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Abstract. The fundamental understanding of the flow inside Progressive Cavities Pumps (PCP) repre-
sents an important step on the optimization of the efficiencyof these pumps, which are largely used in
artificial lift processes in the petroleum industry. The computation of the flow inside a PCP is extremely
complex due to the transient character of the flow, the movingboundaries and the difference in length
scale of the channel height between the stator and rotor. This complexity makes the use of computational
fluid dynamics as an engineering tool almost impossible. This work presents an asymptotic model to de-
scribe the single phase flow inside progressive cavities pumps using lubrication theory. The model was
developed for Newtonian fluid and lubrication theory was used to reduce the three-dimensional Navier-
Stokes equations in cylindrical coordinates to a two-dimensional Poisson’s equation for the pressure field
at each time step, which is solved numerically by a second order finite difference method. The predictions
are close to the experimental data and the results obtained by solving the complete three-dimensional,
transient Navier-Stokes equations with moving boundaries, available in the literature. Although the ac-
curacy is similar to the complete 3D model, the computing time of the presented model is orders of
magnitude smaller. The model was used to study the effect of geometry, fluid properties and operating
parameters in the pump performance curves and can be used in the design of new pumping processes.
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1 INTRODUCTION

Almost every fluid-like material can be pumped with Progressive Cavity Pumps (PCP). Since
the pumping principle conceived by the RenéMoineauin the 1930‘s, a large number of different
industrial applications makes this positive displacementpump on of the most used technologies
for moving fluids, from sandy crude oil to waste sludge. PCPs in their simplest form consist of a
single threaded screw (rotor), turning inside a double threaded nut (stator), forming consecutive
cavities separated by seal lines, as illustrate in figure1. This simple configuration belongs to the
singlelobe category of PCP. More complex geometries with a larger number of lobes are also
used, and any combination is possible as long as the stator has one more lead than the rotor.
The first generation of PCPs had a metallic rotor and stator, forming rigid moving cavities in
the space between the two surfaces. The following generations presented a rubber covered
stator, which is common nowadays. The deformable stator creates a compression fit with the
rotor, in contrast with the metallic pump where there is a small clearance leading to a larger
leakage between consecutive cavities. Considering that deformable stators have operational
limitations related with temperature and mechanical resistance of the elastomers, metallic PCPs
have been recognized by the oil industry as an important technological alternative for heavy
oil production. This apparently simple mechanism producesan almost pulsation-free positive
displacement flow, without the need for valves, based on the movement of the cavities from the
suction to the discharge ends of the pump as the rotor turns inside the stator. The volumetric
flow delivered by a PCP at a constant rotor speed and pressure difference depends on three
design features: rotor diameter, rotor eccentricity and stator pitch. The pump pressure rating
depends on the number of stages. A peculiar characteristic of PCPs is the occurrence of back
flow, also denominated slip flow, derived from non perfectly sealed cavities.

Figure 1: Components of PCP

Due to their unique design and principle of operation, PCPs provide many benefits in oilfield
applications, such as high solid content tolerance, best efficiency with high viscosity fluids,
simple installation and operation. Oil production with PCPs is generally designed over the
knowledge of characteristic pump curves provided by manufacturer, but several variables can
affect and change the volumetric efficiency of both metallicand elastomeric stator pumps. It
is common knowledge that the characteristic curves change significantly with liquid viscosity
and gas content, therefore pump curves provided by manufacturers usually do not represent the

S. ANDRADE, J. VALERIO, M. CARVALHO8430

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



real pump performance at down hole conditions. Moreover, inorder to design PCPs that can
be operated at extreme conditions, it is important to understand the effect of each geometric
design parameter on the pump performance. These are the mainreasons behind research efforts
dedicated to study the flow inside PCPs.

The performance of PCPs is a function of the volumetric pump displacement and the slip
flow, i.e. the backward flow between consecutive cavities dueto the adverse pressure gradient
along the pump. The limitation of simple models on predicting pump performance is related to
the difficulties in calculating the internal back flow. For any type of stator, rigid or deformable,
slippage is a function of the fluid characteristics, the differential pressure, the dimensions of the
different components and the rotor’s kinematics. In the case of elastomeric stators the problem
become even more complex, because the geometry of the flow channel becomes a function of
the pressure field.

In order to estimate the back flow,Sopilka et al.(2002) performed an experimental study and
obtained characteristic curves and instantaneous pressure profiles along a metal PCP for single-
and two-phase flow conditions.

