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Abstract. Microchannel heat sink design consists in anwatige technology which has been studied
as alternative to increase cooling efficiency ofalmelectronic devices, such as high-end
microprocessors of CPUs. These electronics dediss$pate a large amount of heat, which requires
very efficient cooling systems. Microchannels comstied on a conductivity body allow obtaining an
efficient heat sink design having better thermalsgiation with small mass and volume, and large
convective heat transfer coefficient, and, thugtable for cooling compact areas of small electzoni
devices. Thus, the main objective of this work I tstudy of a methodology to develop a
microchannel heat sink design through the appboatif the Topology Optimization Method, which
allows the distribution of a limited amount of Mm@ inside a given design domain, in order to
obtain an optimized system design. This method aoasbthe Finite Element Method (FEM) and
Sequential Linear Programming (SLP) to find, systeocally, an optimized layout design for
microchannels in heat sinks. Essentially, the togploptimization problem applied to channel fluid
flow consists of determining which points of a giveesign domain (small heat sink) should be fluid,
and which points should be solid to satisfy a muoltfiective function that maximizes the heat
dissipation, with minimum pressure drop. In thisgwsed methodology, computational simulations of
some optimized microchannel layouts are employedvatidate the implemented topology
optimization algorithm. Some obtained results &@as to illustrate the methodology.
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1 INTRODUCTION

In fluid flow systems, one important matter is povagssipation along channels which
leads to a pressure drop, compromising their corogeration and their efficiency. This
demands a detailed analysis of power consumptiooegses to achieve the most efficient
system design, allowing smaller power consumptemmg consequently lower costs and a
lower environment impact, which is also a greatoeon recently.

The application of channels in fluid flow has beencurred intensively in many
engineering areas, from transportation (large jciebiological fluid conduction (small
scale). As a practical application we can mentiagorechannel heat sink, which has been
studied for a long time as alternative to increeseling efficiency of small and powerful
electronic devices. This technology was introdubgdTuckerman and Pease (1981) who
performed experiments on silicon based microcharegt sink for electronic cooling.
Microchannels constructed on a conductivity body peovide large convective heat transfer
coefficient, and small mass and volume for hedt digsigns, which makes it very suitable for
cooling compact electronics devices such as high+icroprocessors applied to general
computation. The microprocessors dissipate a largeunt of heat, and need very efficient
dissipation system to avoid malfunction or evendpet damage. As long as these
microprocessors become more powerful and smallemeéed of efficiency in heat dissipation
is even more evident.

To achieve a better microchannel heat sink perfoo®ait is crucial that these cooling
systems have a very efficient fluid flow channelinimizing pressure drops along its
extension, and consequently allowing an efficidrd@rmal dissipation process. Through the
last three decades, many studies have been codduoteorder to achieve fluid flow
microchannels with better configuration for miniimig power dissipation. Several analytical,
numerical, and experimental studies have carriédrmudesign optimization of microchannel
heat sinks to determine the geometric dimensioasdlve the best performance (Knight et
al., 1992; Toh et al., 2002; Qu and Mudawar, 2002).

Some analytical studies have employed the clasBic#heory that models the solid walls,
which separate the microchannels, as the thin(Kmsght et al., 1992). Nevertheless, most
microchannel design analyses in the literaturecaréed out through numerical studies, in
which the microchannel domains are simply modeledding the conventional fluid flow and
heat transfer governing equations (Toh et al., 20@2hese studies, parametric optimization
problems are solved by computation models, whiainalo consists of only a single channel
and the corresponding slice of wall with symmetrimaundary conditions. Although extract
experimental data in microchannel devices by usoryentional measurements techniques is
often difficult, in general experimental studies amployed to validate computational models
(Qu and Mudawar, 2002).

Optimization methods with numerical analyses offadvantages to analyze the
microchannel behavior, allowing the study of mommplex cases with multi-objective
applications. The basis of numerical studies onnobhflow optimization was given by
Pironneau (1973), who conducted a shape optimizatialysis in airfoils and other devices,
such as diffusers. In his studies, the shape opditioin process has been applied to obtain
minimum drag profiles and minimum pressure drofud#rs.

