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Abstract. This work presents a numerical and experimental methodologies specially developed for 

nonlinear free vibration analysis of very flexible structures. In this work, a clamped-free thin-walled 

metal column under the action of self-weight is investigated. This structure is characterized for 

presenting, in most cases, highly nonlinear responses, which can not be reproduced by conventional 

finite-element software due, mainly, to inertial non-linearities caused by the presence of the “softening 

phenomenon”. This phenomenon is related to the loss of stiffness due to the influence of the self-

weight together with large rotations, which are inherent to the free vibrations of columns with a high 

slenderness ratio, leading to important inertial non-linearities. Thus, to overcome this problem, the 

column is discretized as a sequence of coupled pendulums, retaining the main non-linearities of the 

problem. The resulting Euler-Lagrange Equations of Motion are solved by the Runge-Kutta integration 

technique, taking into account the inclusion of the non-linear terms associated to the stiffness of the 

structural system, aiming to obtain more accurate results, principally, for columns with lengths higher 

than the critical one. In order to verify the applicability and efficiency of the developed numerical 

methodology, several experimental free vibration assays were conducted considering the slender 

metallic column subject to its own weight, in the pre- and post-buckling regimes. As this kind of 

structure presents a high index of slenderness, its responses can be affected by the introduction of 

conventional sensors. Therefore, the developed experimental methodology is based on a computer-

based vision system that integrates, on-line, the digital image acquisition and its treatment using 

special image processing techniques. The main characteristic of this methodology is that it performs 

large displacements measurements without making contact with the structure and thus, not 

introducing undesirable changes in its behavior, for instance, appreciable changes in mass and stiffness 

properties. The obtained numerical results presented excellent correlation with the experimental ones, 

in the pre- and post-buckling regimes, considering the “softening phenomenon”. 
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1 INTRODUCTION 

The non-linear effects become increasingly important and difficult to be controlled 

as the structures become lighter and thinner. The catastrophic collapse of several 

large structures, anywhere in the world, or the unexpected behavior of certain 

structures, requiring costly changes in project, reinforcement, or the use of control 

systems, demonstrate this fact. Besides the presence of the geometrical non-linearity 

in the modelling of all slender structural element, it also can be taken into account 

the physical non-linearity, expressed through the stress-strain relations, non-linear 

damping, non-linear forces (such as from the action of fluids) and non-linearity 

coming from the boundary conditions (like those from unilateral contact, slacks on 

the links and non-linear springs, for example, cables used in floating structures). This 

way, the static and dynamic analysis of non-linear structural systems presents to 

engineers and researchers a variety of difficult problems solution. So, to solve these 

kind of problems, it is required the development of sophisticated analysis techniques 

and knowledge, to learn how the non-linearity affects the structural behavior. 

The influence of the self-weight on non-linear dynamic behavior of uni-

dimensional slender structures has been a subject of considerable interest in recent 

years too, mainly due to the increasing slenderness of the structural elements, besides 

its importance to non-linear mechanics (Jurjo et al. 2010, Gonçalves et al. 2006, Virgin 

and Plaut 2004). For these structures, the self-weight has a great influence on the 

geometrically non-linear behavior and stability. 

When studying slender elastic uni-dimensional structural elements, the use of 

strain-displacement linear relationships is not enough. These elements are very 

flexible, suffering large deflections and rotations. Therefore, it is necessary to use 

non-linear strain-displacement relationships, which leads to a geometrical non-linear 

phenomenon. 

To represent precisely this kind of structure, a numerical methodology was 

developed. In this methodology, the structure, in this case a thin-walled column, was 

modelled as a system with multiple pendulums, as shown in Figure 1. This model aims 

to represent accurately the large rotations which take place during the column 

vibration, particularly after its critical buckling length (Lcr). The resulting Euler-

Lagrange Equations of Motion from this model were solved by the forth order 

Runge-Kutta numerical method, which is largely applied due to their usually excellent 

results (Jurjo 2007, Gonçalves et al. 2006, Pamplona et al. 2001, Jurjo 2001, Anjos 

1995, Lee et al. 1993, Wang 1983). 

