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Abstract. When a ship sails, it irradiates a particular noise that categorizes it in a 

specific class. The identification of the ship classes is a non trivial task and it is 

performed employing the passive SONAR systems. The information processed by the 

SONAR sensors is usually evaluated by an operator that identifies the contact. 

Recently, intelligent systems capable to extract important features from the acoustic 

signal irradiated by ships have been proposed to increase the reliability and speed up 

the process of decision making. In this work, it is employed a new methodology 

applied in the process of analyzing and mining databases based in tensor analysis. 

This methodology showed to be an interesting treatment for this type of problem 

overcoming other methods. 

  

                                                           
1
 SONAR = SOund Navigation And Ranging. 
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1 INTRODUCTION 

The SONAR (SOund Navigations and Ranging) is the main equipment used to 

capture noises in the sea. The passive SONAR only “hear” acoustic signal irradiated 

from ships. The particular noise irradiated by the sailing ships can categorize them 

due to the similarities in the acoustic signal in ships of the same class. The 

identification of the ship class through the analysis of its irradiated noise is a non 

trivial task and it is performed employing the passive SONAR systems. This noise is 

received by the SONAR sensors and processed to provide visual and auditory 

information to an operator especially trained to this task. The SONAR operator (SO) 

evaluates such information and identifies the contact. The efficiency of this method is 

directly related to the ability of the SO in isolating and identifying relevant 

characteristics of the received signal, both in terms of auditory information and in 

terms of the content of the frequency spectrum. 

To increase reliability and speed up the process of decision making intelligent 

systems capable to extract important features from the acoustic signal irradiated by 

the ships have been proposed. Most of the works about this subject perform analysis 

of the extracted features from decomposition of the acoustic signal, either in time 

domain or frequency domain, ignoring composition of these two dimensions. On the 

other hand, those datasets frequently contain values that represent combinations of 

different properties of the real world. Systems for modeling real noise produced by a 

ship must remove irrelevant components in order to obtain the true value of the data. 

Tensor analysis may be an interesting treatment for this type of problem due to its 

ability to deal with various components independently or in an integrated way. Tensor 

analysis adds two important aspects in the process of analyzing and mining 

databases. The first one is their ability to "dissect" the various procedures employed 

in the capture phase of the data (Data Cleaning). The second is segmentation of 

instances (or attributes) of a dataset, either directly by the matrix decomposition or 

from any standard method. The tensor decomposition also allows other types of 

analysis, for example, to verify the importance of an instance or critical attribute, 

allowing the representation of data in terms of a small number of substructures. 

This work uses Multi-way analysis as a tool for modeling acoustic signature 

pattern, considering the variation of signal strength, simultaneously as a function of 

frequency and time, providing compact and robust treatment to background noise 

and consequently eliminating the need of a specialist. The parallel decomposition 

method CANDECOMP/PARAFAC is used to ensure a representative minimum 

structure of data instances, eliminating irrelevant information to class-ship mapping 

process. Model validation was performed with real dataset and good results were 

obtained. 

2 CONTEXT 

The complex decomposition of different noise sources originated by other ships 

and the self noise, in addition to the noise from local fauna make the operator task 
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quite tiring. The use of automated methods to support the detection and 

classification task reduces pressure on the SO. 

Datasets from many diverse areas as scientific, medical, engineering or social areas 

frequently contains values that represent combinations of different properties of the 

real world. For example, observing the noise captured from a ship by a SONAR 

system, the noise sources produce some intensity values of spectral power for a given 

frequency, nevertheless those observed values represent the sum of at least three 

different components: the true intensity of power in the observed frequency; the 

properties of the environment in which the ship has emitted the noise and the 

properties of the SONAR system itself. Techniques for modeling the real noise 

properties produced by a ship should remove most of the irrelevant components for 

obtaining the real value of the data. 

In general, data mining techniques ignores the fact that datasets of real world 

represents combination of independent data and build specific models from them. If 

such datasets can be separated in independent components certainly the quality of 

data mining will be improved. A way to accomplish this separation is through the use 

of matrices decomposition methods, capable of “dissecting” the data, as it can 

consider the relationship between large of data collections and the relationship 

between its components to promote their separation. 

