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Abstract. The fundamental understanding of the flow inside ProgresSawities Pumps (PCP) repre-

sents an important step on the optimization of the efficiasfdphese pumps, which are largely used in
artificial lift processes in the petroleum industry. The putation of the flow inside a PCP is extremely

complex due to the transient character of the flow, the mobimgndaries and the difference in length

scale of the channel height between the stator and rotos. cBbmplexity makes the use of computational
fluid dynamics as an engineering tool almost impossibles Wark presents an asymptotic model to de-
scribe the single phase flow inside progressive cavitiespsumsing lubrication theory. The model was

developed for Newtonian fluid and lubrication theory wasdugereduce the three-dimensional Navier-
Stokes equations in cylindrical coordinates to a two-disn@mal Poisson’s equation for the pressure field
at each time step, which is solved numerically by a seconerdirite difference method. The predictions

are close to the experimental data and the results obtainedliing the complete three-dimensional,

transient Navier-Stokes equations with moving boundageasilable in the literature. Although the ac-

curacy is similar to the complete 3D model, the computingetiof the presented model is orders of
magnitude smaller. The model was used to study the effectafgtry, fluid properties and operating

parameters in the pump performance curves and can be udesldesign of new pumping processes.
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1 INTRODUCTION

Almost every fluid-like material can be pumped with Progres€avity Pumps (PCP). Since
the pumping principle conceived by the Reviéineauin the 1930's, a large number of different
industrial applications makes this positive displacenpemhp on of the most used technologies
for moving fluids, from sandy crude oil to waste sludge. P@RBeir simplest form consist of a
single threaded screw (rotor), turning inside a doublesttieel nut (stator), forming consecutive
cavities separated by seal lines, as illustrate in fiquiehis simple configuration belongs to the
singlelobe category of PCP. More complex geometries wittrgelk number of lobes are also
used, and any combination is possible as long as the stasoorfeamore lead than the rotor.
The first generation of PCPs had a metallic rotor and stadomifg rigid moving cavities in
the space between the two surfaces. The following genesfoesented a rubber covered
stator, which is common nowadays. The deformable stat@tesea compression fit with the
rotor, in contrast with the metallic pump where there is alkolearance leading to a larger
leakage between consecutive cavities. Considering tHatrdable stators have operational
limitations related with temperature and mechanical taste of the elastomers, metallic PCPs
have been recognized by the oil industry as an importanntdolical alternative for heavy
oil production. This apparently simple mechanism prodwsealmost pulsation-free positive
displacement flow, without the need for valves, based on tinement of the cavities from the
suction to the discharge ends of the pump as the rotor tusiderihe stator. The volumetric
flow delivered by a PCP at a constant rotor speed and presgteredce depends on three
design features: rotor diameter, rotor eccentricity aatostpitch. The pump pressure rating
depends on the number of stages. A peculiar characteriSBEBs is the occurrence of back
flow, also denominated slip flow, derived from non perfectdgled cavities.

Figure 1: Components of PCP

Due to their unique design and principle of operation, PGBsgige many benefits in oilfield
applications, such as high solid content tolerance, bésiexfcy with high viscosity fluids,
simple installation and operation. Oil production with BRGR generally designed over the
knowledge of characteristic pump curves provided by mariufar, but several variables can
affect and change the volumetric efficiency of both metalhd elastomeric stator pumps. It
is common knowledge that the characteristic curves chaiggéisantly with liquid viscosity
and gas content, therefore pump curves provided by manuéstusually do not represent the
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real pump performance at down hole conditions. Moreoveorder to design PCPs that can
be operated at extreme conditions, it is important to urtdedsthe effect of each geometric
design parameter on the pump performance. These are theeaaons behind research efforts
dedicated to study the flow inside PCPs.

The performance of PCPs is a function of the volumetric puispldcement and the slip
flow, i.e. the backward flow between consecutive cavitiestdube adverse pressure gradient
along the pump. The limitation of simple models on predgimp performance is related to
the difficulties in calculating the internal back flow. Foryagpe of stator, rigid or deformable,
slippage is a function of the fluid characteristics, theadt#htial pressure, the dimensions of the
different components and the rotor’'s kinematics. In theecdslastomeric stators the problem
become even more complex, because the geometry of the flamehlaecomes a function of
the pressure field.

