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Abstract.
The Spark Plasma Sintering (SPS) is a sintering process which uses a graphite die and punchers in

its tool system. This technique has been employed to sinter a large number of materials, especially
Functionally Graded Material (FGM), in which the material gradation, in some cases, requires a tempe-
rature gradient in the sample region during the manufacturing process to ensure uniform sintering. An
optimized die design that generates a temperature gradient can be developed by changing the die wall
thickness. However, this design presents some difficulties because it deals with bidimensional prob-
lems subject to convection and radiation heat transfer boundary conditions, and with conductive and/or
non-conductive FGM sample. Thus, in this work, the Topology Optimization Method (TOM) is applied
to design a graphite die to achieve a predefined temperature gradient. The TOM is able to provide an
optimum topology for the die by seeking a material distribution inside a given domain that extremizes
a cost function and satisfies the constraints of the optimization problem. In order to simulate the SPS
process, a electrical-thermal coupled steady state problem is modeled using finite element formulation
based on the governing equations. In the developed model, the convective heat transfer is neglected once
the process takes place in vacuum, the radiation process is linearized to reduce the modeling complexity,
and the properties of the graphite and sample are assumed not to depend on temperature. In the topology
optimization problem the temperature gradient is established through a cost function that minimizes the
difference between the prescribed gradient and the calculated temperature subjected to a material volume
constraint. Results of optimized graphite dies are presented.
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1 INTRODUCTION

The Spark Plasma Sintering (SPS) is a powder consolidating and sintering process which
uses pulse DC current and pressure loads that are applied simultaneously to the die components
(electrodes, spacers, punchers and graphite die). The powders are placed in the graphite die
and, while the pressure load transmitted by the punchers carries out the densification, a pulse
DC current flows through the die and sample (in case of conductive sample) providing a high
heating rate and promoting the sinterization. A schematic representation of the SPS process is
shown in Figure 1.
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Figure 1: SPS process schematic representation.

There has been some work regarding the current and temperature distribution of the SPS
process. Yucheng and Zhengyi (2002) used analytical solutions in the one-dimensional case
to calculate the temperature difference between die and sample. Zavaliangos et al. (2004)
perfomed electrical-thermal analysis using commercial package considering the contact resis-
tances. Anselmi-Tamburini et al. (2005) investigated the effects of sample conductivities on
the current and temperature distributions. Vanmeensen et al. (2005) also presented results con-
cerning the sample material properties. Wang et al. (2007) studied the influence of material
and control parameters on the electrical-thermal-mechanical coupled problem given informa-
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tion about thermal and stress distribution. The latest study reported in the literature carried out
by Tiwari et al. (2009) investigated a fully electrical-thermal coupled problem with finite ele-
ment analysis and varying the sample conductivity and different power input. For the most part,
the results presented show a reduced temperature gradient in the sample region in both radial
and axial direction.

The SPS method has been employed to sinter a large number of materials, especially Func-
tionally Graded Material (FGM), in which the material properties change gradually with po-
sition. This material gradation, in some cases, requires a temperature gradient in the sample
region during the manufacturing process to ensure uniform sintering. Therefore, the die can
be optimized in order to meet the mentioned requirement. However, this design presents some
difficulties because it deals with a bidimensional problem subject to convection and radiation
heat transfer boundary conditions.

Optimization problems that consider thermal boundary conditions have been discussed. To
deal with this type of problem, effective methodologies have been proposed. Bruns (2007)
carried out experiments, focusing on the numerical instabilities that can severely affect the
optimization and describing a method to avoid such instabilities. Gao et al. (2008) studied
a steady state heat conduction problem under both design-independent and design-dependent
loads by modified bidirectional evolutionary structural optimization. Iga et al. (2009) performed
several numerical examples that focus on design-dependent effects related to heat convection
and internal heat generation for optimal designs, in which a method to extract the structural
boundaries for heat convection loads is proposed.

Based on these studies, the Topology Optimization Method (TOM) is proposed to design
graphite die with a predefined temperature gradient. The TOM is able to provide an optimum
topology for the die by seeking a material distribution inside a given domain that extremizes
a cost function and satisfies the constraints of the optimization problem. In order to simulate
the SPS process, an electrical-thermal coupled steady-state problem is solved by using a model
based on the Finite Element Method (FEM). In this model, the convective heat transfer that may
occur in the vacuum chamber is neglected and the radiation process is linearized to reduce the
model complexity. We also use design-dependent loads due to the changes of the die geome-
try during the optimization process that affects the thermal loads. This thermal load consists
of the heat generation due to joule heating and radiation between the free surfaces of all die
components in the vacuum chamber.

This paper is organized as follows. In Section 2, the FEM-based computational model is
presented. In Section 3, the solution of the optimization problem is discussed. In Section 4,
results are presented and concluding remarks are provided in Section 5.