To evaluate the efficiency and accuracy of the numerical methodology in obtaining 

the dynamic responses, an experimental methodology has also been developed, 

based on digital image processing techniques (Jurjo et al. 2007, Gonçalves et al. 2006, 

Hack and Leroy 2005, Yoneyama et al. 2005, Jurjo et al. 2005, Lee and Shinozuka 

2006a, Lee and Shinozuka 2006b, Jones et al. 2006). These techniques are rapidly 

developing, mainly due to the progresses obtained in image acquisition systems and 

in the development of computers, algorithms and softwares used for general or 
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specific applications. 

The importance of this experimental methodology is that it enables one to perform 

non-contact displacement measurements, and thus, not introducing undesirable 

changes in the structure’s behavior, since the presence of contact conventional 

sensors would certainly cause changes in its behavior due to the extreme flexibility 

(high index of slenderness) inherent in this kind of structure. Taking it into 

consideration, the proposed experimental methodology only uses adhesive markers 

of a negligible mass compared to that of the structure, facilitating the 

implementation of the instrumentation of the experimental test and obtaining more 

accurate results (Jurjo 2007). This methodology can also be applied to large civil 

structures, such as bridges and viaducts, where the access for the installation of the 

conventional instrumentation is usually rather difficult (Lee and Shinozuka 2006a, Lee 

and Shinozuka 2006b). This is also a promising technique for structures under finite 

deformations (Jones et al. 2006). 

This experimental methodology has been used in an online computer-based vision 

system, which integrates acquisition and data processing of the images through 

special programming routines, which make it possible to sharpen the image, identify 

the adhesive markers (points of interest) and extract their coordinates in the image 

and convert it all to engineering units. 

An inherent advantage of this methodology lies in the low-cost of the developed 

vision system, comparing to other conventional systems and its similar in the market. 

Taking image as a movement sensor, several assays have been done in this work 

using a clamped-free thin-walled metal column under self-weight in the pre- and 

post-buckling regimes with different lengths, so that is possible to analyze its non-

linear dynamic behavior, in fundamental and post-critical path. This has shown to be 

a highly cost-effective and easy to implement experimental procedure for the analysis 

of very flexible structures, and yet maintains the advantage of dynamic measurements 

with high resolution.  

 

 

Figure 1 – Column modeling as a sequence of coupled pendulums. 

L 

q 

Mecánica Computacional Vol XXIX, págs. 8981-8993 (2010) 8983

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

2 EQUATIONS OF MOTION AND COMPUTATIONAL IMPLEMENTATION 

To deduce Euler-Lagrange Equations of Motion, it is necessary to obtain the 

energy functional of the structure. Such functional is given by Lagrange's Function 

(Lf), shown in Equation (1). 

Lf =T - p                                                                       (1) 

In Equation (1), quantities T e p are, respectively, kinetic and total potential 

energies of the structure. Kinetic energy is a function of the generalized coordinates, 

generalized velocities and time. Total potential energy is a function of only 

generalized coordinates and time (Buffoni 1998). 

The structure’s total potential energy is given by: 

VUP                                                                         (2) 

where: U and V are, respectively, the internal strain and the external potential 

energies. 

To the column modeled as a sequence of coupled pendulums, the kinetic and 

potential energies can be expressed as follows (Braun 2003): 
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where: mk, g, li and lj, i and j, and are, respectively, masses, gravity 

acceleration, cord lengths, generalized coordinates and velocities used in the 

mathematical modeling.  

Since the internal strain energy is associated to the springs in the column model, it 

can be expressed as: 
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where: K is the elastic constant of the springs. 

Manipulating Equations (1), (3), (4) and (5), the energy functional for a sequence of 

coupled pendulums, as shown in Figure 1, are: 
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In Equation (6), n is the number of pendulums used in the modeling. 

The Euler-Lagrange Equations of Motion, deduced from Hamilton's Principle (Maia 

2000, Clough and Penzien 1993), are: 

i

ii

Q
L

dt

dL





















 
,  i = 1,2, …, n                                    (7) 

where: Qi are the non-conservative generalized forces, including damping forces. 

This way, the equations of motion of the system of n pendulums, in matrix form, 

i


j

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where:   and C are, respectively, the angular acceleration and the damping 

coefficient. 