The main objective of this work is to present a hmeblogy for obtaining optimal
microchannel layouts applied to a heat sink desigimg Topology Optimization Method
(TOM). Later in the 90’s, there has been a greaeld@ment of the TOM, which essentially
distributes limited amount of material inside aigesdomain to optimize a cost function
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requirement, satisfying some specified constrgiBendsge and Sigmund, 2003). Nowadays,
TOM has been employed to several applications, sscfiuid flow problems (Borrvall and
Petersson, 2003). In this case, instead of comtgotinly solid material and void regions, as
often performed for structural analysis field (Bead and Kikuchi, 1988), the interest is
focused on distributing liquid and solid materiadg\d then, creating optimized fluid flow
systems that minimizes the total power of the Stdl@vs. Recently, other works that extend
the application of TOM to this field have been cocteéd. For instance, Gersborg-Hansen et
al. (2005) consider the problem of optimal desi§filaw domains for Navier—Stokes flows.
Guest and Prévost (2006) presented a material nmodélich the design domain for topology
optimization is treated as a porous medium withvfgoverned by Darcy’'s law. Aage et al.
(2008) extend the Stokes flow applications to laagae 2D and 3D problems.

One of the great advantages of the TOM is the pidi$giof analyzing a much wider range
of solutions, due to the “free” material distribartii method. By applying this method, an
optimal solution can be achieved with no need ofppsing a “pre-structured” initial guess,
which tends to limit the final solution, by direa the optimization process. This issue may
be a problem in parametric and shape optimizatdnrere a preliminary solution model must
be stated. Thus, “not-so-intuitive” solution can @zovered, as shown in Borrvall and
Petersson (2003). This work aims to find “not-stuitive” optimal solution for channel
layouts to attend a multi-objective function: mimze the pressure drop of fluid flow, and
maximizing the heat dissipation along the charmalinly focused for microchannel heat sink
design.

The methodology proposed in this work is presentedhe next sections. Section 2
describes the fundamental theory. Section 3 predéet finite element modeling. Section 4
shows an overview of the topology optimization muhere. Section 5 details the results
obtained at this moment. Finally, in Section 6 safiscussion about obtained results and
conclusion are given.

2 FUNDAMENTAL THEORY

The fundamental theory is given by the constitutaguiations for Newtonian fluid flow,
based on the well-known Navier-Stokes equationgrgby:

pm(g—ltj+uﬂﬂuj:—Dp+yD2u +f (1)
-%?+Dmgw)20 2)

wherepn, is the fluid mass density, is the dynamic viscosity is the velocity fieldp is the
pressure, anflis the body load. Equation (1) refers to the coreten of momentum, and Eq.
(2) refers to conservation of mass, or continugyagion.

As in Borrvall and Petersson (2003), in this stuttg Navier-Stokes equations are
simplified to a linear form, considering a steathts, incompressible fluid flow at low
Reynolds, where the viscous effects overlap thetimeffects. Thus, the following Stokes
flow equations are obtained:

—p{Pu+Op=f 3

Omw=0 4)

Copyright © 2010 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



8310 C. LIMA, A. KOGA, E. SILVA

Equation (3) dictates the fluid flow, and it is ebed with Eqg. (4), which acts like a
constraint in the velocity field to ensure the imgressibility condition.

Here, the material model proposed by Guest andoBt¢2006) is adopted to describe the
behavior of the solid region and fluid flow in freegions of the domain. They studied a
formulation that mixes a fluid-like and a soliddikbehavior by combining the standard Stokes
flow equation with an equation that describes apsmedium flow, known as Darcy flow
equation, given by:

au=(0Op-f)
=0

wherea is the inverse permeability of the porous mediegion.

The main idea is to apply the Stokes equations ddaihthe fluid flow behavior, and to
control the velocity field in solid regions throughe Darcy’s law, by assuming it to be a
porous medium with nearly-zero flow permeability.