2 FINITE ELEMENT FORMULATION

A linear and two-dimensional steady-state electrical-thermal coupled problem is considered
in order to reduce complexity and computational cost. The electrical potential and tempera-
ture distributions in the die (see Figure 2) are obtained based on the set of governing partial
differential equations (PDE’s):

∇ · J⃗ = 0 (1)

∇ · (−k∇T ) = q̇ (2)

where J⃗ = σE⃗ is the current density, E⃗ is the electrical field and σ is the eletrical conductivity.
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The term −k∇T is the heat flux density with k being the thermal conductivity and q̇ = J⃗ · E⃗ =
|J⃗ ||E⃗| = JE the internal heat generation per unit volume.

The finite element formulation is based on the integral form of equations 1 and 2. The
equilibrium equations can be expressed as∫

Ω

∇ṼCe∇V dΩ = 0 (3)∫
Ω

∇T̃Ct∇TdΩ−
∫
Γ

T̃Ct
∂T

∂n
dΓ +

∫
Ω

q̇T̃dΩ = 0 (4)

where V is the electrical potential field and T is the temperature field, and Ṽ and T̃ are the
corresponding virtual fields. Ω is the domain with boundary Γ, and Ce and Ct are the electrical
and thermal conduction tensors, respectively.
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Figure 2: Electrical-thermal coupled problem model.

In order to simulate the SPS process, a two-dimensional model with unitary thickness is de-
veloped as shown in Figure 2. In this model, the electrical problem has its boundary conditions
as an electrical potential V1 and V2 prescribed at the top of the upper punch and at the bottom
of the lower punch, respectively. For the thermal problem, the heat transfer boundary condi-
tions are given by the radiation between the graphite die free surfaces and the vacuum chamber
interior. Here, the radiation term qrad is linearized and given as

qrad = εκ(Tw
4 − Tsurr

4) ≈ q0 +
∂q

∂T

∣∣∣∣
T0

(T − T0) (5)
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where the emissivity ε is assumed to be equal to 1, κ is the Stefan-Boltzmann constant, Tw

is the temperature of the die surface, Tsurr is the temperature in the vacuum chamber and q0
is the energy radiation evaluated at the linearization temperature T0. Therefore, the linearized
radiation (equation 5) can be interpreted as a prescribed heat flux and an apparent convective
heat flux in the FE formulation.

After discretization (four nodes isoparametric elements are used), the equilibrium equations
can be rewritten in the matrix form as

KeUe = 0 (6)

KtUt = Ft (7)

Subscripts e and t are related to the electrical and thermal problems, respectively. K is the
conductivity matrix, U is the nodal solution vector, and Ft is the load vector. Using the thermal
boundary conditions, the conductivity matrix and the load vector are

Kt = Kk +Khb (8)

Ft = Fq̇ + Fq0 + Fhb (9)

where Kk, Khb, Fq̇, Fq0 and Fhb are the thermal conduction matrix, heat transfer matrix, internal
heat generation vector, heat flux vector and heat transfer vector, respectively.

3 FORMULATION OF TOPOLOGY OPTIMIZATION

The Topology Optimization (TO) consists of a material distribution problem based on a fixed
domain D that includes the original design. The characteristic function of TO can be stated as
follows:

χΩ =

{
1 if x ∈ Ωd

0 if x ∈ D \ Ωd
(10)

where x denotes the position in the fixed design domain D and Ωd is the thermal conductor
domain. Since this characteristic function is highly discontinuous, the Solid Isotropic Mate-
rial Distribution (SIMP) approach is used to carry out the relaxation. This approach can cause
numerical instabilities such as checkerboard. To overcome this issue, a Continuous Approxi-
mation Material Distribution (CAMD) is assumed and can be expressed as

ρe =
m∑
i=1

Niρi (11)

where ρe is the distribution function in the element e, Ni is the interpolation functions, ρi is the
nodal design variable and m is the total number of nodes. The optimization problem is given
by:
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Minimize w1C1 + (1− w1)C2ρ

subject to

V =

∫
Ω

ρdΩ ≤ Vmax

KtUt = Ft

0 ≤ ρ ≤ 1

and

C1 =
n∑

i=1

(∆Θj
i − α)2 C2 = Ft

TT (12)

where ∆Θj
i = Θj

i+1 − Θj
i is the temperature difference in a specific region j (j = 1, . . . , k)

inside the sample and α represents the intended gradient. The term C2 is the mean potential
energy and it is used to enforce a discrete (0-1) material distribution in the fixed design domain
(please refer to Bendsøe and Sigmund (2003) for an analogous discussion).

Figure 3 shows the discretized sample region and yields the manner in which the temperature
gradient is imposed. The w1 is a penalized weighted factor applied in the objective function and
used to guide the optimization and to become the optimization problem well posed.

Θ1
1

Θ2
1

Θi
1

Θi
2

Θ2
2

Θ1

2
Θ1

j

Θ2

j

Θi

j

Figure 3: Sample discretization analysis to evaluate the cost function

The optimization problem is solved by using Sequential Linear Programming (SLP) and the
gradient of the objective function is obtained through the Finite Difference Method (FDM).

