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Abstract. Particle Swam Optimization (PSO) is a population-based and gradient-free optimization 

method developed by mimicking social behaviour observed in nature. Its ability to optimize is not 
specifically implemented but emerges in the global level from local interactions. In its canonical 

version, there are three factors that govern a given particle’s trajectory: 1) the inertia from its previous 

displacement; 2) the attraction to its own best experience; and 3) the attraction to a given neighbour’s 
best experience. The importance given to each of these factors is regulated by three coefficients: 1) the 

inertia; 2) the individuality; and 3) the sociality weights. The settings and relative settings of these 

coefficients rule the trajectory of the particle when pulled by these two attractors. While divergent 
trajectories are of course to be avoided, different speeds and forms of convergence of a given particle 

towards its attractor(s) take place for different settings of the coefficients. A more general formulation 

is presented, aiming for a better control of the embedded randomness. Guidelines as to how to select 

the settings of the coefficients to obtain the desired behaviour are offered. As to the convergence speed 
of the whole algorithm, it also depends on the speed of spread of information within the swarm. The 

latter is governed by the structure of the neighbourhood, whose study is beyond the scope of the 

research presented here. The objective of this paper is to help understand the core of the PSO 
paradigm from the bottom up by offering some insight into the form of the particles’ trajectories, and 

to provide some guidelines as to how to decide upon the settings of the coefficients in the particles’ 

velocity update equation in the proposed formulation to obtain the type of behaviour desired for the 
given particular problem. General-purpose settings are also suggested, which provide some trade-off 

between the reluctance to getting trapped in suboptimal solutions and the ability to carry out a fine-

grain search. The relationship between the proposed formulation and both the classical and constricted 

PSO formulations are also provided. 
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1 INTRODUCTION 

Particle Swarm Optimization (PSO) is a global optimizer in the sense that it is able to 

escape poor suboptimal solutions. This is possible thanks to a parallel search carried out by a 

population of cooperative individuals –called particles– which profit from sharing information 

acquired through experience. 

Individually, each particle is pulled by two attractors, while also carrying some inertia 

from its previous displacement. One of the attractors is its own best previous experience, and 

the other is the best previous experience of a given neighbour. Thus, these are the three basic 

ingredients ruling a particle’s trajectory: the inertia from its previous displacement; the 

attraction to its own best previous experience; and the attraction to a given neighbour’s best 

previous experience. In the classical formulation, the importance granted to each of these 

three ingredients is controlled by three coefficients: the inertia; the individuality; and the 

sociality weights. Thus, the individual behaviour of a particle is governed by the settings of 

these coefficients. Random weights embedded in the particles’ velocity update equation 

introduce creativity into the system so as to avoid getting trapped in some regular pattern. 

The other important aspect with regards to the particles’ behaviour is which neighbours are 

to inform of their best experiences to which particles. In other words, how to define the social 

attractor in the particles’ velocity update equation, thus governing the particles’ social 

behaviour. This leads to the development of infinite designs of social networks within the so-

called swarm (population), which are typically referred to as neighbourhood structures or 

neighbourhood topologies. 

There is always the need of a trade-off between the explorative and the exploitative 

behaviour of the particles in the swarm. Explorative behaviour is better in avoiding premature 

convergence and in escaping local attractors, whereas exploitative behaviour is better in 

performing a fine-grain search while exhibiting faster convergence. This trade-off may be 

controlled by both the coefficients’ settings and the neighbourhoods’ topology. This paper 

presents a study of the former, whilst the study of neighbourhood topologies is beyond the 

scope of the research presented here. 

The remainder of this paper is organized as follows: the PSO method is reviewed in section 

2; the research body of the paper is presented in section 3, where the theoretical convergence 

studies are offered in section 3.1; different speeds and forms of convergence for different 

regions of the convergence graph are shown in section 3.2; a reformulation of the PSO basic 

equation so as to control the range of randomness is proposed in section 3.3; while guidelines 

for the settings of the coefficients in order to obtain the desired behaviour are provided in 

section 3.4. Final remarks and lines for future research are presented in section 4. 