There are two properties of complex datasets which makes data mining a nontrivial 

task (SKILLICORN, 2007): 

 In general, each data instance doesn’t represent a single discrete property 

or direct action of the associated object, instead represents a fusion of 

values originated from different process that combined produce a single 

value captured in the database. 

 The relations between attributes and between each attribute and target 

attribute are subtle, and more, in some databases some attributes are more 

significant for some data instances than other ones. 

More efficient techniques are necessary to knowledge discovery from complex 

databases. Methods based on matrices decomposition provide an efficient way to 

data cleaning, allowing conventional techniques to be employed. 

2.1 Objectives 

In general, the databases are treated as two-dimensional arrays, where rows 

represent instances while columns represent different attributes. In this kind of 

structure each instance is described by an attribute vector. The application of matrix 

decomposition methods has been observed frequently in this type of structure, 

however, little is known about works using such techniques when databases are 

treated as multi-way arrays (tensors), where the instances are described by 

arrangements with two or more dimensions. 

In the database employed in this work, the acoustic signal corresponding to noise 

radiated by ships depends on both time and frequency; therefore the use of methods 
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of multi-way analysis is suggested in the database analysis. 

Methods of multi-way analysis add two interesting aspects to the process of 

databases analysis: 

 Are capable to “dissect” the different processes employed in the capture 

phase of data. So, the effects of processes that are irrelevant to the task of 

interest can be separated from data. 

 Provides segmentation of instances (or attributes) of a dataset. 

Tensor decomposition also provides other kind of analysis, for example, verify what 

is the importance of a critical instance/attribute, allowing the representation of data 

with a minimal substructure. 

The objective of this work is to propose an implementation of a target classifier 

based on radiated noise. At different stages of development various strategies are 

employed: 

 Spectral signal analysis corresponding to noise radiated from ships, taking 

into account the variation in signal strength, depending simultaneously 

from frequency and time. 

 Tensor decomposition algorithms (Parallel Factor Analysis-PARAFAC) 

(HASHMAN, et al., 1994), for extracting meaningful information and filtering 

of interference, enabling the data cleaning process. 

 Analysis of data model representative of signal characteristic of the ship. 

 Classification using Multi-layer Perceptron (MLP). 

3 CONVENTIONALS METHODS TO SONAR TARGET CLASSIFICATION  

The operators of the first SONARs used only amplifiers and analog filters to select 

and emphasize the concerned frequency band to be extracted from the noise. From 

the acoustic signal, the SO identified the presence of noise that could be associated 

with the machines of the target. So, the classification task was accomplished based on 

previous knowledge of operator and annotation about ships that were expected to 

be encountered in specific missions. 

The introduction of DEMON (DEMOdulated Noise) and LOFAR (LOw Frequency 

Analysis and Recording) analysis improved the comprehension about the noise 

extracted from the SONAR sensor. DEMON analysis provides an overview of 

cavitations’ noise to obtain the rotation of the propeller shaft and the number of 

blades. LOFAR corresponds to a spectral analysis of the radiated noise, allowing a 

simultaneous view of several frequency ranges. 

The LOFARGRAM represents the LOFAR analysis in time domain allowing the 

visualization of the spectrum variations over the time. The lines corresponding to the 

tones present in the noise can be viewed and subsequently be associated with the 

ship machines. 

4 PASSIVE SONAR SYSTEM AND NOISE IRRADIATED FROM SHIPS 

Passive SONAR uses acoustic energy propagated by ships to extract its 
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characteristic. The captured noise is a combination of the SONAR system noise itself 

with environment noise, including the noise irradiated by other platforms (URICK, 

1983). 

A moving ship constitutes a great source of acoustic energy, for example, the 

sound of machine noise (main and auxiliary) and the propeller noise. Table 1 lists 

some source of noises for a diesel-electric propulsion system. 

