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Abstract. This work presents a stabilized finite element method for the simplified black-oil model, 
which is of great importance in reservoir simulation. This model considers that the three fluids, water, 
oil and gas are incompressible and assumes no mass transfer among phases. We apply a stabilized 
finite element method, using the CAU shock-capturing technique, to discretize the equations in space. 
A segregated solution technique is used to solve the coupled differential equation system. We simulate 
a one-dimensional gas-water injection case in a petroleum reservoir. The results obtained in this work 
are compared with the analytical solution and also with other numerical solution computed with a 
coupled multiscale technique. We can conclude that the computational strategy utilized in this work 
yields results comparable to those obtained with the coupled multiscale method. 
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1. INTRODUCTION 
Simulation of three-phase porous media flows is of great interest in the petroleum industry 

since it permits to perform predictions of well productivity. These simulations are also indeed 
important due to the fact that the governing equations that represent flows in petroleum 
reservoirs are much similar to those used for basin modeling (Hantschel and Kauerauf, 2009). 

The most common model used to describe three-phase porous media flows is the black-oil 
model (Peaceman, 1977). This model is composed by large, coupled, strong nonlinear and 
time dependent partial differential equations. The complexity of these equations makes very 
important to start studying a simpler model, the simplified black-oil (Juanes and Patzek, 2005, 
Abreu, 2003, Sesini, 2006). This model is smaller in the sense that fewer partial differential 
equations are involved and the nonlinearities are not as strong as in the full black-oil model. 

To advance in time the simplified black-oil model coupled differential equation system two 
methods are used (Juanes, 2005): the simultaneous or fully implicit and the sequential 
solution. The first method solves all of the coupled nonlinear equations simultaneously and 
implicitly. It is a stable method and can be used with very large time steps. Even so, this 
method demands lots of memory and has comparatively high computational cost. The 
sequential solution method advances in time each equation separately. Each equation may be 
solved explicitly or implicitly. This method is less stable, consequently uses smaller time 
steps, but requires less memory space and has low computational complexity compared to the 
simultaneous method. 

Different methods are usually applied to discretize the governing equations when flexible 
meshes are used. Meshes can be structured or unstructured: control volume methods as CVFA 
(Control Volume Function Approximation) (Li et al., 2003), the hybrid finite element method 
as described in Abreu (2003) and stabilized finite element methods as SUPG (Streamline-
Upwind / Petrov-Galerkin) (Coutinho and Alves, 1999; Sesini et al., 2010) and ASGS 
(Algebraic Subgrid Scale) (Juanes and Patzek, 2005). SUPG consists in adding a stabilized 
term to the classical Galerkin formulation to magnify the stability in the direction of the 
streamlines. ASGS consists in a multiple-scale decomposition into resolved grid scales and 
unresolved subgrid scales, yielding a stable formulation for advection-dominated flows. 

Stabilized finite element methods are often supplemented by a shock-capturing technique 
to control the instabilities occurring at high gradient regions and from sharp moving fronts. 
Coutinho and Alves (1999) and Sesini et al. (2010) employ the SUPG stabilized finite 
element method plus the CAU shock-capturing technique, introduced earlier by Galeão e 
Dutra do Carmo (1988),  to simulate viscous-fingering in miscible flows in porous media. 
They reported very good results. At last, it is important to note that there is a necessity of 
developing stable, robust, efficient and accurate methods to simulate three-phase porous 
media flows. 

In this work we introduce a sequential finite element method for the simplified black-oil 
model, using the Galerkin method to discretize the pressure equation and the SUPG stabilized 
finite element method with the CAU shock-capturing technique to discretize the water and 
gas saturation equations. In the following section we describe briefly the governing equations 
and in the subsequent section we present the discrete equations. In the section 4 we describe 
the numerical example studied and show the numerical results obtained. Finally in the last 
section we present the conclusions of this work. 

2. GOVERNING EQUATIONS 
We present in this section the governing equations of the simplified black-oil model to 

simulate three-phase flows in porous media (Juanes and Patzek, 2005). The full black-oil 
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model assumes that no mass transfer occurs between the water phase and the other two phases 
(oil and gas) and also that oil does not volatilize. The component gas can be found in the gas 
phase or also dissolved in the oil phase. The mathematical problem can be described by a 
pressure equation and the water and gas saturation equations (Peaceman, 1977). 