3.1 Formulation of the design-dependent thermal loads

In order to deal appropriately with the thermal boundary conditions during the optimization
process, a Hat-function H(ρi, p) based on the method proposed by Iga et al. (2009) is used and
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illustrated in Figure 4. The Hat-function shown in Figure 4b uses the nodal design variable and
a penalization factor p to set the thermal boundary conditions only in the gray scale areas in
the fixed design domain, as shown in Figure 4a. The identification of the gray scale areas is
carried out by the ρlower and ρupper limit values, which in the Figure 4b are equal to 0.2 and 0.8,
respectively.

Region without 
radiation effects

Region  where the 
radiation takes place

(a) (b)

Figure 4: Modeling to extract structural boundaries for radiation boundaries conditions.

The radiation boundary conditions can then be expressed as

qrad(x) ≈ qrrad(x) =
n∑

i=1

NiH(ρi, p)qi (13)

where qrrad and qi stand for the discretized radiation heat transfer and the nodal radiation heat
transfer, respectively.

4 PRELIMINARY RESULTS AND DISCUSSION

A finite element (FE) model is developed herein to solve the electrical-thermal coupled pro-
blem and implemented using MATLAB code. This model is conducted by employing finite
element formulation with four nodes isoparametric elements considering the graphite die, sam-
ple and punchers as shown in Figure 2.

In order to set the boundary conditions for the FE model, a numerical simulation is performed
using COMSOL Multiphysics considering a graphite sample (with temperature-dependent ma-
terial properties) and nonlinear thermal radiation heat transfer, to evaluate the electrical potential
difference between the upper and lower punchers, and the temperature of the die surface where
the radiation takes place. Since the radiation is a highly nonlinear phenomenon, this numerical
simulation is necessary to maintain the linearized radiation near the non-linearized one using
a linearization temperature as close as possible to the real radiation temperature. The results
have shown that the electrical potential difference is about 1 V and the radiation temperature is
approximately 1750 K, which is considered as T0 when the radiation is linearized. In addition,
the electrical and thermal interfaces among the punchers, sample and graphite die are modeled
in the FE model as continuous, i.e., contact resistances are neglected in this work.
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The FE model is used in the optimization algorithm, in which a preliminary sensitivity ana-
lysis is performed through FDM and the design variable is updated using SLP. In this model,
an isotropic material considered has a 105 S/m electrical conductivity and a 50 W/mK thermal
conductivity. The temperature Tsurr surrounding the tool system is set to 300 K and the internal
heat generation load is considered a design-independent load. The sample is considered to be
made of graphite, as well as the die and punchers. Figure 5 shows the fixed design domain D as-
sumed in the optimization problem and illustrated the manner of how the domain discretization
is performed using 10x16 rectangular elements. The initial configuration of the fixed design
domain has a uniform design variable distribution equal to 0.75 and the Vmax is equal to 60%.

10
15

15

50

Fixed Design 
Domain D

10

Figure 5: Fixed design domain discretization with the dimension of each component. Measures
in millimeters.

Figure 6: Optimal configuration to the graphite die.

Figure 6 shows the design variables of each finite element. Black regions represent the
graphite die, white regions represents air, and gray regions the interface between them. Figure
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7 shows the temperature distribution in the optimized graphite die. Although a projection tech-
nique is not used, no checkerboards emerged and a clear structural boundary, where the thermal
radiation boundary conditions occur, is obtained. Figure 8 presents the convergence curves
(Figure 8a) and the domain volume history (Figure 8b) during the optimization process.

Figure 7: Temperature distribution provided by the optimized graphite die.

[J
]

(a) (b)

Figure 8: (a) Convergence curve, (b) Domain volume history .

5 CONCLUSIONS

In this study, the topology optimization method is applied in the SPS process in order to
obtain an optimized graphite die. COMSOL Multiphysics is used to perform a numerical si-
mulation, from which the necessary information is obtained. The information is then used to
compute proper boundary conditions, which are employed in the FE model.

The result shows that

1. There are no checkerboard instabilities in the optimized configuration.
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2. A model based in the Hat-function to deal with design-dependent load is used to extract
the structural boundary conditions and set the heat transfer boundary conditions.

3. A well defined 0 - 1 discretization and a uniform temperature distribuition are obtained,
which confirms the FE formulation and the optimization algorithm.

4. The optimized configuration is obtained with relatively few iterations.

In a future work, we will consider other values of the weightening coefficient to optimize the
temperature gradient in the sample. Related to the TOM, the projection technique will be used
to avoid numerical instabilities when considering different material samples and temperature-
dependent material properties. Finally, considering the temperature of the die surface equal to
1550K (see Figure 7), a temperature of linearization equal to 1750K, and the other values (such
as the Stefan-Boltzmann coefficient) used in the paper, the linearization error is about 10% of
the value of qrad (Equation 5). This value is to be reduced by changing the linearization point.
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