Equation (8) can be written in a more compact form: 

0..... 2    RCRKsenRWRJRM
                                         (9) 

where: RM, RJ, RW, RK and RC are, respectively, mass, gyroscopic (anti-

symmetrical), gravitational potential, stiffness and damping matrices. 

To solve the equations of motion of the modeling, presented in Equation (7), a 

Fortran implemented Forth-Order Runge-Kutta Algorithm, for a first order ordinary 

differential equations system, was applied. Thus, displacements, velocities and angular 

accelerations, for a determined value of n (better range of work: 20 – 50 pendulums) 

were obtained. From these data, the linear displacement, referring to the free end of 

the pendulums system, could be determined for each instant.  

3 EXPERIMENTAL METHODOLOGY (COMPUTER BASED-VISION SYSTEM) 

The proposed experimental methodology encompasses the following steps: 

Digitalization: the analogical images captured by the video camera are converted 

into digital images through a monochromatic digitalization board (frame grabber); (ii) 

Digital image processing: the quality of the acquired image is enhanced in order to 

provide a better identification of the image coordinates (u,v) of the centroids of the 

points of interest. The u and v coordinates of these points are obtained by 

transforming these points into small regions known in image processing as ROI 

(Regions of Interest); (iii) Calibration: The purpose of this step is to determine the 

transformation matrix that correlates the image coordinates and their respective 

actual coordinates. To obtain the coordinates transformation matrix it is necessary to 

apply an adequate calibration method. In this study the DLT method is used (Abdel-
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Aziz and Karara 1971); (iv) Reconstruction: This step consists in obtaining the actual 

coordinates by using the transformation matrix and the image coordinates. In this 

way, it is possible to obtain the actual position of the points of interest and compute 

the displacements without making contact with the structure. 

From these steps, a computational vision system, based on the programming 

language LabVIEW, which deals with, in real time, the acquisition and the processing 

of the digital image was developed. The program is named Image-Sensor Program 

(ISP). Additionally, this system allows the adjustments of the camera, such as zoom, 

focus, image capture mode (frame or field), among other functions, to be performed 

via programming. The camera used in this study has analogical video signals, the 

same used by television. The image capture mode applied in this work is based on a 

non-interlinked analogical video signal, denominated field. In this mode, the image is 

composed of a single field, even or odd, with a time interval between them of 1/60s. 

The field mode results in an image with half of the height, and twice the capture 

frequency of the frame mode (30 frames/second), i. e., 60 frames/second. 

3.1 DLT Method 

The DLT method uses the co-linearity equation (Haralick and Shapiro 1993) to 

express the relation between the image coordinates (u, v) and its respective actual 

ones (x, y) in the plane, that is, each actual point and its respective image generate a 

pair of equations, expressed in Equation (1). 

xL1 +yL2 + L3 – uxL7 –uyL8 = u 

                      xL4 +yL5 + L6 – vxL7 –vyL8 = v                                          (10) 

In Equation (10), the coefficients L1 to L8 are called calibration DLT parameters, 

which correlate the actual coordinates of a given point in the plane (x, y) to their 

respective coordinates in the image (u, v). Since the number of unknowns in Equation 

(10) is equal to eight (DLT parameters), at least 4 points are necessary to calculate the 

coefficients “Li”. 

Taking n reference points, the following system is obtained. 
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If n > 4, the system expressed in Equation (11) cannot be directly solved, since it is 

over-determined. In this case, the problem can be solved using the Least Square 

Method (LSM), which will search for the best adjustment of the “Li” coefficients from 

the set of actual and image coordinates, minimizing the errors. The application of the 

LSM to Equation (11) can be represented as: 

                  A2n x 8.L8 x 1 = B2nx1                                                             (12) 

Multiplying both sides of Equation (12) by the transposed of matrix A will result in:  
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                                                                (13) 

Manipulating Equation (10) in order to make (x, y) explicit, the following equation 

is obtained: 
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                                   (14) 

In order to minimize errors in the values of the (x, y) coordinates, this process can 

be extended to m cameras, through the equations: 
 
 
 
 
 
 
 
 
 
or 

(15) 

121222 . mxxxm FRE                                                                      (16) 

where m is the number of cameras. 

