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Abstract. A weighted potential methodology is developed by utilizing pure mode I and 

mode II energy release rate experiments to determine the traction-separation relations for 

thin adhesive layers. The experimentally measured energy release rates act as boundary 

conditions for developing a weighted potential function. Thus, the tractions for any mixed 

mode loading can be established.  Changes of mode mix during an experiment can also be 

captured by the law since every mixed mode variation is given by the potential function. 

Furthermore, by use of an inverse J-integral approach and damage type variables, the 

traction-separation relations for any mode mix can be approximated by use of pure mode 

experiments. Numerical simulations show the applicability of the methodology. The results 

indicate that the methodology is promising when simulating the constitutive behavior of 

adhesive layers. 
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1 INTRODUCTION 

For quite some time cohesive zone models have been developed in order to 

describe fracture of interfaces and delamination of layered materials. These models 

are intended to be used when linear elastic fracture mechanics (LEFM) is not 

applicable and especially for problems with large process zones. Cohesive zone 

models are also very attractive from a computational point of view and are 

implemented in most commercial finite element codes of today.   

 In order to determine the strength of an adhesively bonded structure it is 

essential to establish the constitutive behavior of the adhesive, i.e. the cohesive law of 

the adhesive layer during mixed-mode loading. For adhesive layers, the cohesive law 

describes the through-thickness behavior of the layer, and both elastic and inelastic 

processes such as plasticity and damage are parts of it.  For thin adhesive layers, the 

normal mode with separation w (mode-I) and the shear or tangential mode with 

separation v (mode-II) shown in Fig. 1, govern the behavior, cf. Klarbring (1991).  

 

Figure 1. Normal- and tangential deformation modes of an adhesive layer. 

Mixed-mode cohesive laws are commonly described by the normal and tangential 

tractions σ(w,v) and τ(w,v), see Fig. 2. The shaded areas under the curves in Fig. 2 

represent the accumulated energy release rates in each pure mode and the total area 

under each curve in each mode is the fracture energy denoted herein as ΓIc and ΓIIc 

respectively. It can be observed in Fig. 2 that there is considerable difference between 

the fracture energies of the two modes. The fracture energy in mode-II, in this case, is 

three times larger than in mode-I. This is a common experimental observation for 

structural adhesives. 
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Figure 2. Experimental results with the adhesive DOW Betamate XW-1044-3. 

 Different approaches exist in the literature to represent the experimental 

behavior of structural adhesives in particular. Common employed mixed mode 

cohesive laws are: (i) the sawtooth-model or bilinear model (e.g. Alfano and Crisfield 

(2001); Högberg (2006)), (ii) the trapezoidal EPZ-model by Tvergaard and Hutchinson 

(1992), (e.g. Salomonsson and Andersson (2008); De Moura et al. (2008)), (iii) the 

exponential cohesive law by Xu and Needleman (1993), (e.g. van den Bosch et al. 

(2006); and (iv) the polynomial cohesive law e.g. Freed and Bank-Sills (2008) and Park 

et al. (2009)). 

The EPZ-model developed by Tvergaard and Hutchinson (1992), is an extension of 

the sawtooth-model law by introducing an additional shape parameter. It is based on 

a potential that governs the tractions. Several experimental studies have shown that 

the fracture energy is dependent on the mode-mixity, e.g. Benzeggagh and Kenane 

(1996); Sørensen et al. (2006); Högberg et al. (2007). The exponential law introduced 

by Xu and Needleman (1993), is a smooth law that avoids discontinuities and thus 

provides an attractive choice from the computational point of view. The cohesive law 

introduced by van den Bosch et al. (2006), is an improved description of the 

exponential Xu and Needleman cohesive law. This law does not have a potential 

function and thus deviates from the Xu and Needleman law. However, it appears to 

provide a realistic mixed-mode loading behavior; which is crucial when modeling 

fracture of adhesive layers. A generalized potential-based cohesive law intended for 

mixed-mode fracture has been proposed by Park et al. (2009). This law is expressed 

by the use a polynomial and can therefore capture rather complex curve shapes of 

the normal and tangential tractions.  