Machines in ships may be directly related to propulsion (main machines) or to 

maintenance of navigation conditions (auxiliary machines). Machines associated with 

propulsion modify their frequency as the ship speed increases, but auxiliary machines 

do not change. The frequency on which auxiliary machines generate sound and its 

stability can reveal useful information to identify ships (DAMAS, et al., 2006). 

The noise generated by ship machinery can be considered as stationary in broad 

sense but in aquatic environment its composition changes, which makes the sound 

signal received by distant SONAR be considered no longer stationary, either by lost 

during noise propagation or by aggregation of the environment noise. 

 

Noise type Noise source 

Machine noise Main machine: diesel engines, gears and turbines. 

Auxiliary machine: generators, pumps and air 

conditioning equipment. 

Propeller noise Cavitations in propeller, excitation of the hull induced 

by propeller. 

Hydrodynamic noise Radiated flow noise, cavitations in structures. 
Table 1 - Sources of irradiated noises by diesel-electric propulsion ships. 

When the irradiated noise by a ship reaches the SONAR sensor it presents quite 

distinct from that presented in its origin. These transformations vary over time 

depending on the medium, thus the received signal can no longer be considered 

stationary. However, these signals are treated as locally stationary (PFLUG, et al., 

1997). 

Besides the effects of scattering and attenuation due to environment, the noise 

received by SONAR sensor is also impregnated with the so-called background noise 

caused by external sources. 

5 METODOLOGY  

The methodology developed in this work involves the following development 

stages: 

I. Characterization of an acoustic signature model using the concept of 

tensor. 

II. The use of the CP2 decomposition method on the model of acoustic signature 

characterized to eliminate noise. 
                                                           
2
 Canonical/Parallel factorization decomposition. 
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III. Compression of acoustic signature model "filtered" through the process of 

flattening and use of tensor operators, selecting features most relevant to the 

classification process. 

IV. Classification using the acoustic signature model produced using an Artificial 

Neural Networks. 

5.1 Characterization of an acoustic signature model as a third order tensor 

From the available data was implemented an acoustic signature model that was 

capable of "improving" the process of association of each data instance with the 

corresponding ship. 

In (DAMAS, et al., 2006) (MOURA, et al., 2007) (SANTOS, 2005) (SEIXAS, et al., 1999) 

(SOARES, 2001) is assumed that the noise captured from each ship has a stationary 

behavior. Thus the representation of each data instance is through a vector of values 

of spectral powers where the amplitude is only a function of frequency. 

Despite of results presented in the above works it is observed that in treatment of 

databases is not taken into consideration possible interrelationship between 

variables: time, frequency and power spectrum. 

In order to give a more integrated and compact representation of data instances 

we chose a structure able to encapsulate characteristics of frequency variation, time 

and spectral power. Each instance of the database is treated as a two-dimensional 

array where the spectral power is function of frequency and time. 

Figure 1 shows a graphical representation of a data instance (corresponding to the 

matrix with the spectral power of each pair frequency vs. time). 

Note that this graphical representation corresponds to a LOFARGRAM extracted 

from noise irradiated by ship. With this philosophy the set of representable instances 

of the database is done through a three dimensional tensor, where each plane 

represents a horizontal array of values of spectral power simultaneously as function 

of time and frequency. 

Figure 2 shows the different layers of the third order tensor. Note that each 

horizontal layer A ((i ,:,:)) corresponds to an instance of the database, while the lateral 

and frontal layers A(:, i,:)) and A ((:,:, i)) refers to  attributes set. 
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Figure 1 - Graphical representation of a data instance. 

 

Figure 2 - Layer of the third order tensor. 

Thus, we defined a model of acoustic signature as a third order tensor with 

dimensions: 253 x 929 x 90, where: 

1. First dimension refers to the total number of instances of the database, 

corresponding to each instance of a ship. 

2. Second dimension corresponds to the frequency bands, varying between the 

limits from zero to 2500Hz, and 

3. Third dimension is associated with the record time of signals varying from zero 

to 33s. 