A material model is necessary to describe congnaftthe fluid velocity and pressure
fields across the solid interface. Thus, equatig®)sand (5) can be combined through the
Brinkman'’s equation, given by:

L% +aqu =0p-f
O=0

Equation (6) has a penalization term controlledjoyhich is applied to force a very small
flow in solid regions. This approach allows the imitation to work with a continuum
variation on the liquid-solid model, which is reéet during the optimization process.

Additionally to the fluid movement equations, fallmg convection-diffusion heat transfer
governing equation, in steady-state flow, is comid to model the heat dissipation of the
domain:

()

(6)

P(c,u) DT + f, = KI2T 7)

whereT is the temperaturds is the heat generatiops, c,, andk are fluid density, specific
heat, and thermal conductivity, respectively.

3 FINITE ELEMENT MODELING

The finite element method (FEM) is applied to sdlve equations (6) and (7), described in
previous section. For fluid flow problem, the desidomain is divided by using bilinear
rectangular elements, which have four nodes foooisl field (two degrees of freedom per
node) and one node for pressure field. Although recognized as a not full-stable element
according to the LBB or div-stability-condition (ghes et al., 1986), the adopted element has
shown a good accuracy for velocity field calculatiavith expected spurious oscillation in the
pressure field caused by the velocity and presBalds coupling, which in this particular
application do not affect the results decisivelpiiBall and Petersson, 2003).

By applying the FEM to Eq. (6), and writing it thet discrete matrix form, the following

equation system is obtained:
K -G |[u f
= (8)
-G 0 ||p 0

whereu is the nodal velocityp is the nodal pressure, ahds the nodal body loak is the
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velocity stiffness matrixG denotes the divergent operator matrix for the iooity equation,
and G' the gradient operator matrix. Heit¢, and G are given by (Borrvall and Petersson,
2003):

K=[(B8T18)dv+] (a(pNN)dv o
G=[ ((ON,)'N,)av
with
2 00
,=|0 1 0 (10)
001

whereB andN are the well known strain—displacement matrix atahdard shape function
matrix for velocity field (Zienkiewicz e Taylor, P@), respectivelya(o) is the inverse
permeability function with parametgr, which determines the material at each point ef th
porous medium (Borrvall and Petersson, 2003).

Now, considering the heat transfer problem, thegledomain is also divided by using
rectangular elements, however using four nodesefoperature field (one degree of freedom
per node). Thus, by applying the FEM with Streaedfpwind Petrov-Galerkin formulation
to Eq. (7), which avoids spurious instabilitiesh®e convection-diffusion discretized problem
(Brooks e Hughes, 1982), the following matrix foequation system is obtained:

(n, +k)T =f; (11)
with
Ny = [ (Weo)" 2,C W 1) (Ow YV

k = j (Ow ) k(Ow g)dV (12)
f; = [we) Qdv

wherews andwpg are weighting functions (Zienkiewicz e Taylor, 200

By solving the system presented in Eg. (8), comsigea correct set of boundary
conditions, the velocity and pressure fields caddtermined. After that, the temperature field
is obtained through Eq. (11).

4 TOPOLOGY OPTIMIZATION PROBLEM
4.1 Topology optimization concept

In the topology optimization, the design domairliscretized by using a FEM mesh, and
in this work, each element of a fixed design donwan assume either fluid or solid material,
according to the material model.

The material model combines the characteristicshath materials (solid and fluid),
defining the material for each element of the @¢iszed domain. It is controlled by the design
variablep, in such way that fgs=0 one retains a solid material, and gef. one retains a fluid
material, characterizing a discrete 0-1 problertermediate values of do not have physical
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application and is not desirable at the final deskgowever, it is very common to work with a
continuous problem, allowing to assume intermediate values for preventing luabwn
solution problems in the discrete model (Bends@eSigmund, 2003).

Here, the material model is described by Eq. (6)vhich the inverse permeability)(is a
continuous function of the design variapléBorrvall and Petersson, 2003; Gersborg-Hansen
et al., 2005). This model essentially describesokes flow behavior for fluid elements. For
solid elements, the combined porous medium modedgminates, with permeability
controlled by the design variabte such that for a full solid elememni-61) the velocity is
close to zero (&0).

