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Abstract. The aim of this paper is to investigate migration stratefpethe execution of parallel genetic
algorithms in a Multiprocessor System on Chip (MPSoC). Somutimedia and Internet applications
for wireless communications are using genetic algorithnts@n benefit of the advantages provided by
parallel processing on MPSoCs. In order to run such algosthwe use a Network-on-Chip platform,
which provides the interconnection network required fa tommunication between processors. Two
migration strategies are employed, in order to analysepgbedup and efficiency each one can provide,
considering the communication costs they require.
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1 INTRODUCTION

The increasing demand of electronic systems, that requore and more processing power,
low energy consumption, reduced area and low cost, hasdahae development of more com-
plex embedded systems, also known as SoC (System on Chipjdén to run multimedia,
Internet and wireless communication applicati®wsz and Antonid2003. These systems can
be built of several independent subsystems, that work iallghand interchange data. When
these systems have more than one processor, they are callaePkbcessor System on Chip
(MPSoC). Currently, several products, such as cell phgmasable computers, digital televi-
sions and video games, are built using embedded systemse Whembedded systems the
communication between Intellectual Property (IP) block®asically done through a shared
bus, in multiprocessor embedded systems this kind of iaterection compromises the ex-
pected performancilello (2003. In this case, the communication is best implemented using
an intrachip network, implemented by a Network on Chip (N&&hini and Micheli(2002
Jantsch et al2004) Ivanov and Michel(2005 platform.

Some multimedia and Internet applications for wireless mamications are using genetic
algorithms and can benefit from the advantages provided tafiplgprocessing on MPSoCs. In
this paper, we present a parallel genetic algorithm that aimHermes Multi-Processor System
(HMPS) architecture and discuss the impact of migratioatsgiies on performance. In Section
2, we describe the HMPS architecture. The island modellghganetic algorithm, used in this
paper, is presented in Section 3 and some simulation reseliatroduced in Section 4. Finally,
we draw some conclusions and future work in Section 5.

2 THE NETWORK-ON-CHIP PLATFORM

Figure 1 shows the NoC platform, called Hermes Multiprocessor 3gsteMPS) Wos-
zezenki(2007). MPSoC architectures may be represented as a set of progessies that
communicate via a communication network. Switches compusaetwork and RISC proces-
sors the processing nodes (Plasma). Information exchametgceen resources are transfered
as messages, which can be split into smaller parts callddagasTerry Tao Ye and Micheli
(2003. The switch allows for retransmission of messages frommadule to another and de-
cides which path these messages should take. Each switéhdef bidirectional ports for
the interconnection with a resource and the neighborintgcbes. As the total number of tasks
composing the target application may exceed the MPSoC merasources, one processor is
dedicated to the management of the system resources (MPagdéaRrocessor). The MP has
access to the task repository, from where tasks are allbta®ome processors of the system.

The NoC communication network is based on HERM#&aes et al(20049), a parameteri-
zable infrastructure that implements wormhole packetawiig with a 2D mesh topology. The
HERMES switch employs input buffers, centralized contogjit, an internal crossbar and five
bi-directional ports. The local port establishes the comication between the switch and its
local IP core. The other ports of the switch are connecteceighioring switches. A centra-
lized round-robin arbitration grants access to incomingkpes and a deterministic XY routing
algorithm is used to select the output port. The procesdoased on the PLASMA processor
Rhoadg2006, a compact RISC microprocessor. It has a compact instrusgt comparable to
a MIPS-1, 3 pipeline stages, no cache, no Memory Managem@n{\MMU) and no memory
protection support, in order to keep it as small as possibldedicated Direct Memory Access
(DMA) unit is also used for speeding up task mapping, but notthita communications. The
processor local memory (1024 Kbytes) is divided into fowlependent pages. Page 0 receives
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Figure 1: HMPS architecture, with 9 RISC Plasma processmaected to a 83 mesh network

the microkernel and pages 1 to 3 the tasks, where each tasiotth256 Kbytes (0x40000).