 Cohesive models can be coupled or uncoupled. In an uncoupled model the 

energy release rate in one mode is independent of the separation in the other mode. 

Most models are however coupled e.g. Tvergaard and Hutchinson (1992). To this end, 

from a physical point of view a coupled model is preferred.  
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II 
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I 
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 The literature on pure mode experiments on adhesive joints is extensive. 

Frequently used experimental set-ups to study mode-I and mode-II deformations are 

the double cantilever beam (DCB) and the end-notched flexure (ENF). The studies by 

Högberg (2006), and Sørensen et al. (2006), aim at presenting a method to extract 

mixed-mode cohesive laws that are suitable for numerical simulations. Högberg et al. 

(2007), have performed experiments on a so-called mixed-mode double cantilever 

beam, referred to as the MCB-specimen. The experimental procedure is based on the 

path-independence of the J-integral. The experiments reveal that the mode-mixity 

changes during loading towards mode-I even in the case of initial pure mode-II. 

Similar results are observed by Xie et al. (2005). It seems difficult to maintain a 

specific mode-mix experimentally. Although the cohesive law adopted in Högberg et 

al. (2007), considers different fracture energies in mixed-mode loading, the adopted 

sawtooth-model was not able to be fitted to the experimental results. This suggests 

that the shape of the cohesive law is of importance in mixed-mode loading. This is in 

accordance with observation made by e.g. Volokh (2004), and Alfano (2006). A 

different experimental approach has been proposed by Lundsgaard-Larsen et al. 

(2008). They utilize a DCB-specimen loaded with uneven bending moments to 

determine the cohesive law. The experimental analysis is based on a similar J-integral 

approach as the one used by Högberg et al. (2007).  

 Though it is necessary to incorporate different cohesive behaviors i.e. fracture 

energy and strength, in mode-I and mode-II, it is also important to consider the 

shape of the traction-separation relations. For example, if a saw-tooth cohesive law is 

chosen to model the cohesive behavior, it is difficult to capture both mode-I and 

mode-II curves since the shape of them can deviate significantly. For example, the 

normal stress curve can be similar in shape to a saw-tooth, but the shape of the 

tangential stress curve might be similar in shape to a trapezoidal curve. Thus, a 

mixed-mode cohesive law that is able to capture dissimilar cohesive behaviors plus 

the ability to have different shapes of the traction-separation curves in modes I and II 

is needed.  

 In this study, the intention is to develop a methodology for the development 

of coupled mixed-mode cohesive laws to describe mixed-mode behavior of adhesive 

layers that can capture the aforementioned properties. Data from pure mode-I and 

mode-II experiments act as input and these data can be obtained experimentally.  

 The paper is organized as follows. In the first section, the theoretical 

framework is presented.  This section is followed by numerical examples to show the 

applicability of the mixed-mode cohesive law. Some conclusions and discussions are 

given in the final section. 

2 THEORY 

2.1 The weighted potential methodology 

As a starting point, we review some of the basics of the J-integral approach to 
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obtain the traction-separation relations in pure mode-I and pure mode-II, cf. 

Sørensen and Jacobsen (2003); Alfredsson (2004); Andersson and Stigh (2004). 

The external energy release rate, Jload, is measured experimentally for both pure 

mode-I and pure mode-II. To achieve an energy balance for a specific specimen, the 

sum of the internal energy release rate for the adhesive layer, Jinternal and Jload should 

equal zero, i.e. 

 0internalload  JJ  (1) 

Here  
w

wwJ
0

internal
~d~  or  

v

vvJ
0

internal
~d~  depending on the pure mode. From the 

equality, the normal and tangential stresses are obtained by differentiation of Jload 

with respect to each relative separation, w and v.  