In the simplified black-oil model is considered that the three fluids, water, oil and gas are 
immiscible, incompressible and there are no internal sources or sinks. Mass transfer between 
phases and gravitational and thermal effects are neglected. The governing equations in this 
case, in a domain with boundary Γ in a time interval [0, T] can be written as 

 
- Water saturation equation: 
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- Gas saturation equation: 
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- Oil saturation equation: 
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where the subscripts w, o and g denote the phases water, oil and gas. In these equations φ is 
the porosity, vi and si

The velocity of each phase, v
 are the velocity and the saturation of the i phase, respectively. 

i

 

, is represented by Darcy’s law: 

, , ,i i ip i w o g= − λ ∇ =v K  (4) 

where K is the absolute permeability tensor depending only on the position, λi and pi

 

 are 
the mobility and the pressure of the i phase, respectively. The mobility is given by 

i
i

i

k
λ =

µ  (5) 

where ki and μi
Each relative permeability k

 are the relative permeability and the viscosity of phase i, respectively. 
i depends on the saturations of the phases. These curves are 

obtained experimentally and typical cases for two phase flows are presented in Peaceman 
(1977). The porosity φ  is considered constant and as thermal effects and compressibility are 
neglected the viscosity μ i

The saturations of the water, oil and gas phases satisfy the constraint: 
 is assumed constant too. 

 1w o gs s s+ + =  (6) 

The phase pressures are related by the capillary pressures pcow and pcgo

 

 as: 

cow o wp p p= −  (7) 

 cgo g op p p= −  (8) 
These capillary pressures pcow and pcgo are functions of the saturations of the phases and 

also measured experimentally just as described above for each relative permeability ki. 
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The fractional flow functions fi 

 

are defined as, 

i
i

w o g
f λ

λ λ λ
=

+ +
 (9) 

Substituting the expression (4) for the velocities of the phases and the constraint condition 
(6) into the mass conservation equations (1) to (3), and with a little bit of algebraic 
manipulation we get the following three partial differential equations (10) to (12): 

 T 0∇⋅ =v  (10) 
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where Dww, Dwg, Dgw  and Dgg

 

 are diffusion-like tensors defined by 
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We consider no-flow boundary conditions, 

 . 0,   ,  ,  ,      i i w o g= = ∈Γv n x  (17) 
where n is the unit outward normal to the boundary Γ. In this work we use po, sw and so

 

 as 
the unknowns. The corresponding initial conditions are 

0( ,0) ( )o op p=x x , ∈Γx  (18) 

 
0( ,0) ( )w ws s=x x , ∈Γx  (19) 

 
0( ,0) ( )o os s=x x , ∈Γx  (20) 

In the next section we will see the finite element formulations applied to the simplified 
black-oil model. 
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3. SEMI-DISCRETE FINITE ELEMENT FORMULATION 
In this section we present the SUPG stabilized finite element method applied to discretize 

the equations in space of the simplified black-oil model, using a sequential method to solve 
the coupled system. We also describe the CAU shock-capturing technique added to the 
formulation to stabilize the solution in the shock regions. 

3.1 Sequential formulation of saturation equations 
We describe in this section only the finite element stabilized formulation applied to the 

water and gas saturation equations. The solution of the pressure equation is trivial when there 
are no sources or sinks. 

Considering a domain Ω subdivided in nel elements, Ωe
nel
e 1=, e=1, 2,…,nel, where Ω=  Ωe 

and Ωi  Ωj=ø. The interpolation functions spaces for water and gas saturations (sw
h, sg

h) and 
the weight functions space wh

 

 are defined as 
h 1 1{ / [ ( )], / [ ( )], ( )h h h h e h h

w w w w e w wis s s s P s t s= ∈ Ω Ω ∈ Ω =H  em Γ }i  (21) 

 
1 1{ / [ ( )], / [ ( )], ( )h h h h h e h h

g g g g e g gis s s s P s t s= ∈ Ω Ω ∈ Ω =H  em iΓ }  (22) 

 
h h 1 h 1 h{ / [ ( )], / [ ( )], 0h h e

ew w w w P w= ∈ Ω Ω ∈ Ω =H  em }Γ  (23) 
where H1h(Ω) is the finite-dimensional space defined on Ω and P1(Ωe) indicates first order 

polynomials in Ωe
Considering a standard discretization of Ω in finite elements, the Streamline-

Upwind/Petrov-Galerkin stabilized formulation for the saturation equations of each phase 
(water and gas) is written as 

. 

 

nel nel*

e 1 e 1
( ( , )) ( , ) ( ) 0e e

h h h h h h h h h h h
w w aw w w w w aw w ww L s d L w L s d s w s dτ δΩ Ω Ω
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∂

∂
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and gas respectively by 
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h
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h
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The differential operator for each phase Li
*(wh

 

) is defined as it follows 

* ih h
i T

i

fL w w
s
∂

= ⋅∇
∂

v
 (28) 

In equations (26) and (27) the first term is the Galerkin formulation, the first summation of 
element level integrals is the SUPG stabilization term and the second summation represents 
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the CAU shock- capturing term added to the formulation to avoid spurious oscillations around 
shock regions. 

