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Abstract. The transmissibility coefficient, present in commercial codes in petroleum reservoir 
simulation, was firstly defined considering an orthogonal grid in an isotropic and homogeneous 
medium, applying the traditional cell center control volume method. This type of problem results in a 
five point stencil for two dimensional domains, and the mass flux over a control volume face is, in this 
particular case, evaluated correctly with two pressure points. Afterwards, Hegre and Dalen presented a 
useful calculation method, widely used in commercial reservoir simulators, to any distorted corner 
point grid, still resulting in a five point stencil for a heterogeneous and anisotropic medium. Recently, 
some works showed in distorted and two dimensional grids and/or anisotropic medium that the mass 
flux over a control volume face cannot be accurately evaluated with only two pressure points, i.e., a 
five point stencil. This can introduce significant errors in the problem solution and strong grid 
orientation effects. This work presents an extension of the traditional control volume method, based on 
Hegre’s transmissibilities, considering the correct mass flux. The resultant stencil involves nine 
pressure points in a two dimensional case and twenty-three in a three dimensional case. The 
transmissibilities calculation proposed is designed to be applied in anisotropic (full tensor) and/or 
heterogeneous medium. The results of the tests performed are in good agreement with the correct nine 
point reference solution that considers the correct mass flux. In addition, the transmissibility method is 
straightforward to be extended in a computational code based on Hegre’s transmissibility. 
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1 INTRODUCTION 

Finite difference methods or control volume methods are widely used in petroleum 
reservoir simulation. For a general way, these methods do not compute correctly the mass 
flux over a control volume face, once this flux is always evaluated with two pressure points. It 
is fairly known that, for a general corner-point grid, and isotropic or anisotropic medium, the 
flux over a control volume face is not correctly evaluated using only two pressure points 
(Tada, 2009; Aavatsmark, 2007). This can introduce errors in the numerical solution and 
strong grid orientation effects. There are many works that treat this numerical problem by 
calculating the correct flux over a control volume face using more than two pressure points. 
Cordazzo (2006) shows an EbFVM method that computes the flux correctly. His scheme, in a 
three dimensional domain, results in twenty seven pressure points. Aavastmark (2002) shows 
a multipoint scheme for corner point grids and anisotropic medium. All of these methods are 
based in control volume methods, but they are different than the usual control volume or 
finite difference method, e.g., the scheme of the assembly global linear system matrix is 
different and the points where the mass flux is evaluated, in a control volume face, is different 
as well. In other words, their methods are new numerical methods comparing with traditional 
difference finite method, therefore, the programming code architecture is also new. The 
present work presents a nine point scheme, for two dimensional cases, easily extensible to a 
twenty and three point numerical scheme for three dimensional domains, using the finite 
difference methods. This work is an extension of the conventional finite difference method 
based on Hegre’s (1986) transmissibility where it is considerate now the correct mass fluxes 
over a control volume face for anisotropic (full tensor) and heterogeneous medium. To do 
that, a new method to calculate the transmissibility is proposed. The tests were performed in a 
two dimensional domain and the results are compared with Cordazzo (2006) code that was 
previously validated. The results are in good agreement, showing that the new transmissibility 
method calculation is consistent and considers the correct mass flux over a control volume 
face in an anisotropic medium using non orthogonal corner point grid. 

In short, this work proposes a new calculation transmissibility method based in a nine 
point scheme for two dimensional cases, or twenty three point scheme for three dimensional 
cases. As the classical Hegre’s (1986) form, widely used in numerical codes, the 
transmissibility of this work is written in a vector form. 

2 MATHEMATICAL AND NUMERICAL MODEL 

The transmissibilities form proposed are obtained from a volumetric flux calculation over a 
control volume surface, considering a single phase flow in a heterogeneous and anisotropic 
porous medium. The Darcy law is considered to express the fluid velocity.  

To get these transmissibilities, the next steps are followed: 
1. Auxiliary coordinate system ,ξ η  is used inside the control volume as shown in the 

Figure 1. 
2. Permeability full tensor, pressure gradient and the single phase flux is written using the 

,ξ η coordinate system. 
3. Variables available in the control volume face are calculated from properties of main 

control volumes neighbors. 
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Figure 1: Coordinate system used inside a control volume. 

