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Abstract. This article presents an approach for sizing and positioning piezoelectric Macro Fiber 
Composite (MFC) components for attenuating structural vibration. Even though this new material has 
become popular in the domain of structural vibration control for its easy conformability and repeatable 
manufacturing process, as well as their durability and efficiency, little is still known regarding the 
theoretical modeling of these piezoelectric components and their implementation in Finite Element 
Method software. Being designed empirically, one could say that MFCs have been poorly investigated 
when it comes to understanding their actuation properties as a function of their design parameters and 
electrical properties. The article proposes a finite element method to design smart structures with 
MFCs. An experimental model of a controlled clamped beam was used to validate the numerical 
results of the proposed method. The actuation and sensing capabilities of these MFC components are 
then compared to normal hard piezoelectric ceramics findings. 
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1 INTRODUCTION 

One of the most important topics in the study of Structures in Engineering is stability. The 
interest in stability can be kindled by many different research areas, one of which is the one to 
be studied in this work: the shape of structures.   

Active Control is needed when undesired shape changing occurs through time. A feedback 
system is then needed so that the input voltage can be chosen as a function of its instant shape 
changing. The main idea in active control is to cancel out certain vibration by creating a 
source of similar vibration in the opposite direction, at each instant. Structures equipped with 
these control systems are called Smart Structures. They consist basically of a system of 
actuators and sensors, and a control system.  

This technique for vibration control opens up a whole new world of possibilities of specific 
studies. Research is needed to find the best type of transducers to be used in each case, for 
example. This study aims on modeling a special type of piezocomposite material using Finite 
Element Method software ANSYS and comparing its actuation capability results with those 
of a hard piezoelectric ceramic. 

1.1 Piezocomposite Material 

The PZT (Lead Zirconate Titanate) is a type of piezoelectric ceramic that has a very good 
actuation capability.  However, difficulty in adapting themselves to complex curved structures 
as well as their fragile composition limits its use. Piezocomposite transducers are made of an 
active layer between two electrode layers. The active layer is composed of a mixture of 
Epoxy Resin and Piezoelectric fibers of materials equivalent to the fore-mentioned 
piezoelectric ceramics.  

One of the main advantages of using composite actuators is the possibility of molding the 
anisotropic mechanical properties, in order to optimize certain actuating directions. On the 
other hand, even a very small thin layer of epoxy resin, due to its great difference of dielectric 
constant in relation to that of the piezoelectric fiber, causes a huge reduction in the electric 
field to pass by the active layer. So, one of the main concerns in this type of construction is 
how to dispose the piezoelectric fiber and the epoxy resin matrix between the electrodes.  

Between 1997 and 2002, MIT researchers attempted to solve this problem by trying to 
increase the permittivity of the epoxy resin material, without success. Another proposed 
solution was to bring the electrodes in direct contact with the fibers, but the manufacturing 
difficulty made it a process not repeatable (A. DERAEMAEKER, et al., 2007).  

An interesting solution appeared with the actuator called Macro Fiber Composites (or 
simply, MFCs) developed by NASA around the year 2000. The piezoelectric fiber displayed 
as rectangular piezo-ceramic rods aligned with rectangular layers of the epoxy resin. The 
advantage lies in the cost of manufacturing (relatively cheap) and its repeatability. The 
disposition of the fibers allows them to be in direct contact with the electrodes, solving the 
problem of dielectric mismatch. Two main MFC type patches were developed at the time; the 
d31 type MFC and the d33 type (Figure 1). The latter is made to take advantage of the high d33 

piezoelectric coefficient in order to create higher actuation. Interdigitated electrodes are 
proposed to maximize the electric field imposition on the direction of the fibers without 
having to use huge values of voltage.  
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Figure 1 : Piezoelectric MFC (http://www.smart-material.com) 

2 MACRO FIBER COMPOSITE (MFC) HOMOGENIZED MODEL 

The main component of interest in this study is the d31 Macro Fiber Composite actuator 
that is, as well mentioned by the manufacturer Smart-Material©, flexible, durable, and easily 
conformed to different types of surfaces (see, Smart-Material). The active layer of these 
piezocomposites has rectangular piezoelectric ceramic fibers, as well as rectangular strips of 
epoxy resin (Figure 2). 