In the present paper, the energy release rates in pure mode-I and pure mode-II are 

denoted, ΓI(w) and ΓII(v). These are obtained from the stresses according to 

 
     

      .~d~,0,0

,~d0,~0,

0
IIII

0
II

vvvΓvΓ

wwwΓwΓ

v

w












 (2) 

With ΓI(w) and ΓII(v) at hand, some essential definitions need to be established. 

Utilizing a polar coordinate system with an effective separation being the radius and 

a mode-mixity being the angle, the mode-mixity, υ, and the effective separation, λ, 

are defined as 
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 (3) 

where, wc and vc are the critical normal and tangential separations in pure modes. The 

normal and tangential separations, w ⁄ wc and v ⁄ vc, are defined as the projections of 

the effective separation on each respective pure mode axis, see Fig. 3. 
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Figure 3. Illustration of effective separation and mode-mixity. 

It then follows that w and v are given by 
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Additional definitions, w  and v , are introduced as an aid of obtaining the 

complete, i.e. not the projected, contribution of the pure mode energy release rates 

to the total energy release rate. This is obtained using only λ and not the mode 

mixity, υ, see Fig. 3. 

 
.

,

c

c

vv

ww








 (5) 

As a first step in the development of the cohesive law, two independent functions 

can be fitted to the experimentally measured energy release rate curves, see ΓI and ΓII 

in Fig. 4. 
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Figure 4. Fitted energy release rate curves in mode-I and mode-II. 

The fitted curves are differentiated with respect to each pure mode relative 

separation, w and v, to establish the shapes of the traction-separation curves. Based 

on these curves, two laws suitable of capturing the most essential features of the 

differentiated curves are chosen. Figure 5 shows two idealized schematic curves. 
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Figure 5. Schematic illustration of normal and tangential stress curves. 

Now, using the ΓI and ΓII curves in Fig. 4, a surface can be constructed in a space 

where the axes are total energy release rate, Γ, relative normal and relative tangential 

separations, w and v respectively, see Fig. 6. 
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Figure 6. Weighted potential surface. 

The surface, Γ(λ,υ), representing the weighted potential, is generated by a 

weighted sum of the experimentally determined energy release rates in pure mode-I, 

ΓI(λ), and pure mode-II, ΓII(λ) according to 

            22

II

2

I
2

1
1,  kvΓfwΓfΓ cc   (6) 

where f(υ) is the weight function (or shape function). The functions ΓI(λ) and ΓII(λ) 

are obtained from experiments. The weighted potential at any given point (υ ,λ) is 

assumed to correspond with an energy given by the right hand side of Eq. 6, where k 

is a stiffness given by 

        .1 21 kfkfk    (7) 

 Here, k1 and k2 correspond to the initial elastic stiffness in each respective mode. 

The normal and tangential stresses for any given mode-mix are given by partial 

differentiation of Γ with respect to each relative separation, w and v, respectively. 
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Damage typed variables, ω1 and ω2, are introduced by enforcing the following 
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By a simple rearrangement of Eq. 9, ω1 and ω2 can be determined explicitly by 
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2.2 Influence of f(φ) on the traction surfaces 

Next, attention is turned to the choice of the weight function, f(υ). The choice of 

this function is not arbitrary. A number of conditions need to be fulfilled. By 

symmetry considerations the tractions must fulfill 
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 (11) 

i.e. σ(w,v) is an even function in v and τ(w,v) is an odd function of v. As a 

consequence of Eq. (11), a dual condition may be written as ∂Γ(λ,0) ⁄ ∂υ = 0 or ∂f(υ) ⁄ 

∂υ = 0 according to eq. (10). Thus, the weight function f(υ) must be an even function.  

