full nonlinear subscales, labeled as "FullSGS"
in Fig. 2.

• The method presented in this paper, but neglecting temperature subscale in the state equa-
tion, that is ρh = pth

RTh
, labeled as "SemiSGS" in Fig. 2.

• The method presented in this paper, but using a linear approximation to the subscales
Eqs. (26)- (28), that is, taking τm, τc, τe and Rm, Rc, Re independent of the velocity and
temperature subscales ũ, T̃ . In all cases |uh + ũ| is replaced by |uh| as it is usually
done, for example in (Gravemeier and Wall, 2010b) or (Bazilevs et al., 2007). As in the
previous case the temperature subscale is neglected in the state equation. This method is
labeled as "LinSGS" in Fig. 2.

• The ASGS method, a linear stabilization method as described in (Principe and Codina,
2007).
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• The reference solution, labeled as "Ref" in Fig. 2.
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Figure 2: Cuts of the solution for different stabilization methods against a reference solution

Figure 3: Velocity and Temperature subscales

The higher accuracy of the solution obtained when subscales are kept in all the nonlinear
terms, both in the the finite element equations and in the subscales equations, can be clearly ob-
served in Fig. 2. When the temperature subscale is neglected in the state equation the solution is
less accurate. Finally when a linear approximation to the subscales Eqs.(26)- (28 is considered,
even less accurate solutions are obtained.

Velocity subscales and temperature subscale modulus are depicted in Fig.3. As expected the
subscales are bigger near the boundaries, where velocity and temperature gradients are large.
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6.2 Transient injection flow at low Mach regime

This flow example was recently proposed in (Beccantini et al., 2008), and also considered
by (Gravemeier and Wall, 2010b). The problem domain is Ω = [−L/2, L/2] × [0, H], where
L = 3m and H = 7m. The initial values are T0 = 300K and pth0 = 105Pa resulting in an
initial density of 1.161 Kg

m3 . Furthermore µ = 0.005 Kg
m s and Pr = 0.71. Zero Dirichlet boundary

conditions for the velocity are assumed on all boundaries, except for a small hole in the bottom
wall at [−l/2, l/2] where l = 0.2m. Through this hole fluid is injected subject to a parabolic
inflow profile ud= (0, 2.5830 (1.0− 100x2))m/s. The temperature of the injected fluid is TD =
600K. Aside from this, adiabatic boundary conditions are prescribed in all boundaries. We
consider a gravity g = (0,−9.81)m/s2.
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Figure 4: Cuts of the solution at y = 5.6m when t = 0.6s for different stabilization methods against a reference
solution.

The domain is discretized with 60 × 60 elements, and the time step size is chosen to be
∆t = 0.06s. The computation is advanced until tend = 6.0s. The second order time integration
scheme BDF2 was used.

The results obtained with our stabilization method using dynamic (DSS) and quasistatic
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Figure 5: Point evolution of the unknowns using different stabilization methods; QSS (DSS) indicates nonlinear
and quasistatic (dynamic) subscales.

(QSS) subscales are compared to those obtained using the ASGS method and a reference so-
lution obtained using a mesh of 180 × 180 uniform elements and the ASGS method. Cuts of
temperature and x-velocity fields at y = 5.6m and x = 0.2m when t = 6 s are depicted in
Fig. 4. As in the previous example, a gain in accuracy is observed when the method of dynamic
and non nonlinear subscales is used. Time evolutions of thermodynamic pressure, velocities
and temperature at point (0.4, 4.0) m are compared in Fig. 5. This figure shows a higher tempo-
ral accuracy of the scheme when nonlinear subscales are used and even higher when transient
subscales are considered.

It is important to remark that the use of nonlinear subscales results in an increase in the cost
of the solution of the nonlinear problem (in terms of number of iterations). This is the expected
price to be paid for the gain in accuracy. However we should also point out that when using
transient subscales this cost increase is smaller than when using static subscales even if the gain
in accuracy is bigger.

7 CONCLUSIONS

In this article a new stabilized finite element approximation of the low Mach number equa-
tions has been developed based on scale separation. The main ingredients of the formulation,
developed are

• to consider time dependent subscales

• to keep the subscale components in all the nonlinear terms
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The effect of considering time dependent subscales is well known (Codina et al., 2007)
and our experience with the low Mach number equations confirms the properties known for
incompressible flow. Apart from theoretical aspects (dependence of the stabilization parameters
with the time step size, time step independent steady state solutions, convergence proofs for
any time step) the use of time dependent subscales results in a better conditioning of the system
matrix.

In turn, the effect of considering the splitting of the unknowns in all the terms (including
the state equation) leads to a more accurate solution and provides global mass, momentum and
energy conservation when using equal interpolation spaces for the velocity, pressure and tem-
perature equations. The formulation contains cross- and Reynolds- stress terms, and presents
an open door to turbulence modelling. The present method remains unchanged irrespective of
whether laminar, transitional and turbulent situations are present. Nevertheless, the adequacy
of the present method for turbulent flows situations remains to be investigated. We intend to do
this in our future work.
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