In order to estimate the back flo@ppilka et al(2002 performed an experimental study and
obtained characteristic curves and instantaneous peepsuiiles along a metal PCP for single-
and two-phase flow conditions.

The first and simplest numerical model to describe the flondena PCP was presented by
Moineau, 1930Moineauand it is based on calculating the back flow across the pump, co
sidering a Hagen-Poiseuille flow through the seal linesciviis subtracted from the volume
displaced by the rotating rotor, giving the volumetric floata. As the differential pressure
across the pump rises, so does the slippage, and the retetiveen differential pressure and
net volumetric flow pumped, can be calculated. Since theatip gap area is not clearly de-
fined, the model is able to describe the qualitative behalidrit is not accurate.

The volumetric displacement associated with the rotor mmarg can be easily calculated
from pump component’s geometry, but calculating the back flonot a trivial problem. In
order to improve Moineau’s moddlanco and Olive{2003 have modeled the slip as the su-
perposition of two different mechanism: one due to the retmovement and the other due to
the differential pressure between two cavities. Howewmsnitdtions were recognized and the
model was not able to fit experimental data.

Only recently, a complete three-dimensional, transiendehof the flow inside the cavities
of a PCP has been presentedladino et al(2008. The numerical solution obtained with a
commercial CFD software is extremely complex and companally expensive, mainly be-
cause of the transient and 3-D character of the flow, the ocexitplof the geometry and the
necessary mesh motion to follow the rotor movement. Thdtseagree well with experimental
data, however the use of the model for testing differentaogy conditions and pump designs
is limited, since the time to compute the flow at a single ojregacondition was extremely high.
Therefore, the time required to produce an entire pump padoce curve would be enormous.

Realizing that the back flow, that ultimately defines the flater pressure drop relationship,
Is governed by what happens in the small clearance betweeandking rotor and the stator and
that the ratio of length scale in the flow direction to the aigrmeight in this region is very
large, we propose an asymptotic model to describe the flomterBCPs. The proposed model
reduces the three-dimensional transient Navier-Stokeat®ms with moving boundaries to a
guasi-steady state two-dimensional Poisson’s equatiothéopressure field inside the pump.

This is the same idea behind simplified models of the flow irwcextruder - sed.i Y.
(1996 and Suresh A.(2009. The simplified models for extruder can predict the qualiea
behavior, but they are still not accurate enough to use asigrdeol, mainly because of the
geometric and kinematic simplifications used. One of the rmom hypothesis is to neglect
the curvature effect of the cross section, and to describgéometry of the flow region us-
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ing cartesian coordinate€arvalho and de Pin@006 presented a lubrication approximation
model in cylindrical coordinates to describe the flow in dangpace with varying eccentricity
and showed that neglecting the curvature effect can greattypromise the accuracy of the
model.

The goal of this work is to develop an asymptotic model forftbe inside a metallic (rigid)
singlelobe progressive cavity pump. The cross sectionrampeterized using cylindrical co-
ordinates and there is no simplified assumptions on the gepraed kinematics of the rotor.
The resulting 2D equation for the pressure field at each tieyewas discretized with a second
order finite difference approximation. The model was usedhi@ain predictions of the pump
performance curve as a function of rotor speed, liquid priogeand pump geometry.

The results obtained agree very well with the experimerdtd dnd also with the complete
3D model. However the computational time required was apprately 100 times smaller.

2 MATHEMATICAL MODELLING

The flow inside the pump cavities is governed by the Naviek& and continuity equations,
which in cylindrical coordinates are:
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wherewu, v, andw are the axial, radial, and tangential velocity componeptss the liquid
pressure ang and are the liquid density and viscosity. To avoid solving thsteyn of cou-
pled three-dimensional differential equations, dimenai@nalysis is used to eliminate some of
the terms. The procedure used here is generally known asdtibn approximation.