 The influence of f(υ) on the fracture energy is illustrated in Fig. 7 where the 

fracture energy is shown as a function of the mode-mixity for two different choices of 

f(υ). It is clear that f(υ) governs the fracture criteria. As mentioned previously the 

fracture energy varies with mode-mix. Thus, if Γc values are known from experimental 

mode-mix data, it is possible choose f(υ) to fit the data. It should be noted that even 

though Fig. 7 shows the fracture energy as a function of mode-mixity, it is possible to 

use mode-mix data that might change during an experiment. These data are 

extracted prior to fracture and are in addition to the aforementioned pure mode 

experimental data. 
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Figure 7. Γc/ΓIc plotted as functions of the mode-mix angle υ. The star-marked curve  indicates 

fictitious experimental data. The dashed and the circle-marked curves indicate two choices of f(υ) 

acting as approximations. 

The circle-marked curve in Fig. 7 is defined as 
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By trying to fit a function f(υ) to the fictitious experimental data, a linear function 

seems straightforward. However, f(υ) must be an even function. To achieve this, a 

quadratic function in υ is used close to υ = 0 together with |υ| according to 
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Here,  is set to 100 and υ1 will thus be defined to make ∂f ⁄ ∂υ continuous at υ1. 

3 NUMERICS 

3.1 Comparison to RVE 

To illustrate the applicability of the weighted potential methodology, it is 

implemented in to an explicit FORTRAN user element subroutine in Abaqus Explicit 

6.9 (VUEL). This interphase element is referenced as the VUEL hereafter, see Fig. 8.  

 [rad] 
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Figure 8. The VUEL interphase element connecting two shells. 

 Due to the lack of mixed-mode experimental data, a representative volume 

element is used as an experimental reference for mixed-mode experiments. The RVE 

consists of continuum elements coupled at every continuum element edge by 

cohesive elements to enable crack propagation, cf. Salomonsson and Andersson 

(2008). The continuum elements are allowed to deform plastically during loading. The 

parameters of the RVE have been calibrated to results obtained from pure mode 

experiments. The VUEL is loaded by controlled displacements to mimic the mixed-

mode conditions of the RVE presented in Salomonsson (2008).  Figure 9 illustrates a 

cracked RVE model. 

 

 

Figure 9. A cracked RVE model.  

In general, mixed-mode experiments have a tendency to change the mode-mixity 

throughout the deformation process. Therefore, the virtual mixed-mode experiments 

on the RVE in Salomonsson (2008), are performed with maintained mode-mix 

throughout the entire deformation process. The displacements are controlled as to 

give mode-mixities between 0˚ (pure mode-I) and 90˚ (pure mode-II) with 15˚ 

intervals. Though the constraints generate non-existing forces on the RVE, the same 

constraints are applied to the VUEL so that a comparison of the behavior can be 

made. Figure 10 shows the development of equivalent plastic strain for three mode-

mixities, 15˚, 45˚ and 75˚. Here, 90˚ is defined as pure mode-II. 
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Figure 10. Equivalent plastic strain for mixed-modes 15˚, 45˚ and 75˚ for the RVE. 

The only inputs to the VUEL are the pure mode results from the RVE. These results 

have been approximated as good as possible using trapezoidal laws for the mode-I 

and the mode-II results, see Fig. 11. The chosen values are given in Table 1. It can be 

observed that the RVE result for pure mode-II has not reached zero stress. This is due 

to numerical issues. Nevertheless, an assumed linear continuation of the curve has 

been used. 

 

 ΓIc  (J/m
2
) w1 (µm) w2 (µm) wc (µm) ̂ (MPa) 

Mode-I 703 6 20 60 19 

 

 ΓIIc  (J/m
2
) v1 (µm) v2 (µm) wc (µm) ̂ (MPa) 

Mode-II 1912 17 50 120 25 

Table 1: Cohesive data for the VUEL. 

Mode-II 

Mode-I 
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Figure 11. The approximation of pure mode behaviors for normal stress as function of relative normal 

separation and tangential stress as function of relative tangential separation. The RVE curves are 

indicated by the dashed curves and the VUEL curves are indicated by the solid curves. 

