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Abstract. Vesicles are closed biomembranes consisting of one or several different kinds of lipids. The
stationary shapes of the vesicles are usually studied with the Canham-Helfrich bending energy model.
We use a phase-field description of the membrane, governed by a fourth-order nonlinear partial differ-
ential equation with constraints. We tackle numerically this problem with the Local Maximum-Entropy
(LME) approximants, since phase-field solutions benefit from the LME characteristics such as positivity,
smoothness and variation diminishing property.

To analyze the dynamic properties of the vesicles, the fluid where they are immersed is commonly
modeled as a Stokes flow because of the low Reynold’s number. The idea is to apply the same numerical
scheme to compute both the phase-field bending energy and the bulk effect of the fluid field surrounding
the membrane. It is well-known that the Stokes problem lacks pressure stability if velocity and pressure
are described with the same interpolation space. This fact has led to two families of approaches, either
using different and compatible spaces for the velocity and the pressure, or stabilizing equal interpolation
methods. All these methods have been developed mainly in the context of finite elements. In this work
we show stationary shapes of the vesicles computed with the phase-field approach and we present new
results regarding the solution of Stokes benchmark problems using stabilized LME methods.
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1 INTRODUCTION

Biomembranes or biological membranes have been object of experimental and theoretical
investigation for biologists, chemists and physicists during many years. Biomembranes are
composed by several kinds of lipids self-assembled in a fluid bilayer, which presents a liquid
behaviour in-plane and solid out-of-plane. Vesicles are closed biomembranes which play an
important role in biophysical processes and serve as simplified models of cell membranes to
study aspects of the interaction between the lipid bilayer structure and the surrounding fluid.

To simulate the dynamic behaviour of a vesicle both biomembrane solid structure and sur-
rounding fluid have to be properly modeled. The Canham-Helfrich bending energy model is
normally used to describe the solid behaviour, while the fluid is modeled as a Stokes flow.

Two different approaches can be used to describe the equations for equilibrium shapes of
vesicles in the continuum media approach, sharp-interface and phase-field or diffuse-interface
models. In this work a phase-field model proposed by Du et al. (Du et al., 2004) is used. This
kind of models represent the interface between the inner and outer fluid as a diffuse-interface
whose thickness is controlled by a transition parameter ε. The derived equations are highly
nonlinear and involve fourth-order spatial partial differential operators. The weak form of the
equations necessitates piecewise smooth and globally C1-continuous basis functions because
products of second-derivatives are involved in the integration of the variational formulation. The
equations are discretized with LME approximation schemes (Arroyo and Ortiz, 2006) because
they present interesting features such as positivity, monotonicity, variation diminishing property
(the interpolation is not more wiggly than the data) and smoothness (C∞). Adaptivity strategies
are also required to make computationally affordable the phase-field approach.

The fluid is commonly modeled as a Stokes flow because the Reynold’s number is low. The
idea is to apply the same numerical scheme to compute both the phase-field bending energy
and the bulk effect of the fluid field surrounding the membrane. It is well-known that the
Stokes problem lacks pressure stability if velocity and pressure are described with the same
interpolation space, which demands a stabilization method to handle the problem. We borrowed
finite element method (FEM) stabilization strategies to develop a LME stabilizing method.

The structure of this paper is as follows. Section 2 introduces the formulation of the phase-
field model and its numerical treatment. The capability of the adaptive strategy is also illus-
trated. In Section 3, we describe the Stokes flow problem and the stabilizing LME method,
whose performance is tested through numerical benchmarks. Some concluding remarks are
collected in Section 4.

