
A STUDY OF THE COMBINED USE OF DIFFERENTIAL EVOLUTION
AND GENETIC ALGORITHMS

Eduardo K. da Silva and Helio J. C. Barbosa

Laboratório Nacional de Computação Científica – LNCC,
Petrópolis – RJ, Brasil, {krempser, hcbm}@lncc.br

Keywords: Metaheuristics, Differential Evolution, Genetic Algorithms, Hybrid.

Abstract. Differential Evolution (DE) and Genetic Algorithms (GA) are efficient stochastic, population-
based, metaheuristics for global optimization, that are widely used in many different fields. In order to
explore the qualities of each algorithm at different times of the search, we used the algorithms in an
interleaved way, evaluating them on different constrained optimization test problems from the literature.
With this it was possible to observe the behavior of the final algorithm, a hybrid one, and the extent to
which it alters the moment and number of times each component algorithm is used. Furthermore it was
possible to perform comparisons between the proposed hybrid and the models usually adopted for the
original algorithms.
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1 INTRODUCTION

The metaheuristics are used widely in many fields, and among in the metaheuristics we can
highlight the called Genetic Algorithms (GA), and more recently, the Differential Evolution
(DE).

The emphasis on these algorithms is due to the high-efficiency obtained by them in several
areas. However, each algorithm has its specifications, traversing different paths in the search
space.

For such specifications, each algorithm is best suited to different problems and to make
choice of the algorithm is a new optimization problem. Against this background emerge the
hybrid algorithms, which combine the known techniques.

The usefulness of hybrid algorithms is demonstrated when applied in constrained problems
where there is large differences in the results obtained by the same algorithm on different prob-
lems. We can also think that each algorithm could be more effective when applied at certain
times of the search, because the search features (exploration and exploitation, for example) are
more appropriate at different times of the optimization process.

The factors mentioned lead us to develop an algorithm that makes full use of DE and GA in
different stages of the search - different generations. The way in which we decide when and
how long each method will be used is set adaptive, considering the solutions obtained during
the optimization process.

In the next section we present the optimization problem considered here, the Differential
Evolution and Genetic Algorithms are briefly described in sections 3 and 4. The proposed
method is presented in section 5 and the computational experiments shown in section 6. The
conclusions are presented in section 7.

2 THE OPTIMIZATION PROBLEM

The class of constrained optimization problems considered here can be written as

minimize f(x)
subject to gj(x) ≥ 0, j = 1, . . . , p

hk(x) = 0, k = 1, . . . , q
xL ≤ x ≤ xU

(1)

where f(x) is the objective function to be minimized, x ∈ Rn is the vector of design variables
with lower and upper bounds defined by xL and xU , respectively, and p and q are the number of
inequality and equality constraints, respectively.

It is important to note that the constraints h and g are complex implicit functions of the design
variables and no differentiability is assumed for f , g, and h.

3 DIFFERENTIAL EVOLUTION

The original proposal of DE by Storm and Price (Storn and Price, 1997) presents a simple
and efficient algorithm for global optimization over continuous spaces.

Algorithm (1), from (Mezura-Montes et al., 2006b), shows the pseudo-code for the DE/rand/1/bin
variant. In this variant the individuals involved in the mutation process are selected randomly.

The main variants of the DE modify the way that the individuals are selected for participate of
the mutation, which in the original proposal were randomly (called DE/rand/1/bin), it’s basically
change the line 11 of the algorithm 1, example are:

E. SILVA, H. BARBOSA9542

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Algorithm 1 Algorithm DE/rand/1/bin
1: procedure DE(POP, GEN, F, CR)
2: G = 0
3: CREATERANDOMINITIALPOPULATION(POP)
4: Evaluate f(−→x i,G) . ∀i, i = 1, . . . , POP
5: for G = 1 : GEN do
6: for i = 1 : POP do
7: SELECTRANDOMLY(r1, r2, r3) . r1 6= r2 6= r3
8: jRand = RANDINT(1, D) . D is the dimension of the problem
9: for j = 1 : D do