The first and simplest numerical model to describe the flow inside a PCP was presented by
Moineau, 1930Moineauand it is based on calculating the back flow across the pump, con-
sidering a Hagen-Poiseuille flow through the seal lines, which is subtracted from the volume
displaced by the rotating rotor, giving the volumetric flow rate. As the differential pressure
across the pump rises, so does the slippage, and the relationbetween differential pressure and
net volumetric flow pumped, can be calculated. Since the slippage gap area is not clearly de-
fined, the model is able to describe the qualitative behavior, but it is not accurate.

The volumetric displacement associated with the rotor movement can be easily calculated
from pump component’s geometry, but calculating the back flow is not a trivial problem. In
order to improve Moineau’s model,Blanco and Olivet(2003) have modeled the slip as the su-
perposition of two different mechanism: one due to the rotor’s movement and the other due to
the differential pressure between two cavities. However, limitations were recognized and the
model was not able to fit experimental data.

Only recently, a complete three-dimensional, transient model of the flow inside the cavities
of a PCP has been presentedPaladino et al.(2008). The numerical solution obtained with a
commercial CFD software is extremely complex and computationally expensive, mainly be-
cause of the transient and 3-D character of the flow, the complexity of the geometry and the
necessary mesh motion to follow the rotor movement. The results agree well with experimental
data, however the use of the model for testing different operating conditions and pump designs
is limited, since the time to compute the flow at a single operating condition was extremely high.
Therefore, the time required to produce an entire pump performance curve would be enormous.

Realizing that the back flow, that ultimately defines the flow rate - pressure drop relationship,
is governed by what happens in the small clearance between the moving rotor and the stator and
that the ratio of length scale in the flow direction to the channel height in this region is very
large, we propose an asymptotic model to describe the flow inside PCPs. The proposed model
reduces the three-dimensional transient Navier-Stokes equations with moving boundaries to a
quasi-steady state two-dimensional Poisson’s equation for the pressure field inside the pump.

This is the same idea behind simplified models of the flow in screw extruder - seeLi Y.
(1996) andSuresh A.(2008). The simplified models for extruder can predict the qualitative
behavior, but they are still not accurate enough to use as a design tool, mainly because of the
geometric and kinematic simplifications used. One of the common hypothesis is to neglect
the curvature effect of the cross section, and to describe the geometry of the flow region us-
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ing cartesian coordinates.Carvalho and de Pina(2006) presented a lubrication approximation
model in cylindrical coordinates to describe the flow in annular space with varying eccentricity
and showed that neglecting the curvature effect can greatlycompromise the accuracy of the
model.

The goal of this work is to develop an asymptotic model for theflow inside a metallic (rigid)
singlelobe progressive cavity pump. The cross section is parameterized using cylindrical co-
ordinates and there is no simplified assumptions on the geometry and kinematics of the rotor.
The resulting 2D equation for the pressure field at each time step was discretized with a second
order finite difference approximation. The model was used toobtain predictions of the pump
performance curve as a function of rotor speed, liquid properties and pump geometry.

The results obtained agree very well with the experimental data and also with the complete
3D model. However the computational time required was approximately 100 times smaller.

2 MATHEMATICAL MODELLING

The flow inside the pump cavities is governed by the Navier-Stokes and continuity equations,
which in cylindrical coordinates are:
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whereu, v, andw are the axial, radial, and tangential velocity components;p is the liquid
pressure andρ andµ are the liquid density and viscosity. To avoid solving the system of cou-
pled three-dimensional differential equations, dimensional analysis is used to eliminate some of
the terms. The procedure used here is generally known as lubrication approximation.

Along the seal lines between consecutive cavities, the clearance between the rotor and stator
is much smaller than the radius or length of the pump:δ = (Ro − Rr) ≪ Ro ∼ Rr ≤ L, as
shown in figure2.

Using the continuity equation, it can be shown that the main flow is in the axial direction, the
velocity component in the radial direction is much smaller than in the other two, i.e.u, w ≫ v.
Moreover, the variation of the velocity components in the axial and azimuthal directions are
much smaller than those in the radial direction. Thus, the derivatives with respect to the radial
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By applying dimensional analysis, the appropriate terms ofthe transient Navier-Stokes equa-
tions can be neglected and the system of differential equations become:
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Since the pressure is not a function ofr, the velocitiesu andw can be analytically integrated
in the radial direction as a function of the pressure gradient:
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wherec1, c2, c3, c4 are constants calculated based on the boundary conditions,which are dis-
cussed in the following sub-section.