2 PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization is a population-based and gradient-free optimization method 

introduced by social-psychologist James Kennedy and electric engineer Russell C. Eberhart in 

1995 (Kennedy and Eberhart, 1995). The method was inspired by earlier bird-flock 

simulations (e.g. Heppner and Grenander (1990); Reynolds (1987)) and strongly influenced 

by Evolutionary Algorithms (EAs). Therefore it has roots on different fields such as social 

psychology, Artificial Intelligence (AI), and mathematical optimization. At present, its main 

applications are in solving optimization problems that are difficult to be handled by traditional 

methods. The algorithm is especially suitable for nonlinear problems with real-valued 

variables, although adaptations can be found in the literature to deal with discrete problems 

(e.g. Kennedy and Eberhart (1997); Kennedy and Eberhart (2001) (pp. 289‒299); Mohan and 
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Al-Kazemi (2001); and Clerc (2004)). Given that gradient information is not required, non-

differentiable and even discontinuous problems can be handled. In fact, since the method 

imposes no restrictions to the functions involved, they do not even need to be explicit. 

Since PSO is not deterministically implemented to optimize but to simulate some social 

behaviour, its optimization ability is an emergent property resulting from local interactions 

among the particles. This makes it difficult to understand its theoretical bases. Nonetheless, 

considerable theoretical work has been carried out on simplified versions of the algorithm 

(e.g. Ozcan and Mohan (1998); Ozcan and Mohan (1999); Kennedy and Eberhart (2001); van 

den Bergh (2001); Clerc and Kennedy (2002); Trelea (2003); Clerc (2008); Kennedy (2008); 

and Innocente (2010)). For a comprehensive review of the method, refer to Engelbrecht 

(2005) and Clerc (2006a). For a short review, see Bratton and Kennedy (2007). 

Theoretical studies of the PSO algorithm’s behaviour in the presence of randomness are 

beyond the scope of this thesis. Only few researchers ‒to the best of our knowledge‒ dared 

take this challenge. Jiang et al. (2007) studied the convergence of an isolated particle using 

stochastic process theory, viewing the particles’ position as a stochastic vector. By studying 

the convergence of the expectation and of the variance of the particle’s position, they claim to 

have derived the ‘stochastic convergent condition’ of the particle swarm system. Clerc 

(2006b) studied the stagnation phenomenon in PSO (no improvement observed over several 

time-steps). In that extensive formal study, he analyzed the distribution of velocities of a 

particle with stochastic forces. In turn, Poli (2008) presented a method to determine the 

characteristics of the sampling distribution of a PSO algorithm, and its changes as particles 

search for better individual best experiences. 

2.1 Basic algorithm 

While the behaviour of the whole system emerges from decentralized local interactions 

among the particles in the swarm, the individual behaviour of each particle in classic PSO is 

governed by Eqs. (1) and (2): 
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Where: 
 t
ijv

 
: j

th
 component of the velocity of particle i at time-step t. 

 t
ijx

 
: j

th
 coordinate of the position of particle i at time-step t. 

ϕi : Individual acceleration coefficient. 

ϕs : Social acceleration coefficient. 

w, iw, sw : Inertia, individuality, and sociality weights, respectively. 

U(0,a) : Random number from a uniform distribution in the range [0,a] resampled anew 

every time it is referenced. 
 t
ijpbest

 
: j

th
 coordinate of the best position found by particle i by time-step t. 

 t
ijlbest

 
: j

th
 coordinate of the best position found by any particle in the neighbourhood of 

particle i by time-step t. 

Mecánica Computacional Vol XXIX, págs. 9253-9269 (2010) 9255

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

The settings of the inertia (w), individuality (iw) and sociality (sw) weights in classic PSO 

governs the individual behaviour of a given particle. Loosely speaking, a high w results in 

higher reluctance to changing the direction of its displacement; a high iw results in higher 

confidence thus typically delaying convergence; and a high sw leads to higher conformism 

thus typically accelerating convergence. There are, however, other issues for different 

combinations of settings that may modify this behaviour. For instance, increasing 

individuality over sociality may actually increase convergence speed (see Innocente (2010) or 

Sienz and Innocente (2010)), while some coefficients result in the particles diverging from 

rather than clustering around the attractors. One classical means to control the full or even 

temporary explosions is to limit the size of the updates in every dimension as in Eq. (3). 

         j

t

ij

t

ijj

t

ij vvvvv  max max sign            0abs if   (3) 

The general flowchart for the whole PSO algorithm is offered in Figure 1, where the 

update of the particles’ velocities and positions are as shown in Eqs. (1) and (2). 

 

Figure 1: General flowchart for the whole PSO algorithm. 