 

2.1 Flux Evaluation 

Single phase fluid flux over control volume face is generally calculated from 

 ( )= − ⋅∇ ⋅∫
i

i

S

f p dSK n  (1) 

where K  is the full permeability tensor, ∇p  is the pressure gradient n  is the normal unitary 
vector pointing outside the control volume and  is the control volume surface area. S

Tada (2009) shows that, using the ,ξ η coordinate system (Figure 1), the flux over an east 
control volume face, is written as  

 cov cov
e

e e

p pf k k
J ξξ ξη
η

ξ η
⎛Δ ∂ ∂

= − +⎜ ∂ ∂⎝ ⎠

⎞
⎟  (2) 

where eJ  is the jacobian of the coordinate transformation, cov
ξξk  is the component of 

permeability tensor and the subscribe e denoting the east face point where all these variables 
are evaluated. Forward, the expressions of these parameters will be presented. 

2.2 Permeability Tensor 

Cartesian components of permeability tensor are, in a two dimensional domain, xxk , xyk , 
, having as basis the unitary vectorsyyk i  e j , denoted generally by . To get this tensor in a 

curvilinear basis, the following mathematical operation is necessary 

c
ie

 ∂ ∂
= =

∂ ∂

m n
c c

ij i j ij m n
i j

x xk k
x x

K e e e e  (3) 

where K  is the permeability tensor,  are its components in the cartesian system,  is 
the cartesian basis been,  and 

ijk

2

c
ie

1 =
ce i =ce j , and  is the curvilinear covariant basis vectors 

(Tada, 2009). 
me

The permeability tensor, written in a curvilinear system is 

 cov= mn m nkK e e  (4) 

Comparing the equations (3) and (4), the permeability tensor components, in the 
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curvilinear system are then  

 cov ∂ ∂
=

∂ ∂

m n

mn ij
i j

x xk k
x x

 (5) 

Developing the last equation, the components, in a two dimensional domain are given by 

 
( )

( )(
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cov 2 2 2
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2
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 (6)  

where ξx , ηx , ξy , ηy nd  a J  re the metrics of the basis system transformation calculated from 
gridblock coordinates. The components

a

xxk , xyk  an  yyk  are the cartesian components of the 
permeability tensor. 

d

2.3 Transmissibility Model 

The transmissibility model is based in the continuity of the flux over a surface of control. 
Consider for instance that the volumetric flux can be written from the follow equation 

 ( )ξξ ξ ξη η= − Δ + ΔAB AB ABf T p T p  (7) 

being ABf  the volumetric flux over the surface of the control volume between the gridblocks 
A and B, as showed in the Figure 2, ξξ

ABT  and ABT ξη  are the transmissibilities evaluated at the 
middle of the face. The purpose here is to get a formulation for transmissibilities in equation 
(7), this is done by considering the flux over the surface AB (Figure 2) is continuous and with 
same magnitude being calculated from A or B gridblock. In other words  

 = =A B ABf f f  (8) 

 

 
Figure 2: Transmissibility calculation between two gridblocks. 

The flux  crossing surface AB, using only the properties from gridblock A is Af

 ( cov cov1 2 ξ
ξξ ξη= − Δ + ΔA A

A

f k p k
J

)ηp  (9) 

being AJ  the transformation gridblock center jacobian, ξΔ = −i Ap P P ,  the pressure in the 
middle of the surface AB and 

iP
ηΔp

2

 the pressure variation along the face AB, calculated by 
interpolating the corner pressures of the surface AB from gridblocks neighbors. Note that, 
according to Figure 1, 1/ξΔ =  and 1ηΔ =  reason why the number 2, multiplying the first 
term in equation (9) show up.   