2 MODEL OF THE BIOMEMBRANE: A PHASE-FIELD APPROACH

In this section we present the problem formulation and its numerical treatment (discretiza-
tion, nonlinear solver, and adaptivity). We also analyze a numerical example corresponding to
an equilibrium shape, known as oblate, to evaluate the performance of the proposed scheme.
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2.1 Problem formulation and numerical treatment

The phase-field approach to compute the equilibrium shapes for vesicles can be possed as an
energy constrained-minimization problem:

Minimize E(φ) = fE
k
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where φ is the phase-field, ε the transition parameter, C0 the spontaneous curvature, fE = 3
8
√

2
,

fA = 3
2
√

2
, k the bending rigidity, V0 and S0 the volume and area constraints, respectively.

We discretize these equations with LME approximation schemes and apply augmented La-
grangian methods to impose the linear and nonlinear constraints, and L-BFGS and Newton-
Rahpson techniques to solve the nonlinear problem. We also propose an adaptive algorithm
based on Centroidal Voronoi Tesselations (Du et al., 1999) to reduce the computational cost.
We refer to see (Rosolen et al., 2010) for a detailed explanation about the approximants, the
discretization procedure, the numerical strategy to solve the problem, and the adaptive algo-
rithm.

2.2 Numerical example

This selected example illustrates how positivity, smoothness and convex properties of LME
approximants can be exploited to deal with non-structured grid of points and to be combined
with adaptivity strategies.

The accuracy of phase-field results is intrinsically associated to the value of the transition
parameter ε, which is in turn directly related with the size of the discretization. It motivates to
study two relevant aspects of the proposed method: (i) the convergence for a fixed transition
parameter ε and uniform grid of points, and (ii) the convergence to a sharp model for variable ε
and adapted grid of points.

(i) Convergence for fixed transition parameter ε and uniform grid of points
The energies computed for the oblate equilibrium shape considering different values of ε

and several level of refinement for the grid of points are shown in Table 1. The identification
code and the number of nodes for each grid are indicated in the first and the second column,
respectively. As the grids are not perfectly uniform, the values of the average nodal spacing
h̄ (average element size in finite element terminology) are denoted in the third column. The
remaining columns correspond to the values of energies for different values of transition pa-
rameter ε. The minimum value for the transition parameter is related with the discretization
size: we consider that the relation ε ≥ 2h is quite reasonable. It can be appreciated that values
of energy converge for each fixed ε (columns) and, if we take as reference the value of the grid
O7, the error becomes gradually less as the grid of points is refined. The largest errors are pre-
sented by the values of the upper supra-diagonal, and it happens because they do not fulfill the
mentioned relation between the transition paremeter and the discretization size. We can also
observe that the values of the energy converge to the sharp-interface value Eoblate = 9.12657 as
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the value of ε decreases.

ID # nodes h̄ ε = 0.05 ε = 0.04 ε = 0.03 ε = 0.02 ε = 0.01

O1 6124 0.024 9.71279 9.59056 – – –
O2 12271 0.017 9.72137 9.59446 9.43775 – –
O3 24597 0.012 9.72671 9.59553 9.43483 9.29532 –
O4 49145 0.0084 9.73203 9.59786 9.43515 9.28938 –
O5 98388 0.0059 9.73536 9.59901 9.43481 9.28674 9.22082
O6 146545 0.0048 9.73716 9.59948 9.43422 9.28378 9.19139
O7 296344 0.0034 9.73989 9.60053 9.43437 9.28326 9.18627

Table 1: Energies of the oblate equilibrium shape for different uniform grids of points and several values of ε. The
size of the computational domain is [0, 1.5]× [0, 2].

(ii) Convergence for variable transition parameter ε and adapted grid of points
In Table 2 we indicate the bending energies of the oblate equilibrium shape for uniform and

adapted grids of 6124 points. The first and last rows give information about the uniform grids of
points. The other three rows correspond to the adapted grids computed in each loop of the adap-
tive strategy. The first column of the table gives an identification code for the grids of points,
which are illustrated in Figure 1. The minimum possible value for the transition parameter εmin

in each loop of the adaptive strategy is determined by the nodal spacing distribution. It can be
appreciated that the energies converge to those indicated in Table 1, which demonstrate the well
performance of the adaptive strategy.