10: if (RAND(0, 1) < CR or j = jRand) then
11: ui,j,G+1 = xr3,i,G + F (xr1,j,G − xr2,j,G)
12: else
13: ui,j,G+1 = xi,j,G

14: end if
15: end for
16: if f(ui,G+1) ≤ f(xi,G) then
17: −→x i,G+1 = −→u i,G+1

18: else
19: −→x i,G+1 = −→x i,G

20: end if
21: end for
22: end for
23: end procedure

DE/best/1/bin Proposed in (Price, 1999) modify the initial model using in the mutation the
best individual in the population with the base vector. The mutation is described by:
uj,i = xj,best + Fj(xj,r1 − xj,r2), with xj,best the best individual in the population in the
current generation and r1 e r2 randomly selected individuals

DE/target-to-best/1/bin This variant, described in (Price, 1999), proposes the joint use of the
best individual of the population and the target individual (individual that will be used
in the comparison after the mutation). So, these two information are combined in the
mutation operator: uj,i = xj,i + Fj(xj,best − xj,i) + F (xj,r1 − xj,r2)

Another variants can be found in (Mezura-Montes et al., 2006a; Qing, 2008), techniques that
combine several variants also were developed, such as in (Silva et al., 2010). In this paper we
used the original proposal (DE/rand/1/bin).

4 GENETIC ALGORITHMS

Genetic Algorithms (GA) are stochastic, population nature inspired search procedures which
have found applications in different areas and have been shown efficiently search complex
spaces for good solutions to optimization problems.

These algorithms are one of the most traditional and widely used evolutionary algorithms.
The GA encodes all the variables xi corresponding to a candidate solution in a chromosome

and maintain a population of candidate solutions which is evolved mimicking Natures’s evolu-
tionary process: solutions are selected by a stochastic process that favors better solutions and
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have their genetic material recombinated/mutated by means of genetic operators. This gives rise
to a new population with improved solutions. The process starts from a usually random initial
population and is repeated for a given number of generations or until some stopping criteria are
met.

There are several schemes of selection to the application of the genetic operators as well as
there are a great number of genetic operators already developed. Here a rank-based selection
scheme (Whitley, 1998) was used and the genetic operators adopted are listed below:

• The one-point (1X) crossover operator is the analogue to the standard one-point crossover
for binary coded GAs. Is generates two offspring by exchanging the alleles after the
randomly chosen position int the parent’s chromosomes.

• Deb and Agrawal (Deb and Agrawal, 1994) developed the Simulated Binary Crossover
(SBX), which simulates the working principle of the single-point crossover operator on
binary strings in continuous domain.

• Eshelman and Schaffer (Eshelman and Schaffer, 1993) introduced the concept of interval
schemata for real-coded GAs and suggested a blend crossover (BLX-α) operator for two
parents. (BLX-α).

• The random mutation (RM) simply generates an offspring by setting a randomly selected
allele of the parent chromosome to a randomly chosen value uniformly distributed over
the range of such allele [xL, xU ].

• Another mutation operator applied performed an increment ∆ (DM) to each variable with
probability (pm) in (0,1) to be applied

x = p+ δ∆max

where p is the parent, x is the offspring and ∆max is a fixed quantity, it represent the
maximum permissible change in the parent. The δ is a random number.

• The non-uniform mutation (NUM) operator (Michalewicz, 1992), when applied to an in-
dividual xi at generation gen and when the total number of generations allowed is maxgen,
mutates a randomly chosen variable xi according to

xi ←
{
xi + ∆(gen, xU − xi) if τ = 0
xi −∆(gen, xi − xL) if τ = 1

where xL and xU are respectively the lower and upper bounds for the variables xi, τ is
randomly chosen as 0 or 1 and the function ∆(gen, y) is defined as

∆(gen, y) = y(1− µ(1− gen
maxgen

)η)

with µ randomly chosen in [0, 1] and the parameter η set to 2.