The stabilized formulation SUPG involves a parameter τ that is dependent on the 
characteristic size of the element. Different forms to obtain τ and the element characteristic 
size for predominantly advective flows have been proposed. These forms are initially 
entranced by the works of Brooks and Hughes (1982), Hughes and Brooks (1979), Hughes 
and Tezduyar (1984), Tezduyar and Hughes (1982) and Tezduyar and Hughes (1983). Later 
Tezduyar and Park (1986) and Tezduyar and Ozawa (2000) introduce other expressions. The 
parameters they propose are computed from the element-level matrices and vectors, and these 
automatically take into account the local length scales as well as the advection field. 

The stabilization parameter using here for each phase τi

 

, introduced in the works of 
Coutinho and Alves (1996) and Codina (1993) is defined by 

1 ,1.0
2 3

T

e e

i e
ie

i

h Pemin
f
s

 
=  

∂  
∂

v
τ

 

(29) 

where the denominator is the apparent velocity in the element and ePe  is the local Peclet 
number defined as follows 

 

3

1
2

T

T T

e
e i

ie e
Te e

e ei i
ii

i i

f
s
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f f
s s

∂
∂

=
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 ∂ ∂ 

v

v D v
 

(30) 

The shock-capturing term added to the variational formulation also involves a parameter δ. 
This parameter also can be obtained using different expressions and in most cases depends 
nonlinearly on the element level residual. For a recent review see John and Knobloch (2007). 

In this work we adopt the CAU shock-capturing technique introduced by Galeão and do 
Carmo (1988). In this technique the residual dependent parameter has the following form, 
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where i=w,g and αi

 

 is a parameter defined by 

//1 ,0.7
2 4
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The apparent velocity in the element projected in the direction parallel to the solution 
gradient is defined respectively by 
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/ /

T

T

e
e hei

e i
e hei i

ie
i i

f s
f s s
s s

∂
⋅∇

∂ ∂
= ∇

∂ ∇

v
v

 (33) 
and the local Peclet number correspondent to this apparent velocity is 
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(34) 

To discretize the governing equations in time is applied the finite difference method using 
the generalized trapezoidal rule (Hughes, 1987). To solve the nonlinear and nonsymmetric 
equations systems emanating from the discretization of the water and gas saturation equation 
an iterative predictor multi-corrector algorithm is employed where the linearized systems of 
equations are solved by GMRES(m) method with an element-by-element Gauss Seidel 
preconditioner. In all simulations we adopt the implicit, second-order member of the 
generalized trapezoidal rule as the basic time integrator and each nonlinear saturation 
equation is solved sequentially until a convergence criteria is met or for a fixed number of 
nonlinear iterations. The resulting time marching scheme can be viewed as a block-iterative 
predictor-multicorrector strategy, where each block corresponds to a saturation equation. 

4. NUMERICAL RESULTS 
In this section we present numerical results obtained applying the computational strategy 

described above to a one-dimensional and incompressible three-phase flow in porous media 
problem. We compare the numerical results with the analytical solution (Juanes, 2003) and a 
numerical solution presented in Juanes and Patzek (2005) adopted here as reference numerical 
solution. 

4.1 Water-gas injection in a petroleum reservoir 
This case consists in the simultaneous injection of water and gas into a porous medium 

filled with oil, gas and a little quantity of water as described in Juanes (2003). 
The capillary diffusion is considered constant. Then the diffusive terms in equations (11) 

and (12) are given respectively as it follows 

 ( )w wsε∇ ⋅ ∇  (35) 

 ( )g gsε∇ ⋅ ∇  (36) 

where the capillary diffusion coefficients are set with small values, that is, 

 εw = 0.001,   εg

The relative permeability functions are 

 = 0.002. (37) 

 
2

rw wk s=  (38) 

 (1 )(1 )(1 )ro w g w gk s s s s= − − − −  (39) 

 
2(1 )rg g g g gk s sβ β= + −

 (40) 

where βg

 

=0.1, and the values for fluid viscosities of water, gas and oil respectively are: 

0.875,wµ = 0.03,gµ = 2.oµ =  (41) 
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It is imposed a constant initial condition 

 ( ,0) dx =u u  (42) 

and a Dirichlet boundary condition on the left side of the domain, 

 (0, ) et =u u  (43) 

The medium has the following initial saturations sw= 0.05, sg= 0.4, and so= 0.55. Water 
and gas are injected in such proportion that the saturations at the inlet are sw = 0.85 and sg

4.2 Reference numerical solution 

 = 
0.15, respectively. It is assumed that the saturations injected are constant during the 
experiment. These values of initial and injected saturations are representative of a linear 
water-alternate-gas (WAG) injection process in a petroleum reservoir after primary 
production. 

