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Abstract. The aim of this paper is to investigate migration strategiesfor the execution of parallel genetic
algorithms in a Multiprocessor System on Chip (MPSoC). Somemultimedia and Internet applications
for wireless communications are using genetic algorithms and can benefit of the advantages provided by
parallel processing on MPSoCs. In order to run such algorithms, we use a Network-on-Chip platform,
which provides the interconnection network required for the communication between processors. Two
migration strategies are employed, in order to analyse the speedup and efficiency each one can provide,
considering the communication costs they require.
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1 INTRODUCTION

The increasing demand of electronic systems, that require more and more processing power,
low energy consumption, reduced area and low cost, has lead to the development of more com-
plex embedded systems, also known as SoC (System on Chip), inorder to run multimedia,
Internet and wireless communication applicationsRuiz and Antonio(2003). These systems can
be built of several independent subsystems, that work in parallel and interchange data. When
these systems have more than one processor, they are called Multi-Processor System on Chip
(MPSoC). Currently, several products, such as cell phones,portable computers, digital televi-
sions and video games, are built using embedded systems. While in embedded systems the
communication between Intellectual Property (IP) blocks is basically done through a shared
bus, in multiprocessor embedded systems this kind of interconnection compromises the ex-
pected performanceMello (2003). In this case, the communication is best implemented using
an intrachip network, implemented by a Network on Chip (NoC)Benini and Micheli(2002)
Jantsch et al.(2004) Ivanov and Micheli(2005) platform.

Some multimedia and Internet applications for wireless communications are using genetic
algorithms and can benefit from the advantages provided by parallel processing on MPSoCs. In
this paper, we present a parallel genetic algorithm that runs on Hermes Multi-Processor System
(HMPS) architecture and discuss the impact of migration strategies on performance. In Section
2, we describe the HMPS architecture. The island model parallel genetic algorithm, used in this
paper, is presented in Section 3 and some simulation resultsare introduced in Section 4. Finally,
we draw some conclusions and future work in Section 5.

2 THE NETWORK-ON-CHIP PLATFORM

Figure 1 shows the NoC platform, called Hermes Multiprocessor System (HMPS) Wos-
zezenki(2007). MPSoC architectures may be represented as a set of processing nodes that
communicate via a communication network. Switches composethe network and RISC proces-
sors the processing nodes (Plasma). Information exchangedbetween resources are transfered
as messages, which can be split into smaller parts called packagesTerry Tao Ye and Micheli
(2003). The switch allows for retransmission of messages from onemodule to another and de-
cides which path these messages should take. Each switch hasa set of bidirectional ports for
the interconnection with a resource and the neighboring switches. As the total number of tasks
composing the target application may exceed the MPSoC memory resources, one processor is
dedicated to the management of the system resources (MP - Manager Processor). The MP has
access to the task repository, from where tasks are allocated to some processors of the system.

The NoC communication network is based on HERMESMoraes et al.(2004), a parameteri-
zable infrastructure that implements wormhole packet switching with a 2D mesh topology. The
HERMES switch employs input buffers, centralized control logic, an internal crossbar and five
bi-directional ports. The local port establishes the communication between the switch and its
local IP core. The other ports of the switch are connected to neighboring switches. A centra-
lized round-robin arbitration grants access to incoming packets and a deterministic XY routing
algorithm is used to select the output port. The processor isbased on the PLASMA processor
Rhoads(2006), a compact RISC microprocessor. It has a compact instruction set comparable to
a MIPS-1, 3 pipeline stages, no cache, no Memory Management Unit (MMU) and no memory
protection support, in order to keep it as small as possible.A dedicated Direct Memory Access
(DMA) unit is also used for speeding up task mapping, but not for data communications. The
processor local memory (1024 Kbytes) is divided into four independent pages. Page 0 receives
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Figure 1: HMPS architecture, with 9 RISC Plasma processors connected to a 3×3 mesh network

the microkernel and pages 1 to 3 the tasks, where each task canhold 256 Kbytes (0x40000).
The HMPS communication primitives,WritePipe() andReadPipe(), essentialy abstract com-

munications, so that tasks can communicate with each other without knowing their position on
the system, either on the same processor or a remote one. WhenHMPS starts, only the micro-
kernel is loaded into the local memory. All tasks are stored in the task repository. The manager
processor is responsible for reading the object codes from the task repository and transmit them
to the other processors. The DMA module is responsible for transfering the object code from
the network interface to the local memory.