In this paper the recombination operators were used with probabilities: 1%(1X), 60%(SBX)
e 30%(BLX-α), as well as for mutation operators: 30%(RM), 40%(DM) and 20%(NUM).
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5 THE HYBRID ALGORITHM

This paper presents a hybrid and adaptive algorithm that combines GA and DE. Allowing it
to adjust the use of such algorithms during the search process. The adaptive technique consid-
ered here (Barbosa and Sá, 2000) is based on collecting information about the performance or
productivity of each method.

We used the algorithms in an interleaved way, in every generation an algorithm is chosen
following its probabilities. The probabilities are adjusted for productivity, and a method is said
productive if produces an individual better than all individuals of the previous population – a
new best.

In order to accumulate the reward, we follow Lobo and Goldberg (Lobo and Goldberg, 1996)
and compute the reward Ri of the i-th method through the expression

Ri = (1− c)Ri + cwi (2)

where wi is the instantaneous reward and c is a positive parameter which controls the amount
of memory in the process. Larger values of c correspond to less memory in the sense that the
importance of the present reward is increased as compared to performance in the past.

The probability of each method is then redefined by the expression

pi =
Ri∑n
1 Ri

(3)

The instantaneous rewardwi is calculated for each generation if the new population produced
a new best individual. The difference of the fitness of the new best individual and previous best
determines the reward for the algorithm of the current generation.

For constrained problems the reward is obtained similarly to the method of handling con-
straints used, a binary tournament described by (Deb, 2000). In other words, if both individuals
are feasible the reward is the difference of the fitness, if one is not feasible then the reward is
the sum of the constrained of the individual not feasible.

6 COMPUTATIONAL EXPERIMENTS

In this section we present the results of some computational experiments obtained when we
applied the proposed algorithm to the G–24 set problem (Liang et al., 2006), which is exten-
sively used as benchmark. We tested several values for the parameter c and evaluation the
behavior of the probabilities of each algorithm during the process.

For all problems we used forty individuals in the population and 5000 generations were
allowed. Due to the limit on the number of evaluations only in fifteen problems some algorithm
found a valid solution. The results for these problems are present below.

Details of the 24 test problems are presented in the Table 1, where n is the number of de-
cision variables, LI is the number of linear inequality constraints, NI the number of nonlinear
inequality constraints, LE is the number of linear equality constraints and NE is the number of
nonlinear equality constraints.

The Tables 2, 3, 4, 5 and 6 present the results for each algorithm and the results found with
different values of c. Moreover, the results for a fixed set of probabilities for DE and GA are
displayed. These probabilities were chosen based in the best results of the adaptive scheme
used for each problem, the probabilities correspond the number of times that each algorithm
was used by the total number of generations.
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Problem n Type LI NI LE NE
G–01 13 quadratic 9 0 0 0
G–02 20 nonlinear 0 2 0 0
G–03 10 polynomial 0 0 0 1
G–04 5 quadratic 0 6 0 0
G–05 4 cubic 2 0 0 3
G–06 2 cubic 0 2 0 0
G–07 10 quadratic 3 5 0 0
G–08 2 nonlinear 0 2 0 0
G–09 7 polynomial 0 4 0 0
G–10 8 linear 3 3 0 0
G–11 2 quadratic 0 0 0 1
G–12 3 quadratic 0 1 0 0
G–13 5 nonlinear 0 0 0 3
G–14 10 nonlinear 0 0 3 0
G–15 3 quadratic 0 0 1 1
G–16 5 nonlinear 4 34 0 0
G–17 6 nonlinear 0 0 0 4
G–18 9 quadratic 0 13 0 0
G–19 15 nonlinear 0 5 0 0
G–20 24 linear 0 6 2 12
G–21 7 linear 0 1 0 5
G–22 22 linear 0 1 8 11
G–23 9 linear 0 2 3 1
G–24 2 linear 0 2 0 0

Table 1: Details of the 24 test problems

Where Algorithm is the algorithm or configuration applied, Best, Avg, Worst, Std are sta-
tistical results after twenty runs, FR is the number of runs which the algorithm found feasible
individuals. The values pDE and pGA indicate the correlation between the number of times
that each algorithm was used by the total number of generations.