2.2 Neighbourhood topology 

The speed of convergence of the algorithm as a whole depends on the speed of 

convergence of each particle towards its attractors (pbest and lbest) ‒governed by the 

coefficients’ settings‒ and also on the speed of spread of information throughout the swarm. 

The latter is governed by the neighbourhood topology. In other words, the update of lbest in 

Eq. (1), which governs the cooperation between particles, is controlled by the structure of the 

social network in the swarm. While this topic is beyond the scope of this paper, some popular 

neighbourhood topologies are presented in Figure 2. 

For studies on neighbourhood topologies, refer, for instance, to Kennedy (1998); Kennedy 

(1999); Suganthan (1999); Mendes (2004); Li (2004); Engelbrecht (2005) (107‒109); 

Kennedy and Mendes (2006); Clerc (2006a) (87‒101); Abraham, Liu, and Chang (2006); 

Mohais (2007); Akat and Gazi (2008); Miranda, Keko, and Duque (2008); and Innocente 

(2010) (chapter 7). 

No 

Yes 

START 

END 

Initialize particles’ positions and velocities 

Evaluate particles’ conflicts 

Initialize particles’ individual experience 

Find best social experience 

Update particles’ velocities and positions, and evaluate their conflicts 

Update each particle’s individual experience 

Update best experience of each particle’s neighbourhood and/or of the swarm 

Stopping criteria attained? 

M. INNOCENTE, J. SIENZ9256

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

2.3 Additional comments 

Another means of affecting the social behaviour is by changing the number of attractors. 

For instance, by having two social attractors −one local and one global− or by means of the 

so-called fully-informed PSO in Mendes, Kennedy, and Neves (2004) and Kennedy and 

Mendes (2006), where every particle is influenced to some extent by all its neighbours. 

 

Figure 2: a) global topology; b) ring topology with two neighbours; c) ring topology with four neighbours; d) 

wheel topology; e) random topology; f) forward topology with two neighbours (from Innocente (2010)); g) von 

Neumann topology (from Kennedy and Mendes (2006)). No arrow means that the link is bidirectional. 

3 COEFFICIENTS’ SETTINGS 

The settings of the coefficients w, ϕi, and ϕs in Eq. (1) ‒and therefore of ϕ in Eq. (2)‒ 

govern the behaviour of a given particle when pulled by its attractors pbest and lbest. The 

first objective should consist of choosing coefficients that ensure convergence of the particle 

towards its attractors
1
. Once convergence is guaranteed, the form of convergence affects the 

exploration and exploitation abilities of the particle. This results in controlling the algorithm’s 

capabilities of performing a fine-grain search and of avoiding premature convergence, which 

are typically conflicting objectives. 

3.1 Convergence 

Since each dimension of the search-space is treated independently from the others in PSO, 

the theoretical analyses can be performed on one dimensional space. If only one particle is 

considered, Eq. (1) becomes Eq. (4). 
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A particle ‘k’ can be viewed as being pulled by a single attractor (pk), which results from a 

randomly weighted average of the components of pbestk and lbestk, as shown in Eq. (5). If the 

coefficients ϕi and ϕs were constant for all components of particle ‘k’, the attractor pk would 

be located somewhere in the line joining the attractors pbestk and lbestk. This is not the case 

in PSO, although each component of pk is indeed a weighted average of the corresponding 

components of the attractors, as can be observed in Eq. (5). 

                                                        
1 Note that convergence of the full algorithm also depends on the neighbourhood structure. 
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For the one-particle system and the one dimensional case studied within this section, the 

attractor is given by Eq. (6). 
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Further simplifying the system, consider ϕi and ϕs kept constant (randomness removed) and 

stationary attractors pbest and lbest (particles’ interactions removed). This implies that ϕ and 

the overall attractor p (see Eq. (6)) are also constant. Hence the system in Eq. (4) can be 

rewritten as in Eq. (7). 
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Introducing the first equation in Eq. (7) into the second, the second order linear recurrence 

relation in Eq. (8) can be obtained. 