5.2 Database Filtering from the PARAFAC model 

Second stage utilizes the PARAFAC3 (HARSHMAN, et al., 1994) model for "filtering" 

acoustic signature model characterized in the previous stage. In the process of 

determining the number of components (rank-1 tensors) to obtain the best factors of 

decomposition was crucial. In this task we used the method CORCONDIA (CORE 

Consistency Diagnostics), proposed by (BRO, et al., 2003).The core consistency 

diagnostic was efficient for his performance presented in that study. 

CORCONDIA method operates as follows: For a given number of components, 

adjust the PARAFAC model to data. Use the solution found for calculation of core 

consistency. If the PARAFAC model is validated, then the core consistency will be 

                                                           
3
 PARAllel FACtorization. 
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close to 100%. If the data cannot be approximately described by a model of third 

order or many components are needed the consistency of the core will be close to 

zero (or negative). If the consistency is close to 50%, the model is considered 

unstable. In practice the core consistency index grows slowly until reaching the 

optimum number of components and then decreases sharply. The number of 

components corresponding to value of greater consistency should be chosen. 

As can be seen in Figure 3 the number of components in PARAFAC model is 

directly related to the number of the matrix factors columns (A, B and C). 

 
Figure 3 - PARAFAC model represents the sum of rank-1 tensor. 

In practice determining the tensor rank involves determining the dimension R 

[core (λ) of model PARAFAC]. The smaller size of λ smaller the number of the matrix 

factors columns (A, B and C), providing greater reduction in size of the tensor X', 

obtained by reorganization X' ≈ λ', A', B ', C', where: λ', A', B 'and C' represent 

respectively elements: λ, A, B and C, decomposition of the original tensor vs. reduced 

tensor by elimination of elements "less significant" of the super-diagonal (original 

tensor rank). 

The coefficients of λ are in descending key order and reflects the importance 

(explain) of each rank-1 tensor in the PARAFAC decomposition. 

The application of PARAFAC decomposition provides identification of components 

more relevant to the ships characterization, allowing the elimination of those less 

relevant and thus eliminating spurious information (probably background noise), and 

allow the reduction of dimensionality of the original data. 

5.3 Rearranging "filtered" signature model through the flattening process 

In this stage factors decomposed in the previous stage are rearranged by the 

application of the operators to tensors and flattening process resulting in a compact 

structure. At this stage we search for a two-dimensional structure (already free from 

background noise) allowing its use in the classification task. 

Firstly, is recomposed the three-dimensional tensor (reduced) multiplying core by 

first, second and third factors (obtained in the previous stage with the PARAFAC 

model). After that the tensor obtained is extended in first mode, getting a two-

dimensional array with first dimension corresponding to data instances while second 

dimension corresponding to attributes (spectral power values related to both 

frequency and time). 
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5.4 Classification and performance analysis with "filtered" Signature Acoustic 

Model 

At this stage to classification task is proceeding using an Artificial Neural Networks 

(ANN). Here, the main objective is to validate the model obtained. 

The analysis of performance was made against works that have the purpose of 

ships classification from its irradiated noise and have employed the same type of 

database. 

6 DATASET  

The dataset used in this work was extracted from noise irradiated by ships. Each 

record represents the passage of a ship on a non-directional hydrophone positioned 

near the sea bottom. In each record the ship maintained constant course and speed. 

Each class was identified by letters (A, B, C e D) while each ship was identified by the 

letter of the class followed by a sequential number. 

For each record, it was obtained the Spectrogram and DEMON analysis. 

Information related with tones (spectral amplitude as function of frequency and time) 

were extracted from the Spectrograms, while the rotational speed of main axis was 

obtained from the DEMON analysis. 

The data used in the classification task are composed by information extracted 

from the tone and the rotation speed of main axis of the ship. Table 2 presents the 

number of records for each class. 