The average of the probabilities of each algorithm during the search are shown in the Fig. 1 to 8.
We can observe different variations of the probabilities for each c value and, as expected,

larger values of c correspond to less memory and with this there is greater freedom to change,
but if we discard the past can devalue a method very quickly and so generate worse results.

Another important result shown by graphs are the changes of behavior during process,which
indicates the adjust of the algorithm in every moment of the search.

The pDE and pGA values show the percentage of use of each technique (DE and GA). Thus,
we can see that in most cases the technique with better results were also the most used by hybrid
algorithm. Moreover, the results of the function G–09 shown that while the techniques have not
obtained good results separately, the hybrid algorithm obtained improvements.
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Figure 1: Probabilities of DE and GA during the process for G–01
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Function G–01
Algorithm Best Avg Worst Std FR pDE pGA

DE -10.00 -7.05 -3.00 2.22 20 1.00 0.00
GA -13.39 -10.53 -8.02 1.26 20 0.00 1.00

Hybrid (c=0.5) -15.00 -10.25 -10.00 1.09 20 0.51 0.49
Hybrid (c=0.4) -10.00 -9.67 -7.45 0.79 20 0.57 0.43
Hybrid (c=0.3) -10.00 -9.86 -7.11 0.63 20 0.53 0.47
Hybrid (c=0.2) -10.00 -9.90 -8.00 0.44 20 0.54 0.46
Hybrid (c=0.1) -12.07 -10.10 -10.00 0.45 20 0.53 0.47

Hybrid (c=0.01) -13.21 -10.31 -10.00 0.93 20 0.52 0.48
Fixed probab. -12.93 -10.00 -7.00 0.94 20 0.52 0.48

Function G–02
Algorithm Best Avg Worst Std FR pDE pGA

DE -0.164 -0.128 -0.074 0.03 19 1.00 0.00
GA -0.125 -0.088 -0.067 0.01 20 0.00 1.00

Hybrid (c=0.5) -0.121 -0.094 -0.066 0.01 20 0.50 0.50
Hybrid (c=0.4) -0.165 -0.146 -0.104 0.01 20 0.80 0.20
Hybrid (c=0.3) -0.159 -0.147 -0.123 0.01 20 0.84 0.16
Hybrid (c=0.2) -0.162 -0.149 -0.114 0.01 20 0.83 0.17
Hybrid (c=0.1) -0.157 -0.145 -0.129 0.01 20 0.84 0.16

Hybrid (c=0.01) -0.132 -0.114 -0.089 0.01 20 0.58 0.42
Fixed probab. -0.128 -0.108 -0.083 0.01 20 0.84 0.16

Function G–03
Algorithm Best Avg Worst Std FR pDE pGA

DE -8.09E-6 -4.04E-7 0 1.76E-6 20 1 0
GA -9.74E-5 -8.48E-5 -5.15E-5 1.06E-5 20 0 1

Hybrid (c=0.5) – – – – – – –
Hybrid (c=0.4) -1.0E-4 -9.33E-5 -5.04E-5 1.30E-5 20 0.59 0.40
Hybrid (c=0.3) -1.0E-4 -9.15E-5 -8.33E-8 2.32E-5 20 0.59 0.40
Hybrid (c=0.2) -1.0E-4 -8.99E-5 -1.20E-6 2.24E-5 20 0.57 0.42
Hybrid (c=0.1) -1.0E-4 -8.27E-5 -2.14E-7 3.51E-5 20 0.65 0.34

Hybrid (c=0.01) -1.0E-6 -7.79E-5 -3.21E-9 2.94E-5 20 0.49 0.50
Fixed probab. -9.92E-5 -9.17E-5 -7.21E-5 7.64E-6 20 0.59 0.40

Table 2: Results for G–01, G–02, G–03
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Function G–04
Algorithm Best Avg Worst Std FR pDE pGA