Along the seal lines between consecutive cavities, theatea between the rotor and stator
is much smaller than the radius or length of the pump: (R, — R,) < R, ~ R, < L, as
shown in figure2.

Using the continuity equation, it can be shown that the main $ in the axial direction, the
velocity component in the radial direction is much smalkanrt in the other two, i.eu, w > v.

Moreover, the variation of the velocity components in theaband azimuthal directions are

much smaller than those in the radial direction. Thus, thevalives with respect to the radial
direction are much larger than the oth Ot > Ou O d 0w > Ow T

9 2 922 o N Brr g g
By applying dimensional analysis, the appropriate ternte@transient Navier-Stokes equa-

tions can be neglected and the system of differential egstiecome:
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Since the pressure is not a functionrothe velocities: andw can be analytically integrated
in the radial direction as a function of the pressure gradien
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wherecy, o, c3, ¢4 are constants calculated based on the boundary conditdnesh are dis-
cussed in the following sub-section.

2.1 Pump Geometry and Integral Limits

The movement of the fluid inside the pump is caused by the esitigeaded helical rotor
rolling eccentrically inside a helical double-threadeatst As the stator has a pitch length
twice as long as the rotor is, the fluid is trapped in conseeujuasi-sealed cavities. These
cavities follow each other and produce an almost pulsdtea-positive displacement flow, as
sketched in figurd.

The flow displacement inside a PCP depends on three desigmptars: Rotor radiugi(,),
eccentricity ) and stator pitch #,;), as defined in figur@. The center of the rotor’s helix
(center of mass of the rotor) rotates around the center dftdter. The distance between these
two points defines the eccentricitg). It is important to notice that the center of each cross
section of the rotor is not its center of mass, as sketchedume®.

Stator

<>

Center of mass of the rotor
Center of the stator cross sectiol

Figure 2: PCP’s cross section.

In each cross section, the origin of the coordinate systesroln the center of the cross section
of the rotor (), therefore its location and the coordinates of the staadlwith respect to the
origin varies with time, as the rotor rotates, as illustatethe figure3. The figure shows the
movement of the center of the rotor cross section and of afptwtated on the surface of the
rotor during one rotation.

Eventhough the velocity component in the radial directigns much smaller compared to
the others, in the boundary conditions it needs to be coresida order to describe the relative
movement of the rotor with respect to the stator.

The geometry of each cross section of the pump cavity is difiith respect to the cylin-
drical coordinate system adopted here, through the gegrokthe rotor wall R,.(6, z) and of
the stator wall R, (9, z) as shown in figurd. Because of the origin of the coordinate system is
located at the center of the rotor’s cross sectiornd, z) = R, is constant. The definition of the
stator wall geometryR, (0, z) is not simple because of the complex geometry and kinematics
of the pump elements.

Some important variables used to describe the positionea$tinface of the statoi, (¢, =),
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Figure 3: Rotation and translation of the rotor.

are shown in figured and5 and are defined below:

2 . . : .
e Og = PLZ = %z is the angle between an horizontal axis passing thratigto the
st . r . .
symmetry line of the stator cross sectidn; and P, are respectively the stator and rotor
piches;

o dosr = CsC. = 2F cos(QUt — Og), S0 —2F < dcsr < 2F is the distance between the
centers of the rotor and stator cross sections;

R
——*  )andasy = arct ——° ) arethe angles between the
57 dC’SR) a9 = arctan <2E n dC’SR) g

symmetry line and the segmerdtsA to C,. A’ andC,. B to C,. B’, respectively (see fig).

e (o = arctan (

Figure 4: Geometrical elements of the PCP’s cross section

In each cross section, the boundary of the st&{@#, =) is spliced in four parts, as shown in
figure5. Each partis represented by a different function, showabietl, which also shows the
0's limits of each segment. In the table, A&l —0;); B=(r—0,—a2); B'= (1+a2—-0y);
A= (21 —al —0y).
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Table 1: The functions that describes the geometry of aalioigé metal PCP.