 

 
Figure 2 :  MFC d31 patch components (http://www.smart-material.com) 

A simplified representation of this material and its behavior is sought for its Finite Element 
model. The d31 patch can be seen as a 5 layer laminate. The central layer (the active layer) is 
composed of an Epoxy matrix, and piezoelectric material. According to the manufacturer 
Smart Materials, the volume fraction of fibers in the central layer is approximately 83%, 
whilst the piezoelectric portion has properties similar to the PZT-5A1 (Table 1). The 
thickness for each layer is informed by manufacturer as of 0.180 mm for the active layer, 0.03 
mm for the epoxy glue and the Kapton film layers, giving a total of 0.3 mm of thickness for 
the patch. For the piezoelectric components used, the poling direction is perpendicular to its 
plane.
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Piezoceramic Properties Symbol unit Type 5A1 

Permittivity 33 0
T    1850 

Curie Temperature Tc 
oC 335 

Coupling Factors 

kp 
k31 
k33 
kt 
k15 

 

0.62 
0.33 
0.72 
0.48 
0.74 

Piezoelectric charge coefficients 
d33 
-d31 

d15 
10-12 C/N 

440 
185 
560 

Piezoelectric voltage coefficients g33 10-3 Vm/N 25.5 

Compliance 
11
Es  

33
Es  

10-12 m²/N 
18.5 

 
20.7 

Stiffness 
33
Dc  

55
Dc  

10-10 N/m² 
15.7 

 
6.5 

Poisson’s Ratio 13   0.38 

Table 1 : Properties of Piezoelectric Material 5A1 

The equations below describe the standard representation of the Constitutive Equations of 
the piezoelectric systems, set by the IEEE, 1998. These equations represent the relationship 
between the dependent mechanical and electrical fields to their independent field variables: 

     

     
     

. . ,

. ε . .

 

 

E
t

T

S s T d E

D d T E
           (1) 

where D is the electrical displacement (C/m²), S is the strain vector, E is the electric field 
vector (V/m), and T is the stress (N/m²), εT is the dielectric matrix, d is the induced strain and 
sE is the compliance matrix (sE).  The superscript T represents a constant stress condition, 
while the superscript E represents a constant (if possible, zero) electric field condition.  The 
subscript t indicates the transposed matrix. Equations (1) may also be written in its stiffness 
form, where the mechanical stress is written as a function of the strain and the electrical field:

 

 

     
     

. . ,

. ε . .

 

 

E
t

s

T c S e E

D e S E  

(2)

 

The material property constants, in this form of writing, are the dielectric matrix (εS), the 
stiffness matrix (cE), the induced stress matrix (e) and its transposed matrix (et), then: 

 
         1 1

. . . .
 

 E E
tT s S s d E

  
(3)    

From (1):  
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          1 1

. ε . . . .
 

  E T E
tD d s S d s d E

     
(4) 

From which follows the relationship between the property matrices: 

 

 
 

 

1

1

1

. . .

ε ε . .







 
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t

s c

e d s d c

d s d
 

(5) 

Using the standard IEEE notations, (1) may be re-written as follows, making use of the 
transverse symmetry of our piezoelectric component: 

 

1 11 12 13 31

2 12 22 23 32

3 13 23 33 33

4 44 24

5 55 15

6 66

1 15 11

24 222

31 32 33 333

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 ε 0 0

0 0 0 0 0 0 ε 0

0 0 0 0 0 ε

  
 

 
  
 

 
    
 
 
 
 
 
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E E E

E E E

E E E

E

E

E

S

S

S

T c c c e
T c c c e
T c c c e

T c e

T c e

T c

D e

eD

e e eD

1

2

3

4

5

6

1

2

3

. .

  
  
  
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S

S

S

S

S

S

E

E

E

   (6) 

The following equations were also taken from A. DERAEMAEKER, et al., 2007, in order 
to be able to reconstruct the full set of material parameters of the anisotropic mechanical 
matrix for the piezoelectric material portion:  

 
 55 2

55 55

1

. 1



E

D
s

C k
 

                        (7)                        

 

2
31

12 11 2
33

2.
ε .

  E E
T

p

d
s s

k   
(8) 

  
2
15

11 2
55 15

ε
.

T
E

d

s k  
(9) 

     
13 13 11υ . E Es s  (10) 

Also, with the isotropic transverse symmetry assumption: 

 

 
22 11 23 13

44 55 66 11 12

31 32 24 15

22 11

, ,

, 2. ,

, ,

ε ε .