3 ISLAND MODEL PARALLEL GENETIC ALGORITHM

In the island model, serial isolated subpopulations evolvein parallel, where each one is
controlled by a single processor and periodically sends itsbest individuals to neighboring sub-
populations, receiving from them their best individuals asresult. These individuals are used to
substitute the local worst ones. It is obvious that the GA execution time increases with popula-
tion size. Therefore, small subpopulations tend to converge quickly when isolated.

3.1 The Algorithm

The Parallel Genetic Algorithm (PGA) is implemented using the HMPS communication
primitives. Each processor corresponds to an island and itsinitial subpopulation is randomly
generated, evolving independently from the other subpopulations, until the migration operator
is activated, as described in Algorithm1. Premature convergence occurs less in a multipopu-
lation GA and can be ignored, when other islands produce better results. Each island can use
a different set of GA operators, i.e. crossover and mutationrates, which causes different con-
vergence. Migration of the chromosomes among the islands prevents mono-race populations,
which converge prematurely. Periodic migration, which occurs after some generations, prevents
a common convergence among the islands.

When the MPSoC is initialized, the microkenel of the MP obtains the slave processors ad-
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dresses, the maximum number of processors used by the platform, the maximum number of
tasks to be executed by each processor and the maximum numberof used by the platform.
Then, the microkernerl of the MP makes the tasks allocation of the PGA among the slave pro-
cessors. Each slave processor executes one instance of the PGA.

Algorithm 1 PGA
1: Define and initialize the evolutionary parameters
2: t← 0
3: Initialize a random populationp(t)
4: Evaluatep(t) in order to find the best solution
5: while (t < NumGenerations) do
6: t← t + 1
7: Selectp(t) from p(t− 1)
8: Crossover
9: Mutation

10: Evaluatep(t) in order to find the best solution
11: if (t mod MigrationRate = 0) then
12: Migrate local best[p(t)] to the next processor and receive remotebest[p(t)] from the

previous processor
13: Replaceworst[p(t)] by best[p(t)]
14: end if
15: end while

An PGA requires the definition of some parameters: number of processor, how often the
migration will take place, which individuals will migrate and which individuals will be replaced
due to migration. The island model introduces a migration operator in order to migrate the best
individuals from one subpopulation to another.

3.2 Migration Strategies

There are several strategies used to migrate individuals from one subpopulation to another.
Among them we can mention the ring topology and the neighborhood topology. In the ring
topology, the best individuals from one subpopulation can only migrate to an adjacent one. As
seen in Figure2, for example, the best individuals from subpopulation 6 canonly migrate to sub-
population 1 and the best individuals from subpopulation 1 can only migrate to subpopulation
2. For this kind of strategy, migration is implemented as in Algorithm 2. In the neighborhood
topology, the best individuals from one subpopulation can migrate to a left and to a right neigh-
bor, as seen in Figure2. For this kind of strategy, migration is implemented as in Algorithm3.

Choosing the right time of migration and which individuals should migrate are two critical
decisions. Species may evolve quickly in small populations. However, migrations should occur
after a time long enough for allowing the development of goodcharacteristics in each subpo-
pulation. Migration is a trigger for evolutionary changes and should occur after a fixed number
of generations in each subpopulation. The migrant individuals are usually selected from the
best individuals in the origin subpopulation and they replace the worst ones in the destination
subpopulation. Intuition is still strongly recommended tofix the migration rate and there are no
fixed rules that may give good resultsHue(1997).