8435

Region| @ limits Function — R,(,z2)
| A <O<A| 2E —d.)cos(d — Og) +/R2— (2E — d,.,)?sin’(0 — Og)
[ B<O<B | —(2E + duy) cos(d — Og) + \/R2 — (2E + des,)? sin’(6 — Og)
I | A<6<B VR + CE— oV [55%5
vV | B <o<A — VR T QF — Ao | 532585

2.2 Rotor Kinematics and Boundary Conditions

As discussed before, the cross section of the rotor trasséatd rotates with respected to the
center of the stator.To derive the appropriate boundarylitons, used to calculate, c,, c3
andc, in equation 2), we need to determine the velocity of a point P located abthendary of
the rotor and of a point Q at the stator, as shown in figure

II

Figure 5: Variables to describe rotor’s kinematic

The angular coordinate of P &(t) = v + ¢, wherey is angular coordinate at= 0 and(2
Is the clockwise rotor angular velocity. The cartesian dowtes of the rotor center (our center
of reference) with respect to the stator’s center (whichtasianary in a laboratory frame of
reference) is:

Xesr = desr c08(0g) = +2F cos(QUt — Oy) cos(Oy),

Yesr = —desr Sin(©4) = —2F cos(Qt — O;) sin(Oy).

Thus the velocity of the rotor center i@ = me? + Vy? = (Vx,os Wroor):

Vx,., = —2EQsin(Qt — Oy) cos(O), W, = 2EQsin(Qt — Oy) sin(Oy).

So,(Xp, Yp) = (Xesr + Ry cos(y + Q), Yes + R,-sin(y + Qt)) is the position of the point

P related to the stator center andits velocityis= (Vx,, Vy,.):  Vx, = Vx..,—R.Qsinf, Vy, =
V... + R,Qcosb.
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It is clear that the velocity of P with respect to the frameeaderence, the rotor centér,, is:
Vpcsr = (VXp — VXcsr7 VYp — Vchr) = (—RTQ sin 9, RTQ COS 9) .

Similarly, the velocity of thg> p0|rL>Q (located at the stabmundary), with respect to the

coordinate system, iS/g.sr = Vo — Vesr. Note thatly = 0, because the stator is stationary
with respect to a laboratory frame of reference, therefore

Vorsy = —Viar = (2EQsin(Q — ©,) cos(©,), —2EQsin(Q — ©,) sin(0,))

In order to write the formulation in cylindrical coordinatehe velocity of points along the
rotor (P) and stator (Q) surfaces written in cartesian coatds are presented in cylindrical
coordinates following the transformation matrix below:

V.| | cosf sin @ V..
Vo | | —sinf  cosf Vy
Therefore the appropriate boundary conditions for eqnat{®@) are:
u(R,) =0

v(R,) = Vxg,,, cos + Vy,, ., sinf = +2EQsin(Qt — ©,) cos(O,)
w(R,) = —Vx,.., sind + Vy,,, cos = —2EQsin(Qt — ©,) sin(6;)

u(R,) =0 3)
U(RT) = VXPCST Cos 0 + VYPCST Sin 0 = 0
w(R,) = —Vx,., sinf+ Vy, cosf =QR,

As expected, with respect to the center of the rotor crossosed® does not move in the
radial direction. Also, points along the stator and rotafates do not move axially.

Back to equations?) and applying the boundary conditions presented in equsiR), we
are able to find:, ¢3, 3, ¢4 and write the complete expressions for the velocity profilesd

- DR (R G

OpR, [ r 1 r R, 1
ST D ) - o —K - 2 (In(R) — = + K 5
v 602M{Rr[“(r) 2R, r(“(R’") 2" )]}+ ©)

WroR, — QR R? R?