 

  

 



E E E E

E E E E E

T T

s s s s

s s s s s

d d d d

 

(11)

  

 

The passive layers are considered isotropic materials. Typical values were used for both 
the Kapton film and the epoxy material. As relative permittivity for the epoxy resin, the 
typical value of 4.25 was used, and:

 

Mecánica Computacional Vol XXIX, págs. 8263-8279 (2010) 8267

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

³

³

2.0 ν 0.3 ρ 1100

2.8 ν 0.3 ρ 1580

  

  

kg
mepoxy epoxy epoxy

kg
mKapton Kapton Kapton

E GPa

E GPa
 

 

The compliance matrix for the isotropic materials can be expressed by: 

 

 
 

 

1 ν ν 0 0 0

ν 1 ν 0 0 0

ν ν 1 0 0 01
.

0 0 0 2. 1 ν 0 0

0 0 0 0 2. 1 ν 0

0 0 0 0 0 2. 1 ν

  
   
  

   
 
 

  

Es
E

 

(12) 

The MFC datasheet supplied by the manufacturer (SMART-MATERIAL©) does not, 
however, supply enough information to simulate the d31 patch. Information such as the d32 
coefficient and the shear modulus are not described for all directions, even though it is needed 
as an input for the simulation. According to A. DERAEMAEKER, et al., 2007, a sensitivity 
analysis shows that the d32 coefficient, not given by the fabricant, can influence significantly 
depending on the results sought, and should be well estimated. 

To model the d31-type MFCs, a mixing rule theory was applied, where mean values of the 
patch’s properties can be calculated to be used as inputs for the finite element software 
ANSYS.  

The approach bases itself on the Uniform Field Method (UFM).  The object of the mixing-
rule is to find the equivalent property matrix for a material of two constituents. For this, it is 
assumed that the constitutive equations above can be written in the same way for each of the 
two constituents. Let us consider a representative volume element (RVE), of the d31 patch.  
Representing the epoxy matrix portion of the material by the superscript m, and the 
piezoelectric portion by the superscript p, and the volume fraction of piezoelectric material by 
ρ, the values of T, S, D, E can be represented by their average values: 
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 

 

 
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ρ. 1 ρ . . .
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

   
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   
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







p m
k k k k

V

p m
k k k k

V

p m
i i i i

V

p m
i i i i

V

T T T T dV

S S S S dV

D D D D dV

E E E E dV
 

  (13) 

The Uniform Field Method bases itself on the deformation mechanism for the RVE for 
each type of deformation. In the case of the d31 MFC: 

  

2 4 62 2 4 4 6 6

1 3 51 1 3 3 5 5

1 21 1 2 2

2 2 2

; ; ,

; ; ,

; ,

.

     
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   
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p m p m p m

p m p m p m

p m p m
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(14) 
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The other parameters will follow the average rule cited in equation (13). If the above 
expressions are introduced into the constitutive equation (6), then cE, e, ε as we as cE  p, ep, ε p  
and cE m, em, εm  become related as follows:     

 

1

11 12 13 31

2
12 22 23 32
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(15) 
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    , ,ρ ρ .ρ 1 ρ .ρ  dens dens p dens m    (33) 

where: 
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(36) 

By applying the characteristic values of the epoxy and piezoelectric portions of the central 
layer to the equations above the characteristic coefficients for an effective homogenized 
central layer can be calculated. This can be better expressed by the use of the following 
engineering constants: 

  

21

11 22 11 66

1 1 1
ν .    

E

L T LT LTE E E E

s
E E G

s s s s

 

(37)

 The results are shown in Table 2, where EL is the Young Modulus in direction of the fiber, ET 
is the Young Modulus in the transversal direction, υLT is the in-plane Poisson Ratio and GLT is 
the in plane shear modulus. 
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 Symbol Value 

Young Modulus (GPa) 
E1 45,21 
E2 12,39 
E3 40,44 

Shear Modulus(GPa) 
G12 6,03 
G23 6,68 
G31 17,01 

Poisson’s Ratio 
υ12 0,39 
υ23 0,17 
υ13 0,44 

Piezoelectric Constants (C/m²) 

e31 -2,227 
e32 -0,671 
e33 16,665 
e24 0,0258 
e15 13,668 

Dieletric Relative Constants ε11
T/ ε0 1574,8 

 ε22
T/ ε0 24,7 

 ε33
T/ ε0 1528,7 

Density (kg/m³) * ρdensity 4700 
     * - Measured in Laboratory 

Table 2 :  Estimated Mechanical Properties of the MFC 

3 METHOD OF VALIDATION 

To validate the homogenized model a simple structure of a clamped aluminum beam is 
tested with 1 piezoelectric actuator, as shown in Figure 3 and Table 3. The results of the finite 
element simulation, using ANSYS and the experimental results will then be compared 
regarding the tip transverse displacements. 

