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Abstract. This work deals with the implementation of the boundary element method (BEM) for multi-
region domain problems, under the hypothesis that the domain is composed of elasto/viscoplastic materi-
als. The Perzyna’s flow rule is adopted in order to achieve viscoplastic responses. The technique adopted
to solve the multi-region problem consists of applying the classical BEM to solve separately each region
with interfacial nodes restrained against displacements and the other nodes with the specified boundary
conditions. Following this, a stiffness matrix is evaluated for each subregion by successively applying
the BEM with a unit displacement value prescribed to each degree of freedom correspondent to each in-
terfacial node and direction. By enforcing the compatibility and equilibrium conditions at the interfacial
nodes and assembling a global stiffness matrix one can evaluate the displacements at the interfaces, and
after this, the remaining unknowns can be obtained. This technique can also be used for coupling BEM
and finite element method. The efficiency and accuracy of the BEM implementation are analyzed by
means of numerical examples.
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1 INTRODUCTION

The domain of some important engineering problems like excavations and tunnels present
non-homogeneous material properties, which can be approximated by a zoned domain, i.e.,
the domain is supposed to be made up by distinct subregions, each one with specific material
properties. These subregions with their specific boundaries are modeled independently and then
coupled along interfaces. Besides this, many materials, such as concrete, polymers and soils,
exhibit a time-dependent behavior, i.e., for a constant load different deformation and stress
patterns are developed within the body as time passes.

This work deals with the implementation of the boundary element method (BEM) for two-
dimensional multi-region domain problems, under the hypothesis that the domain is composed
of elasto/viscoplastic materials. In order to simulate the viscoplastic flow the approach pre-
sented by Venturini (1983) is adopted, and to solve the multi-region problem, the stiffness
matrix method presented by Beer et al. (2008) is used.

2 CONSTITUTIVE RELATIONS

The uniaxial representation of the elasto/viscoplastic mechanical model is shown in Fig. 1.
This model simulates a material which behaves linearly elastic up to reach a limit value Y (h)
when irreversible time-dependent strains appear. In Fig. 1 ∆σ is a stress increment, ∆εe is an

Figure 1: Elasto/Viscoplastic Model

elastic strain increment, ∆εvp is a viscoplastic strain increment, C is an elastic parameter, γ
is a viscous parameter and Y is the yield stress which is an escalar function of the hardening
parameter h.

The constitutive equation for the elasto/viscoplastic model generalized for tridimensional
problems can be written as (Venturini, 1983)

∆σij = Cijkl(∆εkl −∆εvp
kl ) (1)

where ∆σij , ∆εkl, ∆εvp
kl , and Cijkl stands for the components of the total stress increment,

the total strain increment, the viscoplastic strain increment and the constitutive elastic tensors,
respectively. It is important to note that Eq. (1) is defined in an initial stress sense and is valid
only for a small increment of time ∆t.

In a similar way as in the elastoplastic analysis, a yield function and a flow rule are needed.
The von Mises yield criterion and Perzyna’s viscoplastic flow rule are adopted in order to per-
form the analysis and can be written, respectively, as

F =
√

3J2 − Y (h) = 0 (2)

∆εvp
kl =

1

γ

〈
F

Fo

〉
∂F

∂σkl

∆t (3)

F. ANACLETO, G. RIBEIRO, T. RIBEIRO8188

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



where J2 is the second invariant of the stress deviatoric tensor and Fo denotes any convenient
reference value of F for the dimensionless representation of ∆εvp

kl . In Eq. (3) the 〈〉 notation
implies that 〈

F

Fo

〉
=

{
F
Fo

for F > 0

0 for F ≤ 0
(4)

Then, for an increment of time ∆t, an increment of the initial stress tensor ∆σo
ij can be

expressed as
∆σo

ij = Cijkl∆ε
vp
kl (5)

The time increment value cannot be chosen freely due to numerical instability. In the current
work, the time step length limit proposed by Cormeau (1975) for the associative von Mises flow
rule is used which can be written as

∆t ≤ 4γ(1 + ν)Fo

3E
(6)

where ν is the Poisson coefficient andE is the Young’s modulus. The time step limit is evaluated
for each region based on its specific material properties and from these time steps values, the
smallest value is adopted.