4.2 Formulation of the topology optimization problem

The total potential power evaluated at the solutibtained by the FEM analysis is adopted
as objective function for the fluid flow problemo@sidering a common case, where there are
no body forces over the fluid domain, the total embial power represents the power
dissipation on the fluid in the design domain, givsy:

d=u'Ku (13)

whereu represents the nodal velocity field vector & the velocity stiffness matrix.

Equation (13) has the same discrete form of thé-kmeivn mean compliance used very
often in structural optimization (Bendsge and Sigchu2003), and may represent the mean
pressure drop over the channel. The goal is tomiz@ power dissipation, and consequently
to minimize the pressure drop.

To maximize heat dissipation, another objectivecfiom must be stated. The chosen cost
function utilizes the temperature distribution,abed from the Eq. (7), to evaluate the system
heat transfer performance. It has also the sanceetiisform as the mean compliance problem,
as follows:

r=f'T (14)

whereT is nodal temperature field vector airdepresents the heat generation.

These two goals (to minimize the pressure drop @nanaximize heat transfer) are
evaluated through a multi-objective function whaltows the design process to give priority
to one of them, or treat both equally, as follows:

W =uln(®)+win(r) (15)

whereu andw are weighting factors.
Thus, the topology optimization problem is stated the channel optimization, in a
discrete form, as:

minimize: Y= uIn
p

ol Sl

(n +k)T =f
ZpISV, 0<p <1
i=1

A volume fraction constraint, denoted by the ratidluid material volume over the total
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domain volume, is adopted in this topology optirticza problem.

4.3 Topology optimization precedure

In this work, the Topology Optimization Method (TQMombines the Sequential Linear
Programming (SLP) (Haftka, 1996) with FEM to sole topology optimization problem.
The procedure of the TOM begins with the initiahtion and boundary conditions definition.
The design domain is discretized convenientlyh®oREM analysis can be performed and the
optimization process follows. The topology optintiaa algorithm calculates the cost
function value at each iteration and performs ais®ity analysis of this cost function based
on gradient calculations over the design variabldse optimization algorithm uses this
sensitivity analysis as guidance for recalculatm@terial distribution along the design
domain, and updates the information, until an ojz@n topology is obtained. The typical
TOM procedure adopted in this work is shown in Fegl.

( Inputdata}

| Y

Filtering techniqug FEM
\
Y
Optimization algorithm Obijective function
(SLP) and constraints
\

Sensitivity analysis

Convergence?

Yes

Final result

Figure 1: Flow chart of topology optimization algbm.

The sensitivity analysis is performed by calculgtthe gradients of functior® andr in
the multi-objective function of Eqg. (15) in relatido the design variableg)( using adjoint
method (Bendsge and Sigmund, 2003).

The projection scheme proposed by Guest et al4)28@mployed in this work as filtering
technique, to avoid mesh-dependency and checkethqpablems, often found in topology
optimization (Bendsge and Sigmund, 2003).

5 RESULTS
This section shows the preliminary results obtaitiedill be illustrated initially, minimum
pressure drop cases, and then some results combitireldeat transfer process.

5.1 Minimum pressure drop channel design

The first example studied is a minimum pressure d@se. In this example, internal fixed
solid regions are considered in the design donasrshown in Figure 2. This model has one
inlet and one outlet region, both set to a uniteglocity. All other domain boundaries are
prescribed as walls, with non-slip and impermegbitionditions. At the outlet region, the
pressure is set to 0, acting like a sink.
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The results presented in Figure 3 are obtained filwmain composed by 80x80 elements.
White regions represent fluid material and bladyiolrs represent solid regions. Figure 3d
shows the fluid flow velocity distribution in theodhain, considering volume fraction
constraintv=0.4. This test shows how the optimization probismstated and illustrates also
the volume fraction influence over the solution.

1
0.13 inlet
—3 ,:\
0.2 3
u=1
v=0 1
outlet]
p=0)

Figure 2: Domain with internal solid regions (olcis).