( o )(”’—7 +0--

where K is the geometric parameter defined as

_ —R’(InR,—1/2)+R!(InR, —1/2)

K R -2

. (6)
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Up to this point, the pressure field is still unknown. In ortierevaluate it, the continuity
equation is integrated along the radial direction, frBpto R,:

Ro(Orv  Ow  Oru Ro oo Ro ow Ro
— 4+ — dr=0= —dr+ —d —dr=0 7
L{m*a&*w}r . ari\Rr 8" " s, azrj 0
e b m

where |1=R,v(R,) — Rv(R,),
R,

Il = 2/ wdr — [w(RO)aRO — w(Rr)ﬁRr}
. a0

90 Jr, 06
o [T OR, OR,
I = &/RT rudr — |:U(RO) % u(R;) % ]

Applying the boundary conditions3) in equation {), the integrated continuity equation
becomes:

RO RO
%/R 'r’udr+%/ wdr—w(R)aai;—Rv(R) 0. (8)

The known velocity profiles (eqs4)and 6)) are used to evaluate the integralswandru
along the radial direction :

00 2

R, Kln(Rr) - % + K) In (%)} } )

Wi, + B2\ [(R2=R) ., (R, 2o (Ro
0 T o 1 Ql
+<R2—RZ){ y o (g ) R, )’

Ro
/ war = 2l {2; [R2In(R,) — R2In(R,) — (R2 — R)(1+ K)| +

(]

fto dp —R? 2 2 R - R’}
[y, rear= (52 o) () o= [ (5%

N
() (e () -252))) @

Finally, equation§) leads to a differential equation that describes the predseld.

0 0 0 0 0 0 o0R,
_(c£)+_(@£) O (Cow) + ~-p9C) + w(B) T 4 Ro(Ry): (1)

a0\ 'oe) " a2
where,
Cr = & { b (R2In(R,) — R2n(R,) — (B — R3)(1+ K)] -

R [(n(R) ~ + K)m ()]}
Ca= (R {07y [~ 582+ (i) (R () =5}

8
Cow = — (Ve ) [0 _ 2y ()] — R20In (£2)),

00
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functions presented in table

Equation (1) is a Poisson equation that describe the pressure field. duredary conditions
are:

e periodic:
P(0=0)=P(0=2n),
oP oP
e imposed pressure at suction and discharge:

P(z=L) = P,y.
At each time step, equatioi]) was discretized using a central finite difference scheme.

3 NUMERICAL RESULTS

In order to compare and validate the lubrication model, wépeed tests at the same liquid
and operating parameters used3ypilka et al. (2002 in their experimental study. The metal
singlelobe PCP chosen had the following geometrical clarnatics: pump lengtiL, = 0.36
m, length of each rotor pitch = 0.06 m, number of the piches of the rotdf. = 6, radius
of the rotor’s cross sectioR, = 0.02 m, radius of the stator’s cross sectifn = 0.020185 m,
eccentricityZ = 0.004039 m.

In the validation analysis a liquid with a viscosjty= 42 cP was pumped against a differen-
tial of pressure ofA P = 345 kPa at a rotor angular speed{f= 300 rpm.

Figure 6 shows the clearance between the stator and dter R,(f,z) — R, and the
predicted pressure field(d, z) at four different times during one cycle of the roter &
0,m, 37w /2 and 27). The pressure inside the cavity is almost constant and therlarge pressure
gradient along the regions of small clearance, the seas letween the consecutive cavities.
The strong pressure gradient is easily observed by plotlihg pressure along the length of the
pump at a constant azimuthal coordinétshown in figurer.

Once the pressure is determined, it is used to evaluate theitees v andw through the
analytical equations4] and 6). The velocity and pressure at different cross sections<
0.036m, z5 = 0.1764m, z3 = 0.3564m) of the pump and different times during the rotation
(t; = 0.1s andt, = 0.15s) of the rotor are shown in figurésand9. Note that the rotor
movement squeezes the liquid to flow against the imposedymegradient. The plots clearly
show the negative axial velocity that represents the baek ¢lmused by the adverse pressure
gradient.