3 BOUNDARY INTEGRAL EQUATIONS

The elasto/viscoplastic displacement boundary integral equation (BIE) can be developed in
a similar fashion as the classical displacement BIE, but in this case the BIE must be expressed
in an incremental form taking into account the incremental constitutive equation (Eq. 1). The
incremental displacement BIE based on the infinitesimal strain tensor, taking into account initial
stresses, can be written as (Venturini, 1983)

Cij(P )∆uj(P ) =

∫
Γ

U∗
ij(P,Q)∆pj(Q)dΓ

−
∫
Γ

T ∗
ij(P,Q)∆uj(Q)dΓ +

∫
Ω

E∗
ijk(P, q)∆σo

jk(q)dΩ

(7)

where U∗
ij , T

∗
ij and E∗

ijk represents, respectively, the displacement, traction and strain Kelvin
fundamental solutions, and ∆uj , ∆pj and ∆σo

jk denote, respectively, the displacement, traction
and initial stress components. In Eq. (7) the letters P , Q and q represents, respectively, the
source point, a field point at the boundary, and a field point in the domain. This is the same BIE
of the elastoplastic formulation based on initial stress, the main difference is that an elastoplastic
analysis proceeds in load increments while a viscoplastic analysis proceeds in time increments
(Beer et al., 2008).

4 BOUNDARY ELEMENT METHOD

By considering the difficulties involved in solving Eq. (7) in closed form solution, the bound-
ary Γ is then discretized into boundary elements defined by nodes, following the usual proce-
dures of the BEM. The boundary values (displacement and tractions) are approximated using
polynomial functions based on the respective boundary nodal values. The domain Ω is dis-
cretized into internal cells defined by internal nodes. In the current work continuous linear and
quadratic boundary elements and cells are used for the approximations.
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4.1 Viscoplastic formulation

By applying the discretization and the respective approximations in the viscoplastic BIE (Eq.
(7)), leads to an incremental system of equations is obtained, which is expressed as

[T ]{∆u} = [U ]{∆p}+ [E]{∆σo} (8)

where {∆u}, {∆p} and {∆σo} denote vectors containing, respectively, nodal incremental val-
ues of displacements, tractions and initial stresses. The integrations coefficients of Kelvin fun-
damental solutions are held in matrices [U ], [T ] and [E].

4.2 Multi-region method

Eq. (8) is valid only for one homogenous domain. To solve a multi-region problem using
the stiffness method procedure, first each region N has to be solved separately considering
the real applied load but also enforcing to the interface coupled nodes between regions zero
displacement. This will result in a vector of tractions along the interface for each region {∆t}Nc0

and in a solution vector for the free nodes that are not coupled to other regions {∆x}Nf0. This
phase can be written as {

{∆t}Nc0

{∆x}Nf0

}
= [A]−1({B}+ [E]{∆σo}) (9)

where Matrix [A] contains the integration coefficients correspondent to the unknown boundary
values while vector {B} gives the influence of the prescribed boundary values.

Then a stiffness matrix [K] is assembled for each region N . In order to do this, the problem
is solved Ngl times for each region (see Eq. (10)), where Ngl stands for the number of degrees
of freedom of all its coupled nodes. In each solution a unit value displacement is applied for
each degree of freedom of the interface, one at a time. In this phase matrix [A] is constant and
only vector B has to be revaluated for each solution.{

{∆t}Ncn
{∆x}Nfn

}
= [A]−1{B} n = 1, 2, ... , Ngl (10)

After assembling the stiffness matrix, the real solution at the boundary free nodes {∆x}Nf
and the real tractions at the boundary coupled nodes {∆t}Nc can be written as a function of the
real displacements at the boundary coupled nodes {∆u}Nc , as can be seen in Eq. (11).{

{∆t}Nc
{∆x}Nf

}
=

{
{∆t}Nc0

{∆x}Nf0

}
+

[
{∆t}Nc1, {∆t}Nc2, ... , {∆t}NcNgl

{∆x}Nf1, {∆x}Nf2, ... , {∆x}NfNgl

]
{∆u}Nc (11)

Assembling the stiffness matrices for all regions and considering the equilibrium and com-
patibility relations at the interfaces (see Eq. (12)) it is possible to evaluate the real displacements
{∆u}Nc at the interface using Eq. (13).

{∆t}Ic + {∆t}II
c = 0

{∆u}Ic = {∆u}II
c

(12)

{∆t}c0 +
[
{∆t}c1, {∆t}c2, ... , {∆t}cNgl

]
{∆u}c = 0 (13)

After the evaluation of the real displacements at the coupled nodes {∆u}c, the real solution for
the free nodes are evaluated using Eq. (11).
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This multi-region approach works very well if interfaces between regions are smooth. But in
order to apply it to generalized problems where the interfaces between regions are not smooth
specials technics are needed, the more adequate being the use of discontinuous elements (Beer
et al., 2008).