To compare the results obtained we use the numerical solution described in Juanes and 
Patzek (2005). They used a mesh with 40 elements, 2.5 2h e= − , and a time step 0.005t∆ = . 
Consequently the non-dimensional Peclet, Pe, and Courant, cfl, numbers for this case are 
respectively, 

 
30r

r

v hPe
ε

= ≈
 (44)

 

 
0.25rv tcfl

h
∆

= ≈
 (45)

 

where vr and εr

 

 are the reference velocity and the capillary diffusion coefficient 
respectively. In this case the reference coefficients assume the following values: 

1,rv = 0.001rε =  (46) 

Water and gas saturation equations are solved simultaneously in Juanes and Patzek (2005). 
The ASGS multiscale formulation is employed to discretize the equations in space. 
Stabilization parameters given by Hughes and Mallet (1986) are used. Also a multiscale 
shock-capturing technique to control spurious oscillations in the shock regions is added, 
where the nonlinear shock-capturing parameter has the following gradient-global form 

 

*( )h

sc
sc

C h

h

=δ
R u

U   (47) 

where Csc is a constant coefficient and Usc 

 

is a vector of constant solution characteristic 
values, taken as,  

(0.5,0.5) , 2sc scC= =U  (48) 

and R*(uh) is the element residue. 
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4.3 Numerical solution 
To simulate this one-dimensional problem we use a rectangular mesh of 50 cells along the 

longitudinal direction. Each cell is composed by 4 triangles totalizing 200 finite elements. 
Different time step sizes and multi-correction strategies, for the block-iterative predictor-
multicorrector algorithm described in section 3, are employed to adjust these numerical 
parameters. 

We use the following time step values: 

 1 2 30.005, 0.01, 0.02t t t∆ = ∆ = ∆ =  (49) 

Therefore the respective Courant numbers, with h = 0.01 and vr

 

 = 1, are 

1
1 2 30.5, 1, 2tcfl cfl cfl

h
∆

= = = =
 (50) 

In Figs. 1, 2 and 3 are shown the numerical results respectively obtained for each cfl and 
using 3 multi-corrections. We can note in these Figures that the more accurate result is the 
case using cfl = 0.5 (Fig. 1). The analytical and the reference numerical solutions are also 
plotted in the figures. 

 
(a) 

 
(b) 

Figure 1: Water Saturation (a) and Gas Saturation (b) with CAU Shock-capture Operator in the Time t = 0.5 with 
cfl = 0.5 and Maximum Number of Corrections Fixed in 3. 

(a) (b) 

Figure 2: Water Saturation (a) and Gas Saturation (b) with CAU Shock-capture Operator in the Time t = 0.5 with 
cfl = 1 and Maximum Number of Corrections Fixed in 3. 
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(a) (b) 

Figure 3: Water Saturation (a) and Gas Saturation (b) with CAU Shock-capture Operator in the Time t = 0.5 with 
cfl = 2 and Maximum Number of Corrections Fixed in 3. 

The accuracy of the results obtained with the sequential method although using bigger step 
times, is comparable to the precision of the reference solution which uses a totally implicit 
technique. In Fig. 4 we show the results computed for the case cfl = 0.5 and for the maximum 
number of multi-corrections equal to 20. We can observe that this result is very close to the 
case with 3 multi-corrections without meaningful enhancements in the exactness of the 
solution. The time marching scheme as described in section 3 can be viewed as a block-
iterative predictor-multicorrector strategy, where each block corresponds to a saturation 
equation. In Fig. 5 is presented the time history of the number of non-linear iterations of this 
time marching scheme, when the quantity of multi-corrections is set to 20. 

(a) (b) 

Figure 4: Water Saturation (a) and Gas saturation (b) CAU Shock-capture Operator in the Time t=0.5 with cfl = 
2 and Maximum Number of Non-linear Iterations Fixed in 20 
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Figure 5: Non-linear Iterations for each Time Step. 

5. CONCLUSIONS 
We applied a stabilized numerical formulation to simulate a simplified black-oil model. 

The numerical method applied is essentially composed by the SUPG stabilized formulation to 
discretize the equations in space supplemented by the CAU shock-capturing technique to 
stabilize the solution in the shock regions. A sequential technique was used to solve the 
coupled equations system and the generalized trapezoidal method was applied to discretize 
the problem in time. 

We simulated a one-dimensional three-phase flow case of simultaneous injection of water 
and gas in a petroleum reservoir (Juanes and Patzek, 2005). From the results obtained in this 
study, we can conclude that the numerical parameters that best represent the physical behavior 
of the problem for a mesh with 50 cells are: Courant number cfl = 0.5 and number of non-
linear iterations for the multi-corrections fixed to 3. 

We observed comparing the results with the analytical and numerical solutions that the 
sequential method combined with the formulation presented in this work is a competitive 
technique for the one-dimensional case studied here. 
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