In the same way, the flux using the properties from gridblock B is given by  
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 ( cov cov1 2 ξ
ξξ ξη= − Δ + ΔB )η

B
B

f k p k p
J

 (10) 

Collecting the terms that multiply the ξΔp  and the ηΔp  terms, the expressions (9) and (10) 
can be rewritten as 

 ξξ ξ ξη η= − Δ − ΔA A A A Af T p T p  (11) 

 ξξ ξ ξη η= − Δ − ΔB B B B Bf T p T p  (12) 

where  

 ( ) ( ) ( ) ( )cov cov cov cov2 2
, , ,ξξ ξξ ξη ξηξξ ξξ ξη ξη= = = =A B A

A B A B
A B A
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T T T T
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B

B

k

J
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Add the equation (11) and (12), replacing ξΔ = −A i Ap P P , ξΔ = −B B ip P P  and noting that 
η η ηΔ = Δ = ΔA Bp p p , 
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Using = =A B ABf f f , 
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Therefore, the flux can be written as   

 ( )ξξ ξ ξη η= − Δ + ΔAB AB ABf T p T p  (16) 

and the transmissibilities are given by  

 
1

1 1 ,
ξη ξξ ξη ξξ
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−
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 (17) 

These transmissibilities are applied to a full tensor anisotropic and heterogeneous medium 
using a nine point scheme to a two dimensional case. For a three dimensional case, the 
procedure to get the transmissibilities is the same. Tada (2009) writes the transmissibilities 
(13) for the gridblock A, in a vector form to be used and calculated according the 
architectures of the numerical code. They are given by  

 
( )( ) ( )

,
A A A D A

A A
A A

T Tξξ ξη
⋅ ⋅ ⋅ ⋅ ⋅

= =
⋅

n K n A A n K n D A

D A D A⋅
 (18) 

where  is the vector from gridblock center to the center of the the gridblock face,  is 
the normal vector to the face with magnitude of the area face,  and 

AD A

An Dn  are respectively 
the unitary vector of  and the unitary normal vector of . A AD
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3 EXAMPLE RUN 

The following synthetic problem is run to validate the methodology exposed. It is 
considered a two-phase, incompressible, anisotropic and heterogeneous problem in a two-
dimensional domain, as showed in the Figure 3. The main rock and fluid data are summarized 
in Table 1. The capillary pressure is not considered, the relative permeability is made equal 
the fluid saturation and the initial conditions are uniform pressure (1.0 bar) and uniform oil 
saturation . 1.0oilS =
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Figure 3: Synthetic problem proposed. 

 
Porosity 0.20 
Water viscosity 1.0 cp 
Oil viscosity 10.0 cp 
Injectors wells with flow type condition 50 m³/day 
Producers wells BHP 1.0 bar (absolute)  
Well index 10 mD*m 

Table 1: Main input data. 

3.1 Solution Comparison with EbFVM simulator 

The solution of the problem above was compared with a validated simulator, the EbFVM – 
Element based Finite Volume Method developed in the SINMEC/UFSC laboratory 
(Cordazzo, 2006). As previously commented, this simulator is a nine point scheme in two 
dimensional domains which means that the volumetric flux over a control volume face is 
correctly evaluated considering truncations errors of second order. 

The run is performed with a 19x29 and 38x118 corner point grid and the solution for the 
pressure and water saturation is shown in Figure 4 after 200 days of simulation. Some 
comments must be done about these results. Despite the EbFVM to be a control volume 
method, as well as the present work, their numerical schemes are different, e.g., the EbFVM 
is a cell vertex method while the present finite difference method is cell center. Furthermore, 
there are many other details that can cause difference between the present work and EbFVM 
solutions. However, as it can be seen in the Figure 4, when a finer 38x118 grid is used, the 
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results are similar showing that the method proposed is consistent. 

   

 
Figure 4: Pressure and water saturation solution with a 19x29 and 38x118 corner point grid. 

Tada (2009) presents additional runs showing that the same problem when simulated using 
a five point scheme, with Hegre’s (1986) transmissibilities, generates strong grid effects 
orientation and the solution does not match with the corresponding nine point solution, even 
for fine grid simulations. Details about errors of Hegre’s (1986) transmissibility applied in 
non orthogonal grids and anisotropic medium can be found in Tada (2009). 

4 CONCLUSIONS 

The present work showed a correct and simple way to calculate the transmissibilities for 
full anisotropic tensor and heterogeneous medium using non orthogonal corner point grids 
and the traditional difference finite method. The transmissibilities presented were written in a 
vector form being easy to implement in numerical codes that uses the traditional finite 
difference method.  
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