Figure 1: Detail of the uniform and adapted grid of 6124 points (oblate equilibrium shape). From left to rigth: O1,
O11, O12 and O13. The features of each grid of points are indicated in Table 2.

ID Description ε = 0.04 ε = 0.03 ε = 0.025 ε = 0.02 ε = 0.015 ε = 0.01

O1 Uniform 9.59056 – – – – –
O11 Adapted 9.59678 9.44002 – – – –
O12 Adapted – 9.43506 9.35810 9.28849 – –
O13 Adapted – – 9.35970 9.28701 9.22588 9.18703
O7 Uniform 9.60053 9.43437 9.35488 9.28326 9.22399 9.18627

Table 2: Energies of the oblate equilibrium shape for several values of ε and uniform and adapted grids of 6124
points.
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Figure 2: Phase-field density for different grids of 6124 points (oblate equilibrium shape). From left to rigth: O1
with ε = 0.04, O11 with ε = 0.03, O12 with ε = 0.02, and O13 with ε = 0.01. The values of energy for each
solution and the features of the grids of points are indicated in Table 2.

3 MODEL OF THE FLUID: STOKES FLOW

In this section we introduce the Stokes flow problem and explain the LME stabilizing method,
whose performance is illustrated for a classical benchmark test.

3.1 Introduction

The Stokes problem can be set in general form as:

−ν4u+∇p = f in Ω

∇ · u = 0 in Ω

u = ud on Γd

(2)

where v is the velocity, p the pressure, f the vector of body forces, ν the kinematic viscosity,
and Ω ⊂ Rd.

Let be V = H1
0 (Ω)d and Q = L2(Ω)/R the velocity and pressure spaces, respectively. Then,

the weak form is set to find u ∈ V and p ∈ Q such that:

a(u, v)− b(p, v) = l(v) v ∈ V
b(q, u) = 0 q ∈ Q

(3)

This weak form is well-known and widely studied in literature. The main conclusions from
the mathematical point of view are the ones that concern to the existence and uniqueness of
the solution of the system, condensed in the Ladyzhenskaya-Babuška-Brezzi (LBB) condition.
This rule states that the following inf-sub condition has to be fulfilled to guarantee the stability
of the system (matrix of the system derived non singular):

inf
q∈Q

sup
v∈V

b(q, v)

‖q‖Q‖v‖V
≥ Kb > 0 (4)

This condition holds true if b(q, v) = (q,∇ · v), q ∈ Q = L2(Ω)/R and v ∈ V = H1
0 (Ω)d,

meaning that the existence and uniqueness of solution is proved for Stokes problem at a con-
tinuous level. Unfortunately, when the equations are discretized with restrictive spaces, that is,
Qh ⊂ Q and Vh ⊂ V , the LBB condition can fail and the pressure become unbounded. In
particular, it is proven that using the same discretization space for both pressure and velocity
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results in a loss of stability, which is the cardinal issue of numerical methods for solving the
Stokes problem.

3.2 Stabilization of Stokes equations

Main strategies to deal with this obstacle are mixed formulations and stabilization of Stokes
equations. The mixed formulations tackle the problem by seeking admissible pairs of spaces
that fulfill the inf-sup condition. The main drawback of this strategy is the necessity of using
two different discretizations for pressure and velocity, hence increasing the calculation effort.