2.1 Pump Geometry and Integral Limits

The movement of the fluid inside the pump is caused by the single-threaded helical rotor
rolling eccentrically inside a helical double-threaded stator. As the stator has a pitch length
twice as long as the rotor is, the fluid is trapped in consecutive quasi-sealed cavities. These
cavities follow each other and produce an almost pulsation-free, positive displacement flow, as
sketched in figure1.

The flow displacement inside a PCP depends on three design parameters: Rotor radius (Rr),
eccentricity (E) and stator pitch (Pst), as defined in figure2. The center of the rotor’s helix
(center of mass of the rotor) rotates around the center of thestator. The distance between these
two points defines the eccentricity (E). It is important to notice that the center of each cross
section of the rotor is not its center of mass, as sketched in figure2.

Pst

Center of the rotor cross section

Center of the stator cross section

Center of mass of the rotor

2Rs

Rr

E

Pr

Stator

Rotor

Figure 2: PCP’s cross section.

In each cross section, the origin of the coordinate system lies on the center of the cross section
of the rotor (Cr), therefore its location and the coordinates of the stator wall with respect to the
origin varies with time, as the rotor rotates, as illustrated in the figure3. The figure shows the
movement of the center of the rotor cross section and of a poitP located on the surface of the
rotor during one rotation.

Eventhough the velocity component in the radial direction,v, is much smaller compared to
the others, in the boundary conditions it needs to be considered in order to describe the relative
movement of the rotor with respect to the stator.

The geometry of each cross section of the pump cavity is defined with respect to the cylin-
drical coordinate system adopted here, through the geometry of the rotor wall Rr(θ, z) and of
the stator wallRo(θ, z) as shown in figure4. Because of the origin of the coordinate system is
located at the center of the rotor’s cross sectionRr(θ, z) = Rr is constant. The definition of the
stator wall geometryRo(θ, z) is not simple because of the complex geometry and kinematics
of the pump elements.

Some important variables used to describe the position of the surface of the stator,Ro(θ, z),
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Figure 3: Rotation and translation of the rotor.

are shown in figures4 and5 and are defined below:
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is the angle between an horizontal axis passing throughCr to the

symmetry line of the stator cross section;Pst andPr are respectively the stator and rotor
piches;

• dCSR = CsCr = 2E cos(Ωt−ΘS), so −2E ≤ dCSR ≤ 2E is the distance between the
centers of the rotor and stator cross sections;

• α1 = arctan

(
Rs

2E − dCSR

)

andα2 = arctan

(
Rs

2E + dCSR

)

are the angles between the

symmetry line and the segmentsCrA toCrA′ andCrB toCrB′, respectively (see fig5).

s

(t)

Cr

Cs

2Rs

Q

P

t
4E

dcsr

R0( t )

Rr( )

Figure 4: Geometrical elements of the PCP’s cross section

In each cross section, the boundary of the statorRo(θ, z) is spliced in four parts, as shown in
figure5. Each part is represented by a different function, shown in table1, which also shows the
θ’s limits of each segment. In the table, A =(α1−Θs); B = (π−Θs−α2); B’ = (π+α2−Θs);
A’ = (2π − α1−Θs).
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Table 1: The functions that describes the geometry of a singlelobe metal PCP.

Region θ limits Function —– Ro(θ, z)

I A’ ≤ θ < A (2E − dcsr) cos(θ −ΘS) +
√

R2
s − (2E − dcsr)2 sin

2(θ −ΘS)

II B ≤ θ < B’ −(2E + dcsr) cos(θ −ΘS) +
√

R2
s − (2E + dcsr)2 sin

2(θ −ΘS)

III A ≤ θ < B
√

R2
s + (2E − dcsr)2

[
sinα1

sin(θ−ΘS)

]

IV B’ ≤ θ < A’ −
√

R2
s + (2E − dcsr)2

[
sinα1

sin(θ−ΘS)

]

2.2 Rotor Kinematics and Boundary Conditions

As discussed before, the cross section of the rotor translates and rotates with respected to the
center of the stator.To derive the appropriate boundary conditions, used to calculatec1, c2, c3
andc4 in equation (2), we need to determine the velocity of a point P located at theboundary of
the rotor and of a point Q at the stator, as shown in figure5.

A

B

B’

A’

I

II III

IV ` s

`Cr

Cs

` `

` `

4E

Rs

Figure 5: Variables to describe rotor’s kinematic

The angular coordinate of P isθ(t) = γ + Ωt, whereγ is angular coordinate att = 0 andΩ
is the clockwise rotor angular velocity. The cartesian coordinates of the rotor center (our center
of reference) with respect to the stator’s center (which is stationary in a laboratory frame of
reference) is:

Xcsr = dcsr cos(Θs) = +2E cos(Ωt−Θs) cos(Θs),
Ycsr = −dcsr sin(Θs) = −2E cos(Ωt−Θs) sin(Θs).