The HMPS communication primitiveg/ritePipd) andReadPipé), essentialy abstract com-
munications, so that tasks can communicate with each otileout knowing their position on
the system, either on the same processor or a remote one. MBS starts, only the micro-
kernel is loaded into the local memory. All tasks are storethe task repository. The manager
processor is responsible for reading the object codes fnertask repository and transmit them
to the other processors. The DMA module is responsible &orstiering the object code from
the network interface to the local memory.

3 ISLAND MODEL PARALLEL GENETIC ALGORITHM

In the island model, serial isolated subpopulations evatvparallel, where each one is
controlled by a single processor and periodically sendsass individuals to neighboring sub-
populations, receiving from them their best individualsesult. These individuals are used to
substitute the local worst ones. It is obvious that the GAcaiien time increases with popula-
tion size. Therefore, small subpopulations tend to coresgrgckly when isolated.

3.1 The Algorithm

The Parallel Genetic Algorithm (PGA) is implemented usihg HMPS communication
primitives. Each processor corresponds to an island anidiital subpopulation is randomly
generated, evolving independently from the other subdjauis, until the migration operator
is activated, as described in Algorithin Premature convergence occurs less in a multipopu-
lation GA and can be ignored, when other islands producebessults. Each island can use
a different set of GA operators, i.e. crossover and mutates, which causes different con-
vergence. Migration of the chromosomes among the islanglgepts mono-race populations,
which converge prematurely. Periodic migration, whichuwe@fter some generations, prevents
a common convergence among the islands.

When the MPSoC is initialized, the microkenel of the MP ofahe slave processors ad-
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dresses, the maximum number of processors used by therpiatfiee maximum number of
tasks to be executed by each processor and the maximum nuwhbsed by the platform.
Then, the microkernerl of the MP makes the tasks allocatidhe@dPGA among the slave pro-
cessors. Each slave processor executes one instance @#he P

Algorithm 1 PGA
1. Define and initialize the evolutionary parameters
2:t+—0
3: Initialize a random populatiop(t)
4: Evaluate p(t) in order to find the best solution
5. while (t < NumGenerationsio
6: t—t+1
7
8
9

Selectp(t) from p(t — 1)
Crossover
: Mutation
10:  Evaluate p(t) in order to find the best solution
11:  if (t mod MigrationRate = Pthen
12: Migrate local best[p(t)] to the next processor and receive remiet€ p(t)] from the
previous processor
13: Replaceworst[p(t)] by best[p(t)]
14:  endif
15: end while

An PGA requires the definition of some parameters: numberatgssor, how often the
migration will take place, which individuals will migrated which individuals will be replaced
due to migration. The island model introduces a migratiografor in order to migrate the best
individuals from one subpopulation to another.

3.2 Migration Strategies

There are several strategies used to migrate individuaihs tne subpopulation to another.
Among them we can mention the ring topology and the neightmmitopology. In the ring
topology, the best individuals from one subpopulation cally migrate to an adjacent one. As
seen in Figur@, for example, the best individuals from subpopulation 6aaly migrate to sub-
population 1 and the best individuals from subpopulatiomad anly migrate to subpopulation
2. For this kind of strategy, migration is implemented as Iggkithm 2. In the neighborhood
topology, the best individuals from one subpopulation cagrate to a left and to a right neigh-
bor, as seen in Figura For this kind of strategy, migration is implemented as igaithm 3.

Choosing the right time of migration and which individuate®ald migrate are two critical
decisions. Species may evolve quickly in small populatiéf®vever, migrations should occur
after a time long enough for allowing the development of gobdracteristics in each subpo-
pulation. Migration is a trigger for evolutionary changeslahould occur after a fixed number
of generations in each subpopulation. The migrant indaisl@are usually selected from the
best individuals in the origin subpopulation and they replthe worst ones in the destination
subpopulation. Intuition is still strongly recommendedixahe migration rate and there are no
fixed rules that may give good resukisie (1997).