The goal is to obtain the same behavior for the VUEL as for the RVE under mixed 

mode conditions. With the inputs shown in Fig. 11, the mixed-mode behavior is 

governed by the weighted potential law. Figure 12 shows the normal stresses as 

functions of their relative normal separations for the RVE and the VUEL for three 

different mode mixities, 15˚, 45˚ and 75˚. As can be seen, the behavior of the VUEL is 

fitted quite nicely to the RVE. For the 45˚ mode-mix, the RVE yields positive normal 

stress for all w, whilst the VUEL shows negative normal stress, or compression, for w 

exceeding 45 µm. There is a sudden drop in stress for the RVE at w = 45 µm where 

incompressibility due to plasticity have developed in the RVE, see Fig.’s 10 and 12. 

During this scenario, the continuum elements between the two cracks in Fig. 10 for 

the 45˚ mode-mix act as beams wanting to rotate. Compressive stresses arise as a 

consequence of the applied boundary conditions. The contact algorithm used in 

Salomonsson (2008), does not include non-adjacent continuum elements, but merely 

continuum elements initially in contact. Thus, one would expect less compressive 

stresses in a later stage of the deformation process since the continuum elements can 

overlap. 
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Figure 12. Comparison between the RVE and the VUEL normal stress results for mode-mixities between 

15˚, 45˚ and 75˚. The RVE results are indicated by the solid (15˚), dotted (45˚) and dashed (75˚) curves. 

The VUEL results are indicated by the circle- (15˚), plus- (45˚) and diamond-marked (75˚) curves. 

The tangential stresses as functions of their relative tangential separations for the 

same mode-mixities, i.e. 15˚, 45˚ and 75˚, are shown in Fig. 13 for the RVE and the 

VUEL. Here, the differences between the RVE and the VUEL are greater. This is not 

surprising considering the mismatch in Γc by the choice of f(υ) according to Eq. (13). 

The results in Salomonsson (2008), reveal that the extrapolation used overestimates 

the intermediate fracture energies, i.e. 15˚ ≤ υ ≤ 75˚. It can be concluded that the 

overestimated energy merely affect the tangential stresses. 
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Figure 13. Comparison between the RVE and the VUEL tangential stress results for mode-mixities 

between 15˚, 45˚ and 75˚. The RVE results are indicated by the solid (15˚), dotted (45˚) and dashed (75˚) 

curves. The VUEL results are indicated by the circle- (15˚), plus- (45˚) and diamond-marked (75˚) curves. 
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3.2 Path dependence 

In order for a cohesive law to provide a realistic physical behavior, one of its 

capabilities is believed to be to demonstrate path dependence. Several authors, e.g. 

van den Bosch et al. (2006); Park et al. (2009), argue that a cohesive law should be 

able to demonstrate path dependence since the dissipative mechanisms are mode 

dependent. As mentioned earlier, most adhesives are observed experimentally to 

show a fracture energy ΓIIc several times larger than ΓIc. For example, in the work by 

Salomonsson and Andersson (2008), it is argued that for an adhesive layer subjected 

to pure shear the large value on ΓIIc is mainly due to plasticity. On the other hand, for 

pure normal loading plasticity is negligible and nearly all dissipative energy is due to 

damage.  

  The VUEL is utilized herein to study path dependence. The parameters are the 

same as presented previously in Table 1. Before the analyses are presented some 

features of the cohesive law have to be clarified. The tractions for the VUEL are given 

by Eq.’s (8) and (9). Thus, the tractions at a specific separation (w,v) are independent 

of the path taken to that point. To illustrate this, the tractions in the normal and 

tangential direction for three different paths are compared. Path 1 is divided into two 

separate parts as shown in Fig. 14.  In the first part, the tangential separation 

increases gradually until v = 80 µm whilst forcing w = 0. In the second part the 

normal separation gradually increase until point B is reached, keeping v fixed at 80 

µm.  This corresponds to a mode mixity of   = 25˚. The loading is the reversed for 

path 3. Finally, for path 2 the separation in both w and v increases monotonically until 

point B is reached.   