4.3 Automatic domain discretization

The BEM implementation in this work requires a priori only the boundary discretization of
the problem. The domain discretization in cells during the viscoplastic analysis is performed
only in the yielded regions by applying the algorithm proposed by Ribeiro et al. (2008). For
each time step the yield criteria is checked at all nodes and then cells are created around each
yielded node until all these nodes are surrounded by nodes yet in an elastic stress state. This
scheme is illustrated in Fig. (2) from (a) to (d).

(a) (b) (c) (d)

Figure 2: Update and evolution of the discretized region.

4.4 Singular integrations and stress evaluation

At the boundary, the weakly singular integrals are evaluated by means of the logarithmic
Gaussian quadrature, while the strongly singular integrals are treated using a numerical tech-
nique proposed by Giggiani and Casalini (1987) to directly calculate the Cauchy principal value.
Regarding domain integration, weakly singular integrals are evaluated using cell subdivision
(Lachat and Watson, 1976) and strongly singular integrals are computed using subtraction of
singularity and semi analytical integration as presented by Gao and Davies (2002).

The stresses at interior points are evaluated using Somigliana stress identity with initial
stress. While at the boundary, the stresses are evaluated using a methodology called ’stress
recovery method’ (Gao and Davies, 2002) avoiding the evaluations of hyper singular integrals.

5 COMPUTATIONAL ROUTINE

The procedure to solve the viscoplastic multi-region problem consists mainly of the follow-
ing steps:

(i) The matrices [U ] and [T ] (see Eq. (8)) are evaluated for each region.
(ii) Using the applied boundary conditions, and the multi-region technique exposed in

section 4.2, the system is solved and a solution increment ∆{x} is obtained. In this phase there
is no contribution of {∆σo}.

(iii) The final solution is updated, i.e., {x} = ∆{x}
(iv) Then a loop over time increments starts, where in each time increment:
- The stress is evaluated in each node and the yield criterion is checked for all regions.
- Cells are created around all yielded nodes and the correspondent [E] matrix is evalu-

ated for each region.
- An {∆σo} vector is evaluated using Eq. (5) for each region.
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- Using the multi-region technique exposed in section 4.2, the system is solved and a
solution increment ∆{x} is obtained. In this phase it is considered only the contribution of the
{∆σo} evaluated for the current time step.

- The final solution is updated, i.e., {x} = {x}+ ∆{x}
This loops continues until the total time interval is reached.

6 NUMERICAL EXAMPLES

In this section two bidimensional (2D) examples analyzed using the algorithm implemented
are shown. First to demonstrate the efficiency of the multi-region approach a perforated plate
under uniform tensile load is considered and the results are compared with a finite element
solution. Secondly a lined cavity under surface load due to initial stress field is considered.
This last example is mainly presented to show the convergence of the implemented algorithm.
For both cases the von Mises yield criterion is used together with the hypothesis of perfectly
viscoplastic material, i.e., no hardening behavior is considered. Comparisons are based on the
final viscoplastic results, i.e., t → ∞, when stability is reached (Cormeau and Zienkiewicz,
1974).

6.1 Perforated plate under uniform tensile load

Due to the symmetry of this problem only half of the problem is analyzed. The following
material parameters are assumed: Young’s modulus E = 70GPa, Poisson’s ratio ν = 0.2,
viscosity γ = 5days and yield stress Y = 243MPa. The geometries and the basic meshes for
this problem can be seen in Fig. (3).

(a) 1 Region (b) 2 Regions

Figure 3: Geometries and Meshs

Initially the problem is solved considering only one region (1R), see Fig. (3(a)). For this case
two boundary element meshes are considered, one with 128 nodes (BEM 128 1R), and one with
256 nodes (BEM 256 1R), both using linear elements. The results obtained are then compared
with a finite element solution obtained using ANSYSr for a mesh with 4500 finite elements and
13831 nodes (FEM 13831 1R). The final maximum values obtained for each mesh considering
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only one region can be compared in Table 1, where the values inside the parentheses are the
relative error considering the FEM 13831 1R mesh as the reference.