There are two reasons to send an individual from one subpbpnlto another. One is to
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Figure 2: Migration topologies

Algorithm 2 Migration function for the ring communication
1: local = getprocessid();

2: if local = 0then

3: next:=1; previous:= number of tasks-1;

4: end if

5: if local > 0 elocal < number of tasks-1 then

6: next:=local 4+ 1; previous:= local — 1,

7: end if

8: if local = number of tasks-1 then

9: next:=0; previous:= local — 1;

10: end if

11: Sendthe best individuals to the task, whose identifiemest
12: Receivethe best individuals from the task, whose identifigorisvious

increase the fitness of the destination subpopulation. Tier eeason is to help maintaining
the population diversity of the other subpopulation. Adia sequential GA, issues of selection
pressure and diversity arise. If a subpopulation receiraxsuently and consistently highly fit
individuals, these become predominant in the subpopulatial the GA will focus its search on
them at the expense of diversity loose. On the other handndaem individuals are received,
the diversity may be maintained, but the fitness of the subladipn may not be improved
as desired. As migration policy, the best individual is @moss the migrant, replacing the
worst one in the receiving subpopulations. For the migrefiequency, an empirical value was
adopted based on the number of generations.

4 SIMULATION RESULTS

The two non-linear functions defined by Equatibwere used by the PGA for optimization.
Function f;(x) has 14 local maximum e one global maximum in the interval 2J1 with an
approximate global maximum @f 83917, atz = 1,84705. Functionfs(z, y) has various local
minimum and one global minimum in the intervaB < z < 3and-3 < y < 3, and an
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Algorithm 3 Migration function for the neighborhood communication
1: local := getprocessid();

2: if local = 0then

3: next:=1; previous:= number of tasks-1;

4: end if

5: if local > 0 elocal < number of tasks-1 then

6: next:=local 4+ 1; previous:= local — 1,

7: end if

8: if local = number of tasks-1 then

9: next:=0; previous:= local — 1;

10: end if

11: Sendthe best individuals to the task, whose identifigprisvious
12: Sendthe best individuals to the task, whose identifiemest

13: Receivethe best individuals from the task, whose identifigorigvious
14: Receivethe best individuals from the task, whose identifienéxt

approximate global minimum 6£12.92393, atx = 2, 36470 andy = 2, 48235.

max, fi(x) = sen(10mx) 4 1
1)
min, , fo(z,y) = cos(4x) + 3sen(2y) + (y — 2)* — (y + 1)

The performance of the PGA can be evaluated based on itsigpaed efficiency. Speedup
S, Chiwiacowsky et al(2003 is defined according to Equatidh whereT; is the execution
time of the sequential version of the genetic algorithm&is the execution time of its parallel

version.

T,

p

Sp 2)
Efficiency I/, Chiwiacowsky et al(2003 is defined according to Equati@nwhere% <E,<1
andp is the number of processors employed.

E,=— 3)

Based on simulation results for the optimizationfefz) and f,(z,y) using the ring and
neighborhood topologies, we obtained the graphics fordygeand efficiency shown in Figure
3 and Figured respectively. The data are presented as triples consistitinge number of slave
processors usetNumProg, the migration rateNligRate and the migration intervaMigint).

5 CONCLUSIONS

For the ring topology, the behavior of the two functions shdhat, keeping the migration
interval constant and varying the migration rate, if ther@ase in the migration rate resulted
in an increase in speedup and efficiency, the fithess of theidugls, received by one or more
populations during the migration phase, accelerated tb&igonary process, decreasing the
convergence time. On the other hand, if the increase in tigeatnon rate resulted in the de-
crease of speedup and efficiency, then we can say that thesfitiehese individuals did not
influence enough the evolutionary process of the populatibat received them. In this case,
the convergence time increases.
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Figure 3: Impact of the migration rate and migration inténraspeedup and efficiency for functigi(z), consi-
dering the used topology
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Figure 4: Impact of the migration rate and migration intéwa speedup and efficiency for functiofa(z, y),
considering the used topology
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