There are two reasons to send an individual from one subpopulation to another. One is to
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Figure 2: Migration topologies

Algorithm 2 Migration function for the ring communication
1: local := getprocessid();
2: if local = 0 then
3: next:= 1; previous:= number of tasks−1;
4: end if
5: if local > 0 e local < number of tasks−1 then
6: next:= local + 1; previous:= local − 1;
7: end if
8: if local = number of tasks−1 then
9: next:= 0; previous:= local − 1;

10: end if
11: Sendthe best individuals to the task, whose identifier isnext;
12: Receivethe best individuals from the task, whose identifier isprevious.

increase the fitness of the destination subpopulation. The other reason is to help maintaining
the population diversity of the other subpopulation. As in the sequential GA, issues of selection
pressure and diversity arise. If a subpopulation receives frequently and consistently highly fit
individuals, these become predominant in the subpopulation and the GA will focus its search on
them at the expense of diversity loose. On the other hand, if random individuals are received,
the diversity may be maintained, but the fitness of the subpopulation may not be improved
as desired. As migration policy, the best individual is chosen as the migrant, replacing the
worst one in the receiving subpopulations. For the migration frequency, an empirical value was
adopted based on the number of generations.

4 SIMULATION RESULTS

The two non-linear functions defined by Equation1 were used by the PGA for optimization.
Functionf1(x) has 14 local maximum e one global maximum in the interval [-1,2], with an
approximate global maximum of2, 83917, atx = 1, 84705. Functionf2(x, y) has various local
minimum and one global minimum in the interval−3 ≤ x ≤ 3 and−3 ≤ y ≤ 3, and an
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Algorithm 3 Migration function for the neighborhood communication
1: local := getprocessid();
2: if local = 0 then
3: next:= 1; previous:= number of tasks−1;
4: end if
5: if local > 0 e local < number of tasks−1 then
6: next:= local + 1; previous:= local − 1;
7: end if
8: if local = number of tasks−1 then
9: next:= 0; previous:= local − 1;

10: end if
11: Sendthe best individuals to the task, whose identifier isprevious;
12: Sendthe best individuals to the task, whose identifier isnext;
13: Receivethe best individuals from the task, whose identifier isprevious;
14: Receivethe best individuals from the task, whose identifier isnext.

approximate global minimum of−12.92393, atx = 2, 36470 andy = 2, 48235.

maxx f1(x) = sen(10πx) + 1

minx,y f2(x, y) = cos(4x) + 3sen(2y) + (y − 2)2 − (y + 1)
(1)

The performance of the PGA can be evaluated based on its speedup and efficiency. Speedup
Sp Chiwiacowsky et al.(2003) is defined according to Equation2, whereT1 is the execution
time of the sequential version of the genetic algorithm andTp is the execution time of its parallel
version.

Sp =
T1

Tp

(2)

EfficiencyEp Chiwiacowsky et al.(2003) is defined according to Equation3, where1

p
< Ep ≤ 1

andp is the number of processors employed.

Ep =
Sp

p
(3)

Based on simulation results for the optimization off1(x) andf2(x, y) using the ring and
neighborhood topologies, we obtained the graphics for speedup and efficiency shown in Figure
3 and Figure4 respectively. The data are presented as triples consistingof the number of slave
processors used (NumProc), the migration rate (MigRate) and the migration interval (MigInt).

5 CONCLUSIONS

For the ring topology, the behavior of the two functions shows that, keeping the migration
interval constant and varying the migration rate, if the increase in the migration rate resulted
in an increase in speedup and efficiency, the fitness of the individuals, received by one or more
populations during the migration phase, accelerated the evolutionary process, decreasing the
convergence time. On the other hand, if the increase in the migration rate resulted in the de-
crease of speedup and efficiency, then we can say that the fitness of these individuals did not
influence enough the evolutionary process of the populations that received them. In this case,
the convergence time increases.
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(a) Speedup off1(x)

(b) Efficiecy off1(x)

Figure 3: Impact of the migration rate and migration interval on speedup and efficiency for functionf1(x), consi-
dering the used topology
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(a) Speedup off2(x, y)

(b) Efficiency off2(x, y)

Figure 4: Impact of the migration rate and migration interval on speedup and efficiency for functionf2(x, y),
considering the used topology
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