 
Figure 3 : Experimental setup 

 

 Beam (Aluminum) Patch 
Length (mm) 300 85 
Width (mm) 35 28 

Thickness (mm) 0.37 0.3 
Density (kg/m3)  * 2970 - 

Young Modulus (GPa) * 75 - 

* - Determined from the mixing rule and have different values for each layer of the patch. 

Table 3 : Experimental data 
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3.1 Finite Element Simulation using ANSYS 

The MFC d31 modeled patch consists of a layer with the homogenized properties. Seeing as 
though the size of the patch should have an influence on the final proper frequency values, an 
adhesive layer was also considered. This thin layer was modeled to be 0.2 mm thick with a 
0.5 GPa Young Modulus, and density of 3000 kg/m³. A close-up on this model is given in 
Figure 4. 

 
Figure 4 : Patch model layers 

The isotropic beam and adhesive layers were modeled with solid tetrahedral elements with 
10 nodes (SOLID92). The active layer is modeled with the solid tetrahedral elements with 10 
nodes (SOLID98) which includes the displacement as well as the piezoelectric degrees of 
freedom. Due to incompatibility of attachment between SHELL and SOLID elements, the 
aluminum beam had to be meshed in solid elements as well.  

 The electrodes of the patch were set to potential null (short-circuited) as required as 
boundary condition by setting the surfaces of the central layer to zero voltage. For the first 
two modes of vibration, the charge on one of the electrodes was calculated using ANSYS, as 
shown in Table 4.  

 Mode 1 Mode 2 

Frequency (Hz) 4.795 21.971 

Charge 1.094e-3 2.007e-3 

Table 4 : Calculated properties for the ‘Beam + Patch’ simulation 

3.2 Theoretical Method of Calculation of the Tip Transverse Displacements 

To put the problem into equations, the Lagrange method is used, generalized to include the 
piezoelectric parameters. The kinetic and potential energy of the piezoelectric system can be 
initially written as follows:  

1
ρ. ². Ω ,

2

1 1
. . Ω . . Ω . ,

2 2



  



 ij ij i i c

T u d

V T S d E D d v q
    

(38)

 

where Tij and Sij are, respectively, stress and strain tensors of the system. For an active 
structure with piezoelectric actuators with a supplied voltage of v and electrical charge qc, 
electromechanical coupling forces arise, counting for the last term in the expression for the 
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potential energy. E and D are, respectively, the electric field and the electric displacement 
field of the system. The full Lagrangian expression, including the electromechanical coupling 
influence is: 

  1
ρ. ² . . . Ω.

2
   ij ij i iL u T S E D d  (39) 

The resulting matrix equations are:

 
  

0

. . . .

. .

  


 

 S

T
c

M q D q K q N v

q N q C v
 (40) 

where M, D, and K are n x n matrices and N is a n x k matrix; q is a vector with the degree of 
freedom displacements for each element of the geometry. 

 

A modeled estimation of the 
damping factor was included.

 
 

1
. .S

m

D K M
Q

 (41) 

The quality factor Qm is a dimensionless parameter that compares the physical system’s 
amplitude to its period, say:  

 0

2 1


m

f
Q

f f
 (42) 

The parameter f0 is the resonant frequency and f2 – f1 = Δf, is the width of the range of 
frequencies for which the energy is at least half of the peak value. 

  ANSYS can be set to automatically normalize results to the M matrix, i.e. to M-
orthonormalize the results. This means that the displacements given by the software form the 
eigenvectors of the system for each element (generalized coordinate) of the geometry. The 
dynamic equations of the system can be therefore rewritten as: 

 
0

*. *. *. *.

* . . , * Φ .

  


  

 


T t
c

M u D u K u N v

q N u C v N N
 (43) 

 
This transformation makes the mass and stiffness matrices, M* and K*, diagonal (where 

the first of the two is the identity matrix and the latter a diagonal matrix containing the free 
vibration frequencies). The characteristic equations in (43) can be expressed in the form of a 
state-space model: 

 
. .

. .