 The normal tractions are shown in Fig. 15. For path 1, compressive stresses are 

observed during pure tangential loading and consequently do not contribute to the 

energy release rate through the first part. In the second part the stress increases, but 

the normal traction remain negative and does not contribute to the total energy 

release rate. Comparing the normal tractions between path 2 and 3 in Fig. 15, it is 

observed that path 2 yields significantly lower stress and as a consequence lower 

energy release rate. 

Mecánica Computacional Vol XXIX, págs. 8355-8374 (2010) 8369

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

0
5 10

15 20 25 30 35

0

20

40

60

80
-40

-20

0

20

w [m]
v [m]


  [

M
P

a]

 

Figure 14. The normal stresses as functions of w and v for paths 1 (dotted), 2 (plus-marked) and 3 

(solid). Final separation is w = 30 µm and v = 80 µm. 
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Figure 15. The normal stresses as functions of w and v for paths 1 (dotted), 2 (plus-marked) and 3 

(solid). Final separation is w = 30 µm and v = 80 µm. 

In Fig.’s 16 and 17 the tangential tractions are shown. For path 2 the tangential 

stress is considerably lower. This is due to choice of the weight function f(υ)  which, in 

this case, has a large gradient near υ = 90˚, see Fig 7. 
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Figure 16. The tangential stresses as functions of w and v for paths 1 (dotted), 2 (plus-marked) and 3 

(solid). Final separation is w = 30 µm and v = 80 µm. 
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Figure 17. The tangential stresses as functions of v for paths 1 (dotted), 2 (plus-marked) and 3 (solid). 

Final separation is w = 30 µm and v = 80 µm. 

The total energy release rates, i.e. the sum of the energy release rates for mode-I 

and mode-II, are shown in Fig. 18. The largest energy release rate is observed for Path 

1. This is not surprising because of the larger value of ΓIIc as compared to ΓIc. 

However, the energy release rate for path 2 and 3 are almost identical. This is 

attributed by the choice of f(υ). The weighted potential surface in Fig. 6 does not 

change much for small values of υ. This indicates that the energy release rate will not 

change substantially in this region. Several analyses have been performed with 

B 

Mecánica Computacional Vol XXIX, págs. 8355-8374 (2010) 8371

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

different choices of f(υ). The results of the analyses support this conclusion. 
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Figure 18. The total energy release rates for paths 1, 2 and 3. Tests 4 and 5 indicate the fracture 

energies for mode-I and mode-II, respectively. 

4 CONCLUSIONS 

A method to establish mixed mode behavior for adhesives from an experimental 

point of view has been presented. The methodology is based on pure mode 

experiments which can be complemented by experiments performed in mixed-mode. 

Through a basic fitting procedure using shape-functions, new mixed-mode data can 

be added to the mixed-mode cohesive law and thus increase the accuracy of the 

model. It can be argued that this methodology is expensive from a computational 

point of view. However, the experimental data is merely input to the cohesive model 

and does not have to be re-calculated during the computation. The comparison 

between the VUEL and the RVE shows the applicability of the methodology, where 

the rather complex epoxy adhesive material configuration is modeled by a single 

VUEL. The methodology is intended to be implemented in to cohesive user elements.  

REFERENCES 

Alfano, G., On the influence of the shape of the interface law on the application of 

cohesive-zone models. Composites Science and Technology, 66:723-730, 2006.  

Alfano, G., Crisfield, M. A, Finite element models interface models for the 

delamination analysis of laminated composites: mechanical and computational 

issues. International Journal for Numerical Methods in Engineering, 50:1701-1736, 

2001. 