   .1 )2()1()( pxwxwx ttt     (8) 

The two roots (r1 and r2) of the characteristic polynomial of this second order linear 

recurrence relation are offered in Eq. (9). 
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There are three cases for the general solution of the recurrence relation in Eq. (8), 

depending on the value of   in Eq. (9): 

1) 02  : The roots of the characteristic polynomial are real and different, and the solution 

is given by Eq. (10). 
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2) 02  : The roots of the characteristic polynomial are complex conjugate numbers, and 

the solution is given by Eq. (11). 
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3) 02  : The roots of the characteristic polynomial are real and the same, and the solution 

is given by Eq. (12). 
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The regions in the ‘ϕ‒w’ plane corresponding to each of these three cases are shown in 

Figure 3 where the points on the parabola correspond to γ
2
 = 0, the region inside the parabola 

corresponds to the complex conjugates roots (γ
2
 < 0), while the remainder of the plane 

corresponds to two different and real-valued roots (γ
2
 > 0). 

 

Figure 3: Regions in the ‘ϕ‒w’ plane corresponding to each of the three cases of γ. The points on the parabola 

correspond to γ2 = 0; the region inside the parabola corresponds to the complex conjugates roots; while the 
remainder of the plane corresponds to two different and real-valued roots. 

Therefore, there are two conditions of convergence for this deterministic, isolated particle, 

each of which is sufficient. In other words, either Eq. (13) or Eq. (14) must be complied with 

to ensure convergence. Note that these equations are mutually exclusive. 
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Solving the inequalities in Eq. (14), and considering the complex region in Figure 3 

together with the convergence condition in Eq. (13), the convergence region in the ‘ϕ‒w’ 

plane for the deterministic, isolated particle is the blue-shaded triangle in Figure 4 (refer to 

Innocente (2010) for further details). 

Although there is a region of convergence with w < 0, this is of no practical interest 

because it goes against the concept of inertia. That is to say that the particle tends to keep 

some momentum from its previous displacement rather than to drastically move in the 

opposite direction. This can occur due to the attractors, but should not be caused by the inertia 

component whose function is actually to counteract these drastic changes of direction. Thus 

the convergence region of practical interest is the area bounded by the four straight lines in 

Figure 4. 
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Given that the attractors are stationary, the described behaviour is that of a particle 

between updates of its attractors. When at least one of them is updated, the particle is driven 

towards the new p. At every stage, convergence of the particle towards the current attractor is 

ensured. Eventually, better experiences cannot be found, and the particle converges towards 

the last attractor. Therefore the simplification of considering them stationary does not affect 

the guaranty of convergence inferred from the blue-shaded triangle in Figure 4. 

 

Figure 4: Convergence region in the ‘ϕ‒w’ plane for the deterministic, isolated particle (blue-shaded triangle). 

Regarding the randomness, if ϕmax = iw + sw (see Eq. (2)) is such that the deterministic 

particle with ϕ = ϕmax results in convergence, the random particle for which 0 ≤ ϕ ≤ ϕmax will 

also converge eventually. It just does so in a more erratic fashion, where some local 

explosions are possible (refer to Innocente (2010)). The use of the vmax constraint in Eq. (3) 

typically helps control these so-called ‘random explosions’ as well as the erratic trajectories. 

3.2 Speed and form of convergence 

Once convergence is ensured, the speed and form of convergence strongly affects the 

performance of the algorithm, controlling its abilities to avoid premature convergence, to 

escape local attractors, and to fine-tune the search. 

In order to show how different areas within the convergence region result in different 

speeds and forms of convergence, twenty selected ‘ϕ‒w’ pairs are shown in Table 1 and 

Figure 5. Note that the convergence region within the ‘ϕ‒w’ plane in Figure 5 has been 

trimmed by removing the part corresponding to w < 0 (which is of no practical interest). 

The twenty ‘ϕ‒w’ pairs in Figure 5 have been divided in three groups of eight points each: 

sub-regions I, II and III. The trajectories of the deterministic particle associated to the points 

in sub-region I are offered in Figure 6, those associated to the points in sub-region II are 

shown in Figure 7, while those associated to the points in sub-region III are presented in 

Figure 8. 

As it can be observed, all the ‘A’ points (A1 to A6) result in either cyclic or pseudo cyclic 

behaviour. Also refer to Eq. (11) with w = 1; Clerc and Kennedy (2002); Innocente (2010); 

and Sienz and Innocente (2010). 

The ‘ϕ‒w’ pairs D5 and C6 are on another boundary of the convergence region, where both 
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roots of the characteristic polynomial are real-valued. For the points on that boundary line, the 

root 12 r  in Eq. (9), while the trajectory is governed by Eq. (10). For the points D5 and C6, 

the other root 01 1  r  and the trajectories exhibit asymptotic explosions (see Figure 8). 