 
 

X A X B v

Y C X D v
 (44) 

where X is the state variable vector constituted of the n displacements and their derivatives in 
the modal base; v is the input vector of the system; Y is the output vector of the m 
displacements to be observed in the physical base. From (43) and (44), we can write out the 
space-state matrices: 

 
       1 1

0

* . * * . *
 

 
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nxn nxn

s

I
A

M K M D
 (45)
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   1
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 
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nxk
B
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 .Φ 0 m m nC  (47) 

            0D  (48) 

With the space state in hands, it is possible to compute the Bode diagram for a given 
voltage supply.  The Bode diagram in magnitude will help calculate the theoretical values of 
the deflection of the structure in a given point. For the resonance frequencies: 

 . . . . .   sM x K x D x N v   (49) 

From which: 

 
.

ω. . 
s

N v
x x

D
 (50) 

Therefore, an expression for the deflection at a given point of the structure:  

 max. . ,
ω

 
s

N
x v M v

D
 (51) 

where Mmax is the resonance peak magnitude that can be easily found by observing the Bode 
Diagram of the system.  

3.3 Experimental Setup 

In the experimental configuration, a laser vibrometer is used to measure the vibration 
velocity at a certain point of the structure. A signal generator, a tension amplifier, an electric 
generator, a charge amplifier, an oscilloscope and a laser vibrometer make up the 
experimental setup for the verification (Figure 5). 

Multiplying the output voltage by the vibration velocity/voltage scale used in the 
equipment, we have the mean vibration velocity as an output. Knowing how the vibration 
speed relates to the amplitude q of the movement, the value of q is therefore obtained 
experimentally by: 

  Δ ω.Δ 2.π. .Δ v q f x  (52) 

 
Figure 5 : Experimental setup 

C. GUIMARAES, F. BUSSAMRA, V. POMMIER-BUDINGER, J. HERNANDES8274

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

3.4 Results Comparison 

Results found by V. POMMIER-BUDINGER, et al., 2008 show that the Quality Factor 
depends strongly on the value of the supply voltage, and this dependence is, in general, non-
linear. For this reason, it is absolutely necessary that the voltage used in the calculation of the 
displacement be the same as the one used for the calculation of the Quality Factor. To 
calculate the Quality Factor, an input voltage of 8 V was established. The amplitude response 
output voltage was then measured with the help of an oscilloscope for the first 2 modes of 
vibration.  

Using the system of equations (44), the Bode diagram was traced, as shown in Figure 6. 
The peak gain magnitudes allow us to find the theoretical displacement values and compare to 
those measured. The final comparison of the results is shown in Table 5. 
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Figure 6 : Bode Diagram of the System 

Measurements for supply of 8 V 
Mode 1 2 

Measured Frequency (Hz) 4.47 23.43 

ANSYS Modeled Frequency (Hz) 4.80 21,97 

Quality Factor 40.65 155.6 

Output Voltage (V) 1.74 1.82 

Experimental  Displacement (mm) 7.7 1.6 

Theoretical  Displacement (mm) 7.7 2.2 

Error in Displacement 0.86 % 37,5 % 

Error in Proper Frequency 7.36% - 6,22 % 

Table 5 : Proper bending mode frequencies for the clamped beam 

Frequency (rad/s) 
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4 SIZING AND POSITIONING METHOD 

Sizing an active control system consists of determining the volume and position of 
piezoelectric patch that will give N.v = - F, where F is the external perturbation that should be 
cancelled. Knowing precisely how many patches to use can mean saving money (by not using 
more piezoelectric patches than needed), and can also mean protecting the structure (by not 
using less piezoelectric patches than needed). The existence of a maximum value of the 
electric field that can be applied to the piezoelectric patch, and a maximum stress that can be 
supported gives the idea of the maximum value of vibratory amplitude that it can generate by:  

   max
max,

. ..
,

ω. ω.
 electric

N E hN v
q

D D
 (53) 

where Emax is the maximum electric field that can be applied, and h is the thickness of the 
patch. Alternatively, the maximum amplitude can be calculated by: 

 max
max, ,rupture

m

T
q

T
q

 (54) 

Where Tmax is the maximum tensile stress supported by the patch, given by the manufacturer. 
The ratio Tm/q is the ratio maximum stress/deformation, given by ANSYS as an output.  In 
order to account for the uncertainties of the model, the maximum value of vibratory 
oscillation generated by the piezoelectric patch is estimated to be: 

      max max, max,0.8 min , electric ruptureq q q  (55) 

5 MFC AND HARD CERAMICS COMPARISON 

The piezoelectric components being reasonably modeled, and calculated to give good 
predictions to the first mode of bending, a comparison of the actuating capability of each of 
them was made. Naturally, the available patches have different sizes. Seeing as the hard PZT 
ceramic can be easily cut without altering its configuration, the FEM predictions were tested 
for a same transversal area as that of the MFC patch (85 mm x 28 mm).  