 

DATASET RECORD  

 TOTAL % 

CLASS A  

 

89 

 

 

35,2 

SHIP A1 A2 A3 A4 A5 

# record 16 12 24 37 -- 

CLASS C  

 

82 

 

 

32,4 

SHIP B1 B2 B3 B4 b5 

# record 15 39 06 08 14 

CLASS F  

 

58 

 

 

22,9 

SHIP C1 C2 C3 C4 C5 

# record 16 14 07 21 -- 

CLASS J  

 

24 

 

 

9,5 

SHIP D1 D2 D3 D4 D5 

# record 12 -- -- 12 -- 

  

253 

 

100 TOTAL OF RECORDS 

Table 2 - Number of records per class. 
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A preprocessing step was performed in the signal in order to emphasize useful 

details and remove unnecessary information to classification step. 

Spectral analysis of acoustic signal captured by SONAR is a good representation of 

the signal for subsequent classification task (OPPENHEIM, et al. 1975). In this work the 

spectral analysis is used to obtain the power spectra. Much of the information used 

to discriminate the classes of ships is derived from noise tones generated by auxiliary 

engine on board. 

6.1 Spectrograms definition 

Methods for selection of optimal resolution in the signal frequency range are not 

the focus of this work. In (SOARES, 2001), it was presented a detailed study 

suggesting several experimental procedures to select more appropriate methods and 

parameters. We emphasize that the expert's knowledge is crucial for an appropriate 

parameterization. 

Using the same procedure adopted in (DAMAS et al., 2006), the analysis was done 

in Spectrograms extracted in the frequency range between 0 and 5500 Hz. Figure 4 

(DAMAS, et al., 2006) presents a diagram of the performed signal processing to 

extract the corresponding Spectrogram. 

 

Figure 4 - Diagram of processing for obtaining signal spectrum. 

 

 

 From the sound signal (LOFARGRAMs) it was observed that the most 

significant tones (high amplitude) were within the frequency range from 0 to 2500 Hz, 

therefore this range was chosen to be focused with the purpose of showing in detail 

the noise behavior.    

Figure 5 presents a LOFARGRAM restrict to this frequency range. 

6.2 Correction of spectrum using an estimate of background noise  

The spectral of irradiated noise consists of tones associated with machines in 

operation within the ship. The SONAR capture these tones superimposed on a 

continuous spectrum noise caused by local background noise. In most cases, the 

estimated background noises are used to correct the spectrum itself, emphasizing 

information about amplitude picks in the spectral (SOARES, 2001). 
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Figure 5 - LOFARGRAM corresponding to a frequency range from 0 t0 2500 Hz. 

In general the background noise is estimated using the algorithm Two-Pass Split 

Window (TPSW) (NIELSEN, 1991). This algorithm estimates an average value of 

amplitudes. Figure 2 illustrates the processing (SANTOS, 2005). Initially, it is estimated 

a local average which each point represents an average of its closest neighbors. This 

local average is multiplied by a factor defining a threshold of detection (Figure 6a). 

The points of spectrum that exceed this threshold are replaced by the local mean at 

that point (Figure 6b). A second convolution of this new spectrum with a new window 

produces a final estimate of the local average (Figure 6c). This estimated local mean 

corresponds to the spectrum background noise estimate. Figure 6d shows the 

spectrum after the subtraction of the background noise estimate. 

One way to correct the spectrum by background noise is using Equation 1. 

 
Equation 1 

 

Where xk(n) represents the nth spectrum of class k and yk(n) the corrected 

spectrum. Equation 1 permits both correction and normalization of spectrum. 
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Figure 6 - Sequence of TPSW algorithm to estimate background noise (SOARES, 2001). 

7 EXPERIMENTS, RESULTS AND COMPARATIVE ANALYSIS 

Here we describe a series of experiments using the acoustic signature model 

proposed with methodology described in the previous chapter. 

7.1 Data Analysis 

In this section data analysis was processed identifying the entity (function) to be 

learned, data instances (rows) and attributes (variables) of each instance in addition 

to compression and data standardization. 

The function to be learned must map the acoustic noise spectrum irradiated by 

ship with its corresponding class. Thus each data instance representing the noise 

spectrum and the attributes correspond to the spectral amplitudes values associated 

with each point of LOFARGRAM (intersection point frequency vs. time) included in a 

considered range. Each attribute is represented by a real value associated with the 

appropriate spectral amplitude. 