The axial velocity profile at the outflow plane of the pump canititegrated in order to
evaluate the flow rate through the pump:

Q(t) = /0 . / (L0t

The predicted flow rate output during one rotation of the pdorpwo different imposed
pressure difference is presented in figli€e It varies with time as the rotor rotates because of
the geometry of cavities. AAP = 0, there is no back flow and the flow rate variation is nearly
sinusoidal. AtA P = 345kPa, the back flow reduces the average flow rate, when compared
the previous case, and the flow rate variation with time i$rfan sinusoidal.
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The average flow rate through one cycle of the rotor can be otedms a function of the
imposed pressure difference, liquids properties and astgular speed in order to construct the
pump performance curve, as shown in figlile The curves predicted with the model presented
here are compared with the experimental dat&apilka et al. (2002 and with numerical so-
lutions of the complete 3D transient flow obtained using caraal CFD software, presented
by Paladino et al(2008. The comparison was donejat= 42 and 433 cpf) = 100, 300 and
400 rpm. In all cases the agreement was excellent. Theueldifference to respect to the
experimental data was from 5% to 15%. The larger discreparacur at the lower viscosity
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Figure 6: Clearance and pressure distribution éhxaz plane along the time for one turn of the rotor.
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Figure 7: Pressure distribution along pump length

(1 = 42 cp) and high pressure difference, conditions at witch trek lw is stronger. With
the high viscosity liquid, the back flow is weak and the agreetmvith the experimental data is

nearly perfect.
It is important to emphasize that the computational coshefdredictions obtained with the

present model ia orders of magnitude smaller than that redjgd@ compute the complete 3D,
transient flow presented Baladino et al(2008.

It is convenient to define a dimensionless flow r@teas the ratio between the actual flow
rate to the volume of the pump times to the rotor frequenaggdtesents a measure of the pump
efficiency:

Qm
t = 12
YRR BRI -
And the dimensionless pressure differedcE* as:
(Rs — R.) AP
w R,

AP* = (13)

All the predictions obtained with the model and presentefigire 11 are plotted in terms
of the dimensionless variables in figut2 The data collapses into one single straight line:

Q" =0.95—-8x 10°AP*

With an efficient and accurate model in hand, it can be used asgineering tool to analyze
the effect of different parameters on the pump performance.
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Figure 8: Contour graphs of pressure and velocity fieldsénstime timet{ = 0.1s) and three different positions
(21 = 0.036m, zo = 0.1764m, z3 = 0.3564m.)
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Figure 9: Contour graphs of pressure and velocity fieldsérstime timetg = 0.15s) and three different positions
(21 = 0.036m, zo = 0.1764m, z3 = 0.3564m.)
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Figure 10: Flow rate versus timeAP = 0, AP = 345 kPa.

The effect of the clearance = R, — R, on the relation between flow rate and imposed
pressure difference is showed in figur& At larger gaps, the back flow is stronger and the
pump efficiency falls drastically. At hight enough pressdifeerence, the flow rate is negative,
indicating that the pump can not move liquid against thahtbessure difference. At small
clearance, the flow rate dependence on pressure differemezaker and the pump efficiency is
higher.

4 CONCLUSIONS

In this work, an asymptotic model for the flow inside a metd(tigid) singlelobe progressive
cavity pump was developed. The cross section is parameteuging cylindrical coordinates
and there is no simplified assumption of the geometry andnkaties of the rotor. The pro-
posed model reduces the three-dimensional transient N&taées equation to a quasi-steady
state two-dimensional Poisson’s equation for the predgideand provide detailed information
about the flow inside the pump. The resulting 2D equationHergressure field at each time
step was discretized with a second order finite differengeagpmation. The model was used
to obtain predictions of the pump performance curve as aitumof rotor speed, liquid proper-
ties and pump geometry. The results obtained agree verywitbllexperimental data and with
the complete 3D model and the computational time requireslovders of magnitude smaller
when compared to the later. Because of the accurate aneeffmmmputation, the model can
be integrated into a flow simulator with PCPs and also be usadksign of new pumps. An-
other interesting characteristic of this asymptotic masléhat it can be extended to PCPs with
deformable stator, different geometries and also mulsplilows.
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Figure 13: The clearance effect.
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