Since this second root is greater in magnitude for C6 ( 50.01 r ) than for D5 ( 25.01 r ), 

the size of the explosion is greater for the former, as shown in Figure 8. The greater the values 

of ϕ and w along that line the greater the explosion (for 0w ). In fact, ‘ 00.0  ;00.2  w ’ 

results in cyclic behaviour ( 00.01 r ) whereas ‘ 00.1  ;00.4  w ’ ( 121  rr ) results in a 

linear explosion (see Eq. (12)). Greater values lead to exponential explosions with 11 r  and 

12 r . 

  
ϕ 

0.50 1.00 1.50 2.00 2.50 3.00 

w 

1.00 A1 A2 A3 A4 A5 A6 

0.75 B1 B2 B3 B4 B5 B6 

0.50 C1 C2 C3 C4 C5 C6 

0.25 D1 D2 D3 D4 D5 D6 

Table 1: Coordinates of twenty four selected points in the ‘ϕ‒w’ plane within or near the convergence region. 

Three sub-regions containing eight points each are defined (see Figure 5). 

 

Figure 5: Twenty four selected points in the ‘ϕ‒w’ plane within or near the convergence region. Three sub-

regions containing eight points each are defined (I, II and III). The points inside the blue-shaded polygon lead to 
convergence, all ‘A’ points lead to pseudo cyclic trajectories, whereas C6, D5 and D6 lead to divergence. 

For the points along the boundary corresponding to ϕ = 0, it is self-evident that there would 

be no movement unless there is an initial velocity. In the latter case, ‘ 1  ;0  w ’ results in a 

linear explosion (see Eq. (12), as 121  rr ). 
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Figure 6: Trajectory of the deterministic particle for the coefficients corresponding to points A1 to D2 within 

Sub-region I in Figure 5. 

 

M. INNOCENTE, J. SIENZ9262

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 
 

 
 

 
 

 

Figure 7: Trajectory of the deterministic particle for the coefficients corresponding to points A3 to D4 within 

Sub-region II in Figure 5. 
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Figure 8: Trajectory of the deterministic particle for the coefficients corresponding to points A5 to D6 within 

Sub-region III in Figure 5. 
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In turn, ‘ 0  ;0  w ’ obviously results in no movement, as it can be observed in Eq. (7). 

Also note that in the latter case ,0  ,1 21  rr  and 1  so that )1()( xx t   in Eq. (10). 

For ‘ 10  ;0  w ’, the explosion is asymptotic, where 11 r  and 10 2  r  in Eq. (10). 

Note that the trajectories for 0  are not included in Figure 6 to Figure 8 because they 

are of no practical interest. 

As to the convergent trajectories, it is obvious that the speed of convergence is a factor to 

take into account as it allows saving computational cost. However fast convergence is not 

always desirable as it counteracts the main strength of PSO: its ability to escape poor sub-

optimal solutions. Of course a convenient speed of convergence is problem-dependent, where 

information such as the multimodality of the problem ‒if known‒ and the computational 

resources available need to be taken into account. The slower the convergence the more 

robust the algorithm is. However, if too slow, convergence may not occur by the time the 

search is terminated. In addition, the form of convergence is also critical in the performance 

of the algorithm. Note, for instance, that the speeds of convergence of points B2 and B6 are 

not too different (refer to Figure 5, Figure 6 and Figure 8), while their forms of convergence 

are. It is up to the user to choose the type of behaviour desired. In this particular case, for 

instance, B6 comprises a more robust setting which would be likely to obtain better results in 

general in abstract search-spaces such as those of mathematical optimization problems. 

Settings like B2 may be useful when the search-space is in the real world such as in 

applications like ‘swarm robotics’, where the sizes of the displacements have a real monetary 

cost associated. Nonetheless, settings like B5 or B6 should be usually preferred. 

3.3 Reformulation to control range of randomness 

Note that the analysis in the previous sections considers the deterministic particle. Once 

randomness is reintroduced, average behaviours such as those of B4, B5, C4 and C5 are 

advisable. However, if max swiwaw  in the classical PSO formulation (see Eq. (2)) is 

chosen within the convergence region in Figure 5, the ϕmean that can be obtained is restricted. 