From the determinations of the frequency bands, time, and their respective 

resolutions we constructed a representation of LOFARGRAM as two-dimensional 

array 929 x 90 dots, where each point represents spectral amplitude in frequency 

domain vs. time. 

Thinking in reducing the processing time of learning program we applied a 

process of data compression. This procedure allowed reduced representation of the 

original data (volume reduction). Thus it was decided to consider the average of 

spectral amplitudes taken at three points of the frequencies axis and not change the 

time axis, which in practice can be seen as a reduction in the resolution of the 

frequency, obtaining a new two-dimensional array 309 x 90 as a representation of 
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each LOFARGRAM. 

As each LOFARGRAM is treated as a two-dimensional array 309 x 90, and we have 

253 data instances (LOFARGRAMs) we generated a third-order tensor with 

dimensions 253 x 309 x 90 points. 

7.2 Data base filtering 

In the process of database filtering we use the PARAFAC decomposition model. 

The core consistency diagnostic (Figure 7) indicated that the most appropriate 

number of factors 115. With this decomposition, the tensor rank-1 (result of 

decomposition of the original tensor) should form a basis capable of representing the 

original tensor purged of interference caused by factors that don't compose the 

original signal irradiated by the ship (background noise). 

 
Figure 7 - Consistency index of core tensor and model fitting error to the number of components considered in 

decomposition. 

7.3 Data array decomposition 

The original acoustic signature model generated is represented by a third order 

tensor. By applying PARAFAC decomposition with 115 factors we obtained a new 

tensor X ' ≈ λ '; A', B', C ' where: 

λ' = supercube (115 x 115 x 115); 

A' = array (253 x 115); 

B' = array (309 x 115) and 

C' = array (1990 x 115). 

Representing, respectively, the elements: λ, A, B and C, decomposition of the 

original tensor X. 

The process of re-composition of the data matrix involved the following steps: 

1. The third order tensor (reduced) was recomposed by multiplication of the core 

(λ') the first (A'), second (B ') and third (C') factors (obtained with the model 

PARAFAC), resulting tensor is a 253 x 309 x 90; 

2. The tensor was extended (flattening operation) along the first mode, so we 

obtained a two-dimensional array (253 x 27810), with the first dimension 

corresponding to data instances and the second to attributes (values of 

powers associated both frequency and time); 

3. All columns beyond the 115 was purged from the matrix (only first 115 
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columns was weighted by the matrix λ'), so a new matrix 253 x 115 was 

obtained; 

4. A column corresponding to rotation speed of the ship axis was added, 

resulting in a 253 x 116 matrix. 

5. The columns were normalized using the z-score method. 

7.4 Experiments 

In this work, a Multilayer Perceptron (MLP) - Artificial Neural Network (ANN) is 

used as a tool for training and classification of ships from the produced acoustic 

signature model. ANN with MLP was chosen as the classifier due to the cost-benefit 

ratio between its processing time and learning ability. 

Five experiments were performed for classification with the produced acoustic 

signature model as following: 

1. Classification without applying any filter: TPSW or the application of PARAFAC 

decomposition4; 

2. Classification with application of the TPSW filter and without applying 

PARAFAC decomposition5; 

3. Classification without the application of the TPSW filter and by applying 

PARAFAC decomposition with 115 decomposition factors6; 

4. Classification with application of the two filters: TPSW and PARAFAC 

decomposition with 115 decomposition factors; 

5. Classification with application of the two filters: TPSW and PARAFAC 

decomposition with 125 decomposition factors7; 

7.5 Results 

Table 3 presents a comparative table with the classification performances obtained 

in each of the experiments listed above. 

 

 

# 

Experiment 

Instance correctly classified 

absolute Percentage 

(%) 
                                                           
4
 In practice this experiment is equivalent to not applying the filter TPSW and application of PARAFAC 

decomposition with an arbitrary large number of factors (1000). 

5
 In practice this experiment is equivalent to applying the filter TPSW and application of PARAFAC 

decomposition with an arbitrary large number of factors (1000). 

6
 To the number of decomposition factors was obtained a structure for training and classification matrix 253 x 

116. 