K. SALOMONSSON, T. ANDERSSON8372

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

Alfredsson K.S., On the instantaneous energy release rate of the end-notch flexure 

adhesive joint specimen, International Journal of Solids and Structures, 41:4787–

4807, 2004. 

Andersson, T., Stigh, U., The stress-elongation for an adhesive layer loaded in peel 

using equilibrium of energetic forces. International Journal of Solids and Structures, 

41:413-434, 2004. 

Benzeggagh, M. L, Kenane, M., Measurement of mixed-mode delamination fracture 

toughness of unidirectional glass/epoxy composites with mixed-mode bending 

apparatus. Composites Science and Technology, 56:439-449, 1996. 

De Moura, M.S.F.S., Goncalves, J.P.M., Chousal, JAG, Camphilo, R.D.S.G., Cohesive and 

continuum mixed-mode damage models applied to the simulation of the 

mechanical behavior of bonded joints. International Journal of Adhesion & 

Adhesives, 28:419-426, 2008. 

Freed, Y., Banks-Sills, L., A new cohesive zone model for mixed mode interface 

fracture in biomaterials. Engineering Fracture Mechanics 75, 4583-4593, 2008. 

Högberg, J.L., Mixed mode cohesive law. International Journal of Fracture, 141:549-

559, 2006. 

Högberg, J.L., Sørensen, B.F., Stigh, U. Constitutive behaviour of mixed mode loaded 

adhesive layer. International Journal of Solids and Structures, 44:8335–8354, 2007.  

Klarbring, A., Derivation of a model of adhesively bonded joints by the asymptotic 

expansion method. International Journal of Engineering Science, 29:493–512, 1991. 

Lundsgaard-Larsen, C. Sørensen, B. F, Berggren, C., Østergaard, R. C. A modified DCB 

specimen for measuring mixed-mode cohesive laws. Engineering Fracture 

Mechanics, 75:2514-2530, 2008. 

Park, K., Paulino, g. H., Roesler, j. R., A unified potential-based cohesive model of 

mixed-mode fracture. Journal of the Mechanics and Physics of Solids, 57:891-908, 

2009. 

Salomonsson, K., Mixed mode modeling of a thin adhesive layer using a meso-

mechanical model. Mechanics of Materials, 40:665-672, 2008. 

Salomonsson, K., Andersson, T., Modeling and parameter calibration of an adhesive 

layer at the meso level. Mechanics of Materials, 40:48-65, 2008. 

Sørensen, B. F Jørgensen, K., Jacobsen, T. K., Østergaard, R. C. DCB-specimen loaded 

with uneven bending moments. International Journal of Fracture, 141:163–176, 

Mecánica Computacional Vol XXIX, págs. 8355-8374 (2010) 8373

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

2006. 

Sørensen, B. F., Jacobsen, T. K., Determination of cohesive laws by the J integral 

approach. Engineering Fracture Mechanics, 70:1841-1858, 2003. 

Tvergaard, V., Hutchinson, J. W., The relation between crack growth resistance and 

fracture process parameters in elastic-plastic solids. Journal of the Mechanics and 

Physics of Solids, 40:1377-1397, 1992. 

van den Bosch, M.J., Schreurs, P.J.G., Geers, M.G.D., An improved description of the 

exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. 

Engineering Fracture Mechanics, 73:1220-1234, 2006. 

Volokh, K. Y., Comparison between cohesive zone models. Communications in 

Numerical Methods in Engineering, 20:845-856, 2004. 

Xie, D., Waas, A. M., Shahwan, K. W., Schroeder, J. A., Boeman, R. G., Fracture criterion 

for kinking cracks in a tri-material adhesively bonded joint under mixed mode 

loading. Engineering Fracture Mechanics, 72:2487-2504, 2005. 

Xu, X.P., Needleman, A., Void nucleation by inclusion debonding in a crystal matrix. 

Modelling Simulation Mater. Sci. Eng., 1 (2):111–132, 1993. 

K. SALOMONSSON, T. ANDERSSON8374

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