Equation (16) results in an over-determined system, which can again be solved by 

applying the LSM, through the equation: 

                                          1222122222 . mx

T

mxxmx

T

mx FEREE                                                           
(17) 

                                                                 G2x2                      H2x1 

Once the (u, v) coordinates of the image of the same point in several cameras (at 

least two cameras) and the “L” coefficients of each one of the cameras are known, 

their actual coordinates (x, y) can be obtained through the Equation (17). 

3.2 Experimental Apparatus 

To perform the experimental test, a special apparatus, presented in Figure 2, was 

developed, where the column, the video camera, the non-oscillating illumination 

system and the adhesive markers can be seen. A special clamp for the column was 

designed to enable the variation of the column length during the experiments. 

A metallic sheet of brass, representing a slender column, with width b = 9.0 cm; 

thickness h = 0.45 mm; load per unit length (self-weight) q = 3.43 N/m; Young’s 

Modulus E = 123257 MPa (mean values of the experimental results) and critical 

length (Lcr): 56.44, was used in the experiments. 

The tests were performed with different column lengths, longer (60, 70 cm) and 

shorter (30, 40, 50 cm) than the critical buckling length (Lcr), enabling an analysis of 

the dynamic behavior along the fundamental and post-critical equilibrium paths. 

R 

E 
F 
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In this study, a black background, shown in Figure 2, was used to minimize 

interferences verified in images acquired with the use of other background colors 

(Jurjo et al 2010). The advantages of the black background are to facilitate the image 

processing and, particularly, eliminate shadows generated by the column on the 

background. 

To represent the points of interest, the small white rectangular adhesives markers, 

illustrated in Figure 2, are used. These adhesives are placed along the length of the 

column at pre-established distances, to obtain the displacements and the deformed 

shapes of the column at different instants of time. These markers were also placed on 

the black background, in order to help in the calibration process. Figure 2 also shows 

the disposition of the points of interest in the columns and in the calibration. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 – Apparatus used in the experimental analysis. 

To analyze the free vibration responses, the following strategy was adopted: 

columns with a length smaller than the critical one are subjected to an initial 

displacement (and null velocity); on the other hand, columns with a length greater 

than the critical one are released from the vertical unstable equilibrium position. In 

this case, the column diverges initially from the unstable configuration, presenting a 

sharp downward movement and, after this, vibrates around the stable post-buckling 

configuration. For the tensioned configuration, since this configuration is always 

stable, an initial displacement is imposed to the free end of the column. 

As mentioned previously, only one video camera is used with image capture in the 

field mode. Despite introducing more imprecision in the analysis, this has the 

advantage of a higher capture frequency (60 frames/s). This frequency became 

essential in the analysis of the behavior of the column with lengths above the critical 

one, mainly in the first instants, when the column during the process of divergence 

from the unstable equilibrium position exhibits large displacements and velocities. 

With the use of ISP, the time responses of the x and y coordinates of the markers 

placed along the column is obtained for all of the analyzed configurations. In this 

way, it is possible to determine the natural frequencies and damping rates for the 

different column lengths.  
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4 RESULTS AND COMMENTS 

Figure 3 shows the variation of the displacement at the tip of the column obtained 

by numerical integration of the equations of motion and the results obtained 

experimentally, using the ISP, for different column lengths. 
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Figure 3 – Comparison between the dynamic responses obtained by the numerical modeling and by 

the ISP. 

From the results presented in Figure 3, it is possible to observe an excellent 

correlation between numerical and experimental results, assuring the accuracy and 

the applicability of the methodologies developed in this work, principally, for columns 

lengths higher than the critical one, where the “softening phenomenon” has a great 

influence. 

It was also verified that the numerical methodology presented in this work was 

more accurate for the simulation of the “softening phenomenon”, on the nonlinear 

dynamic behavior of the compressed columns, than the methodology based on the 

application of Rayleigh-Ritz Energy Method using form or approximate functions, 

which are responsible to represent, in a best way, the deflection curve of the structure 

(Jurjo 2007). 