7
 In this experiment due to have applied filtering algorithm TPSW to original data model was decided by a new 

evaluation of optimum number of components for application of PARAFAC decomposition by applying 

CORCONDIA algorithm we adopted the optimal factor number equal to 125. 
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1 174 70.75 

2 216 85.38 

3 243 96.05 

4 226 89.33 

5 233 93.10 

Table 3 - Comparison Table Performance Classification of Experiments Performed. 

 

The best performance classification was obtained in experiment three, when we 

used the produced acoustic signature model with the background noise filtering 

performed by PARAFAC with decomposition of 115 factors. 

The second best result was obtained in experiment five, with the filtering of 

background noise using both TPSW algorithms and PARAFAC decomposition with 

125 factors. Note that the performance obtained is lower than that obtained in 

experiment three and can be associated with a sub-optimal parameterization of the 

TPSW algorithm by the specialist. Another interesting aspect is the increase in the 

optimal number of factors for the PARAFAC decomposition (from 115 in the third 

experiment, to 125 in last one). This fact probably is related to the increased 

complexity of the original data model related to the parameterization in filtering the 

background noise introduced by the expert. 

The best performance classification reached in the third experiment is probably 

related to the capacity to rewrite the original database using a minimal 

representation model, by indication of the minimum number of factors for the 

PARAFAC decomposition through the algorithm CORCONDIA. This approach allows a 

reduction of both the problem of under-parameterization, ensuring that the 

subscription model noise produced is capable of representing all the instances 

associated and the problem of over-parameterization, preventing the model of 

storing useless information, as the background noise. 

The produced acoustic signature model eliminates the need of other algorithms 

for attribute selection, both to reduce the dataset size and for elimination of 

uncorrelated attributes with the target classes. 

7.6 Comparison with methods using the same data set 

MOURA, et al. (2007) implemented a neural classifier for passive SONAR using a 

database similar to that employed in this work. The average performance rating 

obtained was 89%. Besides the classification task, the system from the information 

specialist enables the platform detection noise itself when it is under certain 

conditions. This procedure provides better filtering of the echo SONAR signal, 

allowing better targets classification. 

In (DAMAS, et al., 2006) with the same database used in this work was presented a 

study on the extracted features of tone in the ship classification task. In this work, 

several features extracted of the tones generated from ships were considered. Its 

emphasized the importance of specialist in the indication of frequency bands 
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associated with the tones of interest and in the identification process of what 

characteristics to be considered in each tone selected (average frequency of the 

tones, trend, and etc). With this approach was obtained accuracy around 85%. 

In both systems mentioned above is clear the need for a specialist. The acoustic 

signature model proposed in this work requiring no expert knowledge, which reduces 

the time to data preparation beyond to allow the compression one depending on the 

complexity of the data itself, allowing time reducing to training. 

In terms of performance classification, with the acoustic signature model proposed 

was obtained better result than that presented in (DAMAS, et al., 2006) using the 

same database (96% vs. 85%). 

8 CONCLUSIONS 

The classification performance obtained utilizing acoustic signature model 

proposed in this work (96.05%) showed considerably higher in performance 

compared with both when no filter has been applied (70.75%) and when it only was 

applied the filter TPSW (85.38%). 

Another important aspect is the fact that the approach proposed here dispenses a 

priori knowledge of the expert on the environment and tactical scenario. The 

conditions of propagation of the acoustic signal radiated by a ship vary depending 

on the environment and this varies according to several aspects which makes it 

almost impossible for the OS the complete knowledge about this domain. 

The need of expert on a heterogeneous scenario would increase time of data pre-

processing, since their considerations would be essential to the filters 

parameterization process. With the acoustic signature model proposed in this work, 

not only this pre-processing stage can be suppressed but also is provided a more 

compact data representation allowing time reduction on data preprocessing and 

training. 

The good performance classification presented with adoption of acoustic signature 

model proposed can be attributed to the robustness of its own data model, 

guaranteed by a minimal representative data structure expunging information not 

relevant to process class-ship mapping. 
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