Thus the velocity of the rotor center is:
−−→
Vcsr = VXcsr

−→
i + VYcsr

−→
j = (VXcsr

, VYcsr
):

VXcsr
= −2EΩ sin(Ωt−Θs) cos(Θs), VYcsr

= 2EΩ sin(Ωt−Θs) sin(Θs).

So,(XP , YP ) = (Xcsr +Rr cos(γ + Ωt), Ycsr +Rr sin(γ + Ωt)) is the position of the point
P related to the stator center and its velocity is

−→
VP = (VXP

, VYP
): VXP

= VXcsr
−RrΩ sin θ, VYP

=
VYcsr

+RrΩcos θ.
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It is clear that the velocity of P with respect to the frame of reference, the rotor centerCr, is:
−−→
VPcsr

= (VXP
− VXcsr

, VYP
− VYcsr

) = (−RrΩ sin θ, RrΩcos θ) .

Similarly, the velocity of the point Q (located at the statorboundary), with respect to the
coordinate system, is:

−−−→
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−−→
Vcsr. Note that

−→
VQ = 0, because the stator is stationary

with respect to a laboratory frame of reference, therefore
−−−→
VQcsr = −
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In order to write the formulation in cylindrical coordinates, the velocity of points along the
rotor (P) and stator (Q) surfaces written in cartesian coordinates are presented in cylindrical
coordinates following the transformation matrix below:

[
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]

Therefore the appropriate boundary conditions for equations (2) are:
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u(Rr) = 0 (3)
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w(Rr) = −VXPcsr
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As expected, with respect to the center of the rotor cross section, P does not move in the
radial direction. Also, points along the stator and rotor surfaces do not move axially.

Back to equations (2) and applying the boundary conditions presented in equations (3), we
are able to findc1, c2, c3, c4 and write the complete expressions for the velocity profilesu and
w:
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Up to this point, the pressure field is still unknown. In orderto evaluate it, the continuity
equation is integrated along the radial direction, fromRr to Ro:
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Applying the boundary conditions (3) in equation (7), the integrated continuity equation
becomes:
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The known velocity profiles (eqs. (4) and (5)) are used to evaluate the integrals ofw andru
along the radial direction :
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Finally, equation (8) leads to a differential equation that describes the pressure field.
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Note thatK is the same defined before (eq. (6)) and
∂Ro

∂θ
can be directly derived from the
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functions presented in table1.

Equation (11) is a Poisson equation that describe the pressure field. The boundary conditions
are:

• periodic:
P (θ = 0) = P (θ = 2π),
∂P

∂θ
(θ = 0) =

∂P

∂θ
(θ = 2π).

• imposed pressure at suction and discharge:
P (z = 0) = Pin,
P (z = L) = Pout.

At each time step, equation (11) was discretized using a central finite difference scheme.

3 NUMERICAL RESULTS

In order to compare and validate the lubrication model, we performed tests at the same liquid
and operating parameters used bySopilka et al.(2002) in their experimental study. The metal
singlelobe PCP chosen had the following geometrical characteristics: pump lengthLb = 0.36
m, length of each rotor pitchL = 0.06 m, number of the piches of the rotorNr = 6, radius
of the rotor’s cross sectionRr = 0.02 m, radius of the stator’s cross sectionRs = 0.020185 m,
eccentricityE = 0.004039 m.

In the validation analysis a liquid with a viscosityµ = 42 cP was pumped against a differen-
tial of pressure of∆P = 345 kPa at a rotor angular speed ofΩ = 300 rpm.

Figure 6 shows the clearance between the stator and rotorδ = Ro(θ, z) − Rr and the
predicted pressure fieldp(θ, z) at four different times during one cycle of the rotor (θ =
0, π, 3π/2 and 2π). The pressure inside the cavity is almost constant and there is a large pressure
gradient along the regions of small clearance, the seal lines between the consecutive cavities.
The strong pressure gradient is easily observed by plotting. The pressure along the length of the
pump at a constant azimuthal coordinateθ, shown in figure7.

Once the pressure is determined, it is used to evaluate the velocitiesu andw through the
analytical equations (4) and (5). The velocity and pressure at different cross sections (z1 =
0.036m, z2 = 0.1764m, z3 = 0.3564m) of the pump and different times during the rotation
(t1 = 0.1s andt2 = 0.15s) of the rotor are shown in figures8 and 9. Note that the rotor
movement squeezes the liquid to flow against the imposed pressure gradient. The plots clearly
show the negative axial velocity that represents the back flow caused by the adverse pressure
gradient.