To obtain more accurate results, principally for columns with lengths higher than 
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the critical one, it is necessary to represent, in a better way, the stiffness non-linearity 

of the structure. In the case of the column with length equal to 70 cm (see Figure 3) 

as can be noted that the numerical methodology has been attended the geometrical 

and inertial non-linearities, needing to represent with a little more accuracy the 

stiffness non-linearity of the column. Thus, it would be necessary the inclusion of the 

non-linear terms associated to the stiffness of the structural system in the Lagrange’s 

Equations of  Motion (see Equation 8). The insertion of these non-linear terms in the 

equations of motion could be done considering the Inextensional Elastica Theory, 

where the bending moment is proportional to the curvature of the structure, as 

showed in Equation (18). 

LINEARNONKEIM  *                                                                (18) 

where: E, I and K are, respectively, the Young’s Modulus, the moment of inertia and 

the curvature of the structure.  The curvature is expressed by: 

2
3

2

2

2

])(1[
dx

dy

dx
yd

K LINEARNON














                                                             (19) 

The function y(x) can be obtained using an approximate equation for the 

deflection curve of the compressed column. Experimental tests, using the 

computational vision system and conventional sensors (strain gauges), has been 

conducted and the numerical simulations are being accomplished, aiming to obtain 

better dynamic responses taking into account the non-linear terms of the stiffness. 

Figure 4 shows the variation of the “instantaneous frequency” as a function of time 

for a column with L= 50cm. 
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Figure 4 – Natural frequency behavior during the free-vibration movement. 

The behavior of the instantaneous natural frequency showed in Figure 4, can be 

explained from Figure 3, where it can be seen an increase in the vibration period as 

the free-vibration amplitude decreases, indicating that the column frequency-

vibration amplitude is of the softening type. This does not agree with the usual results 

obtained in literature for slender beams, which are usually of the hardening type 

(Sathyamoorthy 1998). This behavior of the natural frequency is related to the loss of 

stiffness due to the influence of the self-weight together with large rotations which 

are inherent to the free vibrations of columns with a high slenderness ratio. Recently, 
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Chirikov (Chirikov 2003) also observed a softening phenomenon in the vibration 

analysis of beams undergoing large rotations. 

The comparison between numerical and experimental results, for different lengths 

of the column, was realized. The results are illustrated in Figure 5. 

 

 

 

 

 

 

Figure 5 – Natural frequency behavior as a function of the free-vibration movement amplitude. 

From the results presented in Figure 5, it is possible to observe a good correlation 

between numerical and experimental results, for the analyzed column lengths, 

confirming the efficiency and accuracy of the developed numerical methodology, 

principally, to the lengths higher than the critical value, where the variation of the 

natural frequency has a great intensity due to the increase of the “softening 

phenomenon”.  

5 CONCLUSIONS 

With the use of the numerical modeling and the computer-based vision system, it 

was possible to obtain, accurately, the dynamic responses of the slender column, for 

different columns lengths. These developed methodologies also allowed obtaining, 

with efficiency and precision, the variation of the free-vibration amplitude of the 

column as a function of the natural frequency. 

From the excellent correlation between numerical and experimental results, it is 

also concluded that the developed mathematical modeling represents the dynamic 

behavior of slender columns in a versatile and precise way, for all tested lengths, 

including post-buckling regimes. Both the experimental results and those obtained by 

integration of the non-linear equations of motion show that for compressed column 

lengths higher than 40 cm present a softening behavior not observed in the free 

vibration of slender beams. It is believed that this behavior is due to the loss of the 

compressed column stiffness, caused by the simultaneous effect of the self-weight 

together with the large rotations presented in the free-vibration movement 

(softening phenomenon), which lead to important inertial non-linearities. 

Regarding to the alternative experimental methodology developed in this study, 

based on the digital image processing techniques and on the DLT method, has 

proved to be an efficient tool for a precise dynamic analysis of structures that cannot 

be monitored by conventional sensors. 

One of the advantages of the developed computational vision system is the 

capacity to measure dynamic displacements in several points of the structure with 
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efficiency and accuracy, allowing in this way a better identification of the structural 

behavior. Another advantage is related to the low cost of the developed 

measurement system, as compared to conventional systems and to similar vision 

systems found in the market. 
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