The PZT ceramics available by the fabricant and that are closest to the MFC patch 
thickness (0.3 mm) are 0.5 mm thick. The piezoelectric constants for the ceramics are given 
by the manufacturer. For this FEM analysis, the same adhesive layer was used in both cases, 
with the same properties as the one already used. 

A slightly more complex structure was the object of test, consisting of a thin long 
Composite material beam with 4 piezoelectric components attached with a distance of 11 mm 
from the clamped extremity and 15 mm from its borders, as shown in Figure 7. 

 

 

Figure 7:  Simulation setup 
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Points A and B illustrated above are the points of interest in the displacement to be 
calculated. The nomenclature used for each one of the actuators is also important. Their 
position was chosen symmetrically so that their spacing should not affect the bending 
displacements. The material chosen for this test was the 914- carbon-epoxy tissue Composite 
Material with 2.4 mm of thickness. The ANSYS model is shown in Figure 8. 

 

Figure 8 : Beam and MFC ANSYS model 

  
It should be noted that the displacements indicated as outputs by ANSYS do not have 

physical sense. They are such that they displacement vector normalizes the mass-matrix to 
unity. The ANSYS simulation gives us the predicted proper frequencies, as well as the 
charges on the electrodes of the piezoelectric components; following the method proposed, 
these parameters are needed to calculate the numerical displacement at each of the studied 
points. 

For the following analysis, the voltage values to be applied to each of the piezoelectric 
components are the same. This type of alimentation is used to generate bending movements of 
the structure. Since this comparison is being made only theoretically (with the use of the FEM 
software ANSYS), the quality factors are not known; a range of typical quality factor values 
will, therefore, be used in order to illustrate the tendency. Figure 9 shows the displacement 
values (at points A and points B) per unit of voltage to be applied to the piezoelectric 
components. 
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Figure 9 :  Displacement/Voltage by Quality Factor for the 1st mode of vibration 

Seeing as though the uncertainties of these results cannot be precisely calculated (the 
results come from FEM numerical solution, and therefore numerous factors come into play, 
such as meshing and element type choice), it cannot be concluded that the MFC Patch gives, 
for sure, better actuating capability than the PZT ceramic. It should be noted that the 
difference in absolute value of these parameters for each piezoelectric component is of the 
order of 10-6, and therefore, for a voltage of the order of 10 V to 100 V, this difference will 
not surpass the order of 10-4.   

It can be concluded, all the while, that the substitution of the PZT ceramic by a MFC Patch 
does not, at least, compromise the active control system in terms of actuating capability 
efficiency. This conclusion validates a good reason for choosing microfiber composites as 
piezoelectric actuators, due to the previously mentioned advantages, among which can be 
cited its easy adaptability to complex geometry, simple repeatability in manufacturing, as well 
as its light-weighted durable, ready-to-use  models. 

6 CONCLUSION 

With the help of ANSYS, a homogenized model of the Piezoelectric Macro Fiber 
Composite was elaborated and tested. A method for sizing piezoelectric actuators and sensors 
was studied and developed and put into practice with an experimental setup. The MFC model 
proposed, when in use with the sizing and positioning Modal Base Theory method presented, 
gave good results of displacement prediction for the first mode of vibration. The 
actuation/sensing capability of the MFC model was also put into comparison with that of the 
hard piezoelectric ceramics. The results were close enough to conclude that the MFC showed 

Point A 

Point B 
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to have an actuation capability as good as that of the ceramics. Along with this, the fact that it 
has a less brittle nature and is more easily adaptable to curved structures corroborates the 
statement that MFCs may replace the hard ceramics in Active Control systems. 

A few aspects of the research still remain to be addressed by future projects in this topic. 
To better verify the proposed model, a closer analysis of the adhesive layer with Finite 
Elements modeling should be made. A study on how this layer behaves with the excitation of 
the structures’ proper modes, for example, may help answer some of the questions that 
remained and were pointed out throughout the report.  

The MFC patch model proposed was validated with the clamped beam experiment. The 
results for displacements at the first mode of vibration were very satisfactory, while the ones 
for the second mode were not as much. A future project could be concentrated into finding a 
way to validate the model experimentally with a more rigorous method. For this, a more 
accurate model of all components of the experiment should be well modeled; therefore this 
could be a consequence of the study of the adhesive layer behavior proposed in the topic 
above. 
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