(av=03 (by = 0.4

40 60

(c)v=0.6 | (d) velocity field\{ = 0.4)

Figure 3: Obtained results considering differedtiate fraction constraintd/j.

5.2 Heat sink design

In this example, the topology optimization algaomitiof this work is applied to a heat sink
design. Essentially, optimization process is cdrogt to achieve a channel with both low
pressure drop and high heat dissipation attribinesgasing a heat sink device.

This heat sink design domain has one inlet andomitet regions, with direction defined as
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shown in Figure 4. The boundary conditions, as wsllthe symmetric model used to save
computational time, are also shown in Figure 4tk inlet region, parabolic flow velocity
profile (vmax=1) and fixed temperature of 2Q are prescribed. The pressure at outlet regions
is set to zero, acting similar to a sink. A unifoh@at source is distributed along the whole
domain. All external walls of the domain are présed as non-slip adiabatic boundaries. For
this example, thermodynamic constants of the fluidter) and the solid material (Aluminum)

are considered.

T = 20°C (293K) T= 20°c
T w=o Wff
Vimax

Vmax

?2 D

)
symmetry

heat heat
distribution distributionl
..._... '0.:.. .'._.'.
p=0 p=0 p=0 .
1 '

Figure 4: Heat sink design domain

The results presented in Figure 5 are obtainedhersymmetric domain discretized by
40x20 elements. A volume fraction constraint edad).4 is adopted for all examples. These
results show how the optimization problem is staed illustrate also the weighting factors

(u andw) influence over the solution.
AN A
If' '\1 TS

(a)u=1 ew=100 (bu=1 ew=50 (cu=1 ew=10
(d)u=1 ew=1 (eu=10 ew=1 (Hu=100 ew=1

Figure 5: (a)p=0.346 and'=2.545x10; (b) ®=0.228 and'=2.552x10; (c) ®=0.014;I'=2.607x10;
(d) ®=8.642x10° andI'=2,624x10; (e) ®=7.375x10° andl'=2.628x10; (f) ®=6.853x10° and['=2.752x10.
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As expected, aw increases the thermal dissipatidi) (lecreases. On the other handyuas
increases the pressure drap) (minimization is evident. Figure 6 shows the terapge
distribution and the heat flux for the obtainedraiel configuration shown in Figure 5b.

296.5
296
295.5
295
294.5
294
O b 293.5
A 4 293
(@)

(b)

Figure 6: (a) Temperature and (b) flow velocitydiéor configuration shown in the Figure 5b.

6 DISCUSSION AND CONCLUSION

The application of the topology optimization in ilumechanics and heat transfer is
practical and it allows the systematic design oidflflow channels. This approach could be
used for more efficient microchannel heat sink giesiwhich has a lot of possible
applications.

Volume fraction verification has been performed @ns possible to visualize its influence
over the results. According some tests, it is aledfied that the implemented topology
optimization algorithm is mesh-independent. An egbnof application of the combined fluid
flow and heat transfer characteristics for chawmiesign is shown. This example illustrates the
viability of applying the topology optimization press to achieve a channel design combining
these two distinct characteristics (fluid flow amehat transfer) at the same time.

The application of combined Stokes-Darcy flow eguatas been shown very efficient
within the topology optimization algorithm. Altholugt has certain limitations, such as it is a
linear approach of the full Navier-Stokes equatiand suitable only for low Reynolds fluid
flow, this model is applicable for many differenbplems, from bend-pipes and diffusers to
more complex cases.

Weighting factors f andw) which allows to control tuning for fluid flow dmeat transfer
behavior has been performed and it is noticednfisience over the results. As there is a
tradeoff between fluid flow layout that maximizeetieat transfer, the algorithm tries to
increasing the heat exchanging area by introdusamge small channels around the principal
(major) channel, as can be seen in Figure 5.

As conclusion, authors consider the applicatiotheftopology optimization in fluid flow
channel design a very promising field. The analysmorted here can be extended for many
other study cases, which utilize cooling devicesigte based on fluid flow channel. Thus,
experimental characterization and manufacturingtgbypes of micro scale heat sink
configurations will be done as next step of thiskvo
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