DE -30665.58 -30665.58 -30665.58 0.00 20 1.00 0.00
GA -30367.83 -29575.12 -28973.27 345.56 20 0.00 1.00

Hybrid (c=0.5) -30665.58 -30619.98 -29774.32 194.06 20 0.56 0.44
Hybrid (c=0.4) -30665.58 -30665.58 -30665.51 0.01 20 0.61 0.39
Hybrid (c=0.3) -30665.58 -30665.58 -30665.58 0.00 20 0.61 0.39
Hybrid (c=0.2) -30665.58 -30626.62 -29886.39 169.82 20 0.60 0.40
Hybrid (c=0.1) -30665.58 -30621.31 -29780.14 192.98 20 0.61 0.39

Hybrid (c=0.01) -30665.58 -30522.04 -28870.11 422.72 20 0.61 0.39
Fixed probab. -30296.32 -29770.84 -28766.01 410.06 20 0.61 0.39

Function G–06
Algorithm Best Avg Worst Std FR pDE pGA

DE -6961.92 -6598.19 -4541.61 716.57 16 1.00 0.00
GA -6960.76 -4193.55 -1493.13 1793.66 20 0.00 1.00

Hybrid (c=0.5) -6961.92 -6455.91 -4491.94 807.33 20 0.60 0.40
Hybrid (c=0.4) -6961.92 -6794.96 -4324.97 586.91 20 0.73 0.27
Hybrid (c=0.2) -6961.92 -6884.69 -5836.10 250.48 20 0.73 0.27
Hybrid (c=0.3) -6961.92 -6668.95 -4274.85 748.64 19 0.79 0.21
Hybrid (c=0.1) -6961.92 -6957.15 -6866.47 20.80 20 0.75 0.25

Hybrid (c=0.01) -6961.92 -4670.11 -1238.59 2144.49 20 0.54 0.46
Fixed probab. -6960.97 -5170.21 -1303.37 1671.38 20 0.75 0.25

Function G–07
Algorithm Best Avg Worst Std FR pDE pGA

DE 40.99 70.71 311.14 80.17 20 1.00 0.00
GA 43.67 124.04 398.91 110.22 20 0.00 1.00

Hybrid (c=0.5) 42.22 69.66 434.37 83.87 20 0.53 0.47
Hybrid (c=0.4) 41.00 71.47 311.14 79.97 20 0.89 0.11
Hybrid (c=0.3) 41.01 72.87 311.14 79.95 20 0.86 0.14
Hybrid (c=0.2) 40.99 46.33 59.36 6.55 20 0.88 0.12
Hybrid (c=0.1) 41.00 43.79 49.85 2.51 20 0.87 0.13

Hybrid (c=0.01) 41.13 62.59 315.55 58.46 20 0.59 0.41
Fixed probab. 42.36 68.93 317.18 57.92 20 0.87 0.13

Table 3: Results for G–04, G–06, G–07
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Function G–08
Algorithm Best Avg Worst Std FR pDE pGA

DE -0.0410 -0.0392 -0.0231 0.01 20 1.00 0.00
GA -0.0410 -0.0208 0.0149 0.02 20 0.00 1.00

Hybrid (c=0.5) -0.0410 -0.0274 -0.0001 0.02 20 0.50 0.50
Hybrid (c=0.4) -0.0410 -0.0378 -0.0231 0.01 20 0.56 0.44
Hybrid (c=0.3) -0.0410 -0.0385 -0.0231 0.01 20 0.57 0.43
Hybrid (c=0.2) -0.0410 -0.0372 -0.0231 0.01 20 0.53 0.47
Hybrid (c=0.1) -0.0410 -0.0360 -0.0231 0.01 20 0.61 0.39

Hybrid (c=0.01) -0.0410 -0.0288 0.0013 0.02 20 0.49 0.51
Fixed probab. -0.0410 -0.0357 -0.0085 0.01 20 0.57 0.43