Mesh uy [mm] σx [MPa] σy [MPa]
FEM 13831 1R 0.0459017 -213.689 325.533
BEM 128 1R 0.046252 (-0.76%) -211.12 (1.20%) 317.62 (2.43%)
BEM 256 1R 0.046444 (-1.18%) -215.46 (-0.83%) 320.36 (1.59%)

Table 1: Comparison between finite elements and boundary elements results considering one region.

As can be seen in Table 1 the final maximum results for both meshes show good agreement.
Considering now two regions (2R), see Fig (3(b)), the problem is solved using two new bound-
ary meshes derived from the two previous ones (BEM 128 1R and BEM 256 1R). The first mesh
with 136 nodes (BEM 136 2R) and the second one with 273 nodes (BEM 273 2R). In Table 2
a comparison between the one region and two regions analysis is shown. As can be seen, the
algorithm for multi-region presented very good results. In Fig. (4) the final distribution for σy

for the meshes BEM 256 1R and BEM 256 1R are shown.

Mesh uy [mm] σx [MPa] σy [MPa]
BEM 128 1R 0.046252 -211.12 317.62
BEM 136 2R 0.04625 (0.01%) -211.52 (-0.19%) 314.06 (1.12%)
BEM 256 1R 0.046444 -215.46 320.36
BEM 273 2R 0.046449 (-0.01%) -215.65 (-0.09%) 319.63 (0.23%)

Table 2: Comparison between boundary elements results considering one and two regions.

(a) 1 Region (b) 2 Regions

Figure 4: Final Solution for σy
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6.2 Lined cavity under surface load due to initial stress field

The geometry and the BEM mesh for the lined cavity can be seen in Fig. (5). It is considered
the lining to behave as a linear elastic material, while the rock as a elasto/viscoplastic material.
For the rock the following material parameters are assumed: Young’s modulus E = 3500MPa,
Poisson’s ratio ν = 0.2, viscosity γ = 2days and yield stress Y = 580MPa. And for the
lining: Young’s modulus E = 21100MPa, Poisson’s ratio ν = 0.15. The cavity is subjected
to vertical, as well as horizontal load. The vertical load applied to the cavity surface is taken
to be σy = −680MPa whereas the horizontal load is assumed to be σx = −272MPa.In this
problem linear and quadratic elements are used. In Fig. (6), (7), (8) and (9) the results obtained
for each mesh are plotted. As can be seen from this results a very good convergence is reached.

Figure 5: Geometry and mesh

R1 R2

E: 3500 21100

Nu: 0,2 0,15 espessura= 10

yield stress: 580 NA

Malha ux uy sigmax sigmay ux uy sigmax sigmay
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144 6,5977 57,447 -1547,3 -4935,2 6,8326 57,577 -1550,7 -4953,6

288 6,6333 57,534 -1550,9 -4957,3 6,6521 57,561 -1551,9 -4969,1

2 Regiões

Linear Elements Quadratic Elements

4

4,5

5

5,5

6

6,5

7

7,5

0 50 100 150 200 250 300 350M
ax

im
u

m
 d

is
p

la
ce

m
en

t 
in

 x
 d

ir
ec

ti
o

n
 [

m
m

]

Number of nodes

Linear Elements

Quadratic Elements

Figure 6: Convergence of the boundary element solution for the maximum displacement in the x direction
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Figure 7: Convergence of the boundary element solution for the maximum displacement in the y direction

-1600

-1550

-1500

-1450

-1400

-1350

-1300

-1250

-1200

0 50 100 150 200 250 300 350

M
a
x
im

u
m

 s
tr

e
ss

 i
n

 x
 d

ir
e
c
ti

o
n

 [
M

P
a
] 

Number of nodes

Linear Elements

Quadratic Elements

Figure 8: Convergence of the boundary element solution for the maximum stress in the x direction
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Figure 9: Convergence of the boundary element solution for the maximum stress in the y direction

7 CONCLUSIONS

The numerical BEM results obtained for this multi-region viscoplastic analysis have demon-
strated to be valid and with a good accuracy. The algorithm to automatically generate internal
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cells has shown to be a good alternative to avoid the a priori domain discretization, saving end-
user input and computational processing effort, since cells are only generated where needed.
It is important to note that this multi-region approach works very well if interfaces between
regions are smooth, but in order to apply it to generalized problems where the interfaces be-
tween regions are not smooth specials technics are needed, the more adequate being the use of
discontinuous elements (Beer et al., 2008).
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