The stabilization strategy faces the loss of stability inheriting the techniques developed for
convection-diffussion problems, adding terms to the original weak form to stabilize the result-
ing matrix for a discretization based on a single space for both pressure and velocity. These
techniques have undergone a large and satisfactory development in the FEM context (Codina,
1998). We develop a LME stabilization method inspired in FEM stabilization ideas. Because of
the noticeable differences between FEM and LME, the application of the FEM based methods
is not direct and redefinition of parameters is needed. The discretization of the Stokes problem
leads to the following system: [

K −DT

D 0

] [
U
P

]
=

[
F
0

]
(5)

where K comes from the Laplacian velocity and it is definite positive, while D corresponds to
the pressure terms and introduces the inestability to the total matrix. To stabilize the system we
need to add an extra term to the weak form (Codina, 1998):∫

Ω

τ P(w, q)R(u, p) dΩ (6)

where R(u, p) is the residual or strong form of the problem (which ensures the consistency
of the new weak form), τ is a parameter which controls the measure of the stabilization to be
applied and P is a partition of the differential operator. Different choices of this partition lead
to different stabilization methods.

To summarize the effect of the stabilization methods and to provide an integrated way of
implementation in the code, the following general term becomes adequate from now on (Barth
et al., 2004): ∫

Ω

τ1 (−αν∆w + β1∇q) (−ν∆u+∇p− f) dΩ (7)

where α and β1 are parameters that take values 1, 0,−1 the former, and 1,−1 the latter. The
different combinations of the values enable the user to jump from one stabilization method to
another while mantaining the same term structure.

This last expression can be developed in a larger group of terms to add their discretized
matrices to the original matrix form of the Stokes problem, resulting:[

K + αKst −DT − αDT
st

β2D − β1Dst β1Lst

] [
U
P

]
=

[
F − αF ′

st

β1F
′′
st

]
(8)

where β2 = −β1 and Lst is a positive definite matrix since comes from a pressure Laplacian.
This matrix gives to the global matrix the stabilization needed to be non singular and subse-
quently provide a solution for the system.
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3.3 Numerical example

We select and apply the GLS-LME stabilization technique (α = 1 and β1 = 1) to the classical
Poiseouille and Colliding flows benchmark tests for the Stokes problem. Here we only illustrate
the performance of the method for the Colliding flows, but similar results were obtained for the
Poiseouille problem.

The essential boundary conditions of the problem are plotted in Figure 3(left). The velocity
field is illustrated in the Figure 4 without the application of stabilizing method (left) and after
stabilization (right). Although we have illustrated the solutions corresponding to a coarse grid
of points for clearness purposes, the observed patterns are maintained in refined grids. The
velocity stabilized solutions do no present a strange physical behaviour when compared with the
analytical one. This fact is reflected in the recovery of the optimal rate for L2 norm convergence
after the stabilization, as it is illustrated in the Figure 3(right).
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Figure 3: (Left) Definition of the Colliding flow problem, and (right) Velocity convergence with GLS-LME stabi-
lized, γ = 1.0, and 36, 144, 225, 625 nodes.
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Figure 4: Colliding flow velocity stabilization: (left) Velocity field with no stabilization computed with 225 nodes,
and (right) Velocity field stabilized computed with GLS-LME, 225 nodes and γ = 1.0.

In the Figure 5(left) we plot the pressure for the solution without stabilization. Dispropor-
tionate values of pressure and oscillations are observed. This anomalous behaviour dissapears
after the stabilization and the obtained solution recovers the smoothness, matching the analyti-
cal field.
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Figure 5: Colliding flow pressure stabilization: (left) Pressure field with no stabilization computed with 625 nodes,
and (right) Pressure field stabilized computed with GLS-LME, 625 nodes and γ = 1.0.

4 CONCLUSIONS

We explain how the biomembranes structural behaviour can be modeled through an energy
constrained-minimization phase-field problem. We indicate algorithms to solve the problem
and also propose an adaptive strategy based on LME approximants and Centroidal Voronoi Tes-
sellations. We illustrate the performance of the proposed method with a representative example.

We propose a stabilization technique inspired in the well-known FEM stabilization methods
to solve the Stokes problem with LME. We illustrate the capability of the proposed scheme in
the classical Colliding flows benchmark problem.

The future work involves the coupling of the phase-field model and the Stokes flow to simu-
late the dynamics of a vesicle.
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