In addition, controlling the range of ϕ allows controlling the strength of randomness in the 

algorithm, where the stronger the influence of randomness the more erratic the trajectories 

and the more different the actual behaviour is from the average one. A more general 

formulation is offered in Eq. (15), which allows controlling the strength of randomness. 
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(15) 

3.4 Coefficients’ settings guidelines 

It is advisable that the settings lead to convergence without external mechanisms enforcing 

it. Thus, at least ‘ϕmean‒w’ should be within the convergence region. Figure 9 shows advised 

regions within the ‘ϕ‒w’ plane from where to choose w, ϕmin and ϕmax. 
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Choose 90.030.0  w . Preferably, 

 90.050.0  w  (16) 

Higher values increase the ability to avoid premature convergence whilst lower values 

speed up convergence and improve the fine-grain search. 

Choose 0min   and 00.400.2 max  . Advice: 

 
 1200.2

00.100.0

max

min





w


 (17) 

If 0min  , the stochastic acceleration coefficient (ϕ) may approach zero. Hence a high 

inertia weight (w) with 0min   may lead to greater local explosions for a sequence of low 

values of ϕ generated. If 0min  , the local explosions are more controlled. 

 

Figure 9: Suggested region in the ‘ϕ–w’ plane from where ϕ is to be randomly sampled (blue dotted lines). The 

regions of suggested upper (ϕmax) and lower (ϕmin) limits of ϕ are shown in green and red dotted lines, 

respectively. 

Note that min  and max  define the average behaviour ( mean ) as well as the strength 

awarded to randomness. For the same average behaviour, a greater interval of ϕ results in 

higher exploration, more erratic behaviour, and slower convergence. Advice: 

   00.250.000.1 minmaxmean    (18) 

Note that lower accelerations lead to higher amplitudes and lower frequencies of the 

oscillatory trajectories around the attractors. Higher amplitudes widen the exploration region 

while higher frequencies result in the particles overflying their attractors a higher number of 

times, and approaching them from both sides in each dimension (advisable). 

Choose ip, sp, and vmax. Advice: 

 50.0 spip  (19) 

  
minmaxmax 50.0 jjj xxv   (20) 
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As mentioned before, greater values of the coefficients are more robust. In the absence of 

any information regarding the problem, general-purpose settings that would work reasonably 

well on most problems are 80.070.0  w  and ϕmax close to the convergence boundary. 

Classical PSO formulation 

To translate the proposed formulation into the classical one, replace ϕmin in Eq. (17) by Eq. 

(21). Other relations between the two formulations are offered in Eq. (22). 

 0min   (21) 
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 (22) 

Given Eq. (21), higher values of max  also have the indirect effect of increasing the effect 

of randomness (widen the range of ϕ). That is, the lower the max  the more similar the actual 

behaviour is to the average behaviour. And therefore, higher values of max  indirectly 

decrease the speed of convergence and result in more erratic behaviour. 

Constricted PSO formulation 

Choose aw and 10  . Advice: 

 
1
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





aw
 (23) 

Replace Eqs. (16) and (17) by Eq. (24). 
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(24) 

 

4 FINAL REMARKS AND FUTURE RESEARCH 

A formal analysis of the influence of the coefficients in the velocity update equation on the 

trajectory of a deterministic particle was presented, and the sets of settings that result in the 

convergence of the deterministic particle towards its attractors were presented. Within this set, 

the types of behaviours to be expected for different combinations of settings were provided, 

allowing the user to choose the type of behaviour desired for a given problem and available 

resources. The classical PSO algorithm was reformulated to allow better control of the 

strength of randomness desired, and guidelines were provided for the coefficients’ settings. 

The relations between the proposed formulation and both the classical and the constricted 

PSO (the latter from (Clerc and Kennedy, 2002)) were offered, so that the guidelines can also 

be applied to them if desired.  

The next step in our research is the study of the influence of randomness on the trajectory 

of the isolated random particle, some of which can be found in (Innocente, 2010). Advanced 
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studies including the influence of randomness can be found in (Jiang et al., 2007), (Clerc, 

2006b), and (Poli, 2008). 

To complete the reincorporation of the complexity of the full paradigm to the simplified 

system studied, the interaction between particles and the influence of varying the relative 

strength of individuality and sociality need to be studied. These aspects have been analyzed to 

some extent in (Innocente, 2010) and (Sienz and Innocente, 2010). Finally, while these 

studies help the user understand the behaviour of the system and select the coefficients that 

result in the desired behaviour for a given problem and resources, how to decide on what 

behaviour should be desired is not always straightforward. 
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