The axial velocity profile at the outflow plane of the pump can be integrated in order to
evaluate the flow rate through the pump:

Q(t) =

∫ 2π

0

∫ Ro

Rr

u(L, r, θ, t)rdr

The predicted flow rate output during one rotation of the pumpfor two different imposed
pressure difference is presented in figure10. It varies with time as the rotor rotates because of
the geometry of cavities. At∆P = 0, there is no back flow and the flow rate variation is nearly
sinusoidal. At∆P = 345kPa, the back flow reduces the average flow rate, when comparedto
the previous case, and the flow rate variation with time is farfrom sinusoidal.
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The average flow rate through one cycle of the rotor can be computed as a function of the
imposed pressure difference, liquids properties and rotorangular speed in order to construct the
pump performance curve, as shown in figure11. The curves predicted with the model presented
here are compared with the experimental data ofSopilka et al.(2002) and with numerical so-
lutions of the complete 3D transient flow obtained using commercial CFD software, presented
by Paladino et al.(2008). The comparison was done atµ = 42 and 433 cp,Ω = 100, 300 and
400 rpm. In all cases the agreement was excellent. The relative difference to respect to the
experimental data was from 5% to 15%. The larger discrepancies occur at the lower viscosity
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Figure 6: Clearance and pressure distribution in aθ × z plane along the time for one turn of the rotor.
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(µ = 42 cp) and high pressure difference, conditions at witch the back flow is stronger. With
the high viscosity liquid, the back flow is weak and the agreement with the experimental data is
nearly perfect.

It is important to emphasize that the computational cost of the predictions obtained with the
present model ia orders of magnitude smaller than that required to compute the complete 3D,
transient flow presented byPaladino et al.(2008).

It is convenient to define a dimensionless flow rateQ∗ as the ratio between the actual flow
rate to the volume of the pump times to the rotor frequency. Itrepresents a measure of the pump
efficiency:

Q∗ =
Qm

[8 Rs E + π (R2
s − R2

r)] (L/t)
, (12)

And the dimensionless pressure difference∆P ∗ as:

∆P ∗ =
(Rs −Rr) ∆P

µ Ω Rr

(13)

.
All the predictions obtained with the model and presented infigure11 are plotted in terms

of the dimensionless variables in figure12. The data collapses into one single straight line:

Q∗ = 0.95− 8× 10−5∆P ∗

With an efficient and accurate model in hand, it can be used as an engineering tool to analyze
the effect of different parameters on the pump performance.
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Figure 8: Contour graphs of pressure and velocity fields in the same time (t1 = 0.1s) and three different positions
(z1 = 0.036m,z2 = 0.1764m,z3 = 0.3564m.)
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Figure 9: Contour graphs of pressure and velocity fields in the same time (t2 = 0.15s) and three different positions
(z1 = 0.036m,z2 = 0.1764m,z3 = 0.3564m.)
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Figure 10: Flow rate versus time.∆P = 0, ∆P = 345 kPa.

The effect of the clearanceδ = Rs − Rr on the relation between flow rate and imposed
pressure difference is showed in figure13. At larger gaps, the back flow is stronger and the
pump efficiency falls drastically. At hight enough pressuredifference, the flow rate is negative,
indicating that the pump can not move liquid against that hight pressure difference. At small
clearance, the flow rate dependence on pressure difference is weaker and the pump efficiency is
higher.

4 CONCLUSIONS

In this work, an asymptotic model for the flow inside a metallic (rigid) singlelobe progressive
cavity pump was developed. The cross section is parameterized using cylindrical coordinates
and there is no simplified assumption of the geometry and kinematics of the rotor. The pro-
posed model reduces the three-dimensional transient Navier-Stokes equation to a quasi-steady
state two-dimensional Poisson’s equation for the pressurefield and provide detailed information
about the flow inside the pump. The resulting 2D equation for the pressure field at each time
step was discretized with a second order finite difference approximation. The model was used
to obtain predictions of the pump performance curve as a function of rotor speed, liquid proper-
ties and pump geometry. The results obtained agree very wellwith experimental data and with
the complete 3D model and the computational time required was orders of magnitude smaller
when compared to the later. Because of the accurate and efficient computation, the model can
be integrated into a flow simulator with PCPs and also be used on design of new pumps. An-
other interesting characteristic of this asymptotic modelis that it can be extended to PCPs with
deformable stator, different geometries and also multiphase flows.
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