Function G–09
Algorithm Best Avg Worst Std FR pDE pGA

DE 742.66 910887.85 10000786.58 2874479.12 11 1.00 0.00
GA 708.48 1733.47 8813.44 1698.13 20 0.00 1.00

Hybrid (c=0.5) 719.59 1943.68 10739.05 2360.10 20 0.53 0.47
Hybrid (c=0.4) 686.84 960.85 1946.64 343.22 20 0.90 0.10
Hybrid (c=0.3) 680.95 863.25 1482.96 243.29 20 0.94 0.06
Hybrid (c=0.2) 681.24 1398.70 11105.84 2242.89 20 0.95 0.05
Hybrid (c=0.1) 681.46 986.50 1570.69 288.66 20 0.88 0.12

Hybrid (c=0.01) 725.63 1600.09 8182.44 1607.23 20 0.52 0.48
Fixed probab. 752.66 1402.44 5678.76 1075.04 20 0.94 0.06

Function G–10
Algorithm Best Avg Worst Std FR pDE pGA

DE 7048.77 7303.33 8331.48 374.97 9 1.00 0.00
GA – – – – – – –

Hybrid (c=0.5) – – – – – – –
Hybrid (c=0.4) 7048.88 8999.49 15102.05 2645.10 16 0.85 0.15
Hybrid (c=0.3) 7048.73 10449.31 21793.63 4379.92 15 0.83 0.17
Hybrid (c=0.2) 7048.77 10414.08 23254.83 5188.52 19 0.85 0.15
Hybrid (c=0.1) 7048.76 12325.22 29941.72 6350.63 17 0.84 0.16

Hybrid (c=0.01) 14857.99 14857.99 14857.99 0.00 1 0.47 0.53
Fixed probab. – – – – – – –

Table 4: Results for G–08, G–09, G–10
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Function G–12
Algorithm Best Avg Worst Std FR pDE pGA

DE -0.986 -0.879 -0.652 0.09 19 1.00 0.00
GA -0.999 -0.995 -0.982 0.00 20 0.00 1.00

Hybrid (c=0.5) -0.999 -0.998 -0.993 0.00 20 0.47 0.53
Hybrid (c=0.4) -0.999 -0.994 -0.986 0.00 20 0.61 0.39
Hybrid (c=0.3) -0.999 -0.988 -0.950 0.01 20 0.62 0.38
Hybrid (c=0.2) -0.999 -0.992 -0.963 0.01 20 0.58 0.42
Hybrid (c=0.1) -0.999 -0.994 -0.978 0.01 20 0.61 0.39

Hybrid (c=0.01) -0.999 -0.998 -0.993 0.00 20 0.49 0.51
Fixed probab. -0.999 -0.996 -0.987 0.00 20 0.49 0.51

Function G–18
Algorithm Best Avg Worst Std FR pDE pGA

DE -0.866 -0.633 -0.499 0.16 20 1.00 0.00
GA -0.505 -0.419 -0.200 0.08 20 0.00 1.00

Hybrid (c=0.5) -0.560 -0.485 -0.390 0.03 20 0.50 0.50
Hybrid (c=0.4) -0.866 -0.630 -0.500 0.15 20 0.80 0.20
Hybrid (c=0.3) -0.866 -0.630 -0.500 0.16 20 0.84 0.16
Hybrid (c=0.2) -0.866 -0.602 -0.500 0.13 20 0.79 0.21
Hybrid (c=0.1) -0.866 -0.544 -0.500 0.11 20 0.74 0.26

Hybrid (c=0.01) -0.604 -0.481 -0.087 0.10 20 0.50 0.50
Fixed probab. -0.649 -0.510 -0.472 0.04 20 0.80 0.20

Function G–19
Algorithm Best Avg Worst Std FR pDE pGA

DE 53.85 3212.25 22464.91 5525.39 20 1.00 0.00
GA 4737.13 18107.21 34655.83 8846.00 20 0.00 1.00

Hybrid (c=0.5) 1398.20 24943.68 43156.52 10595.76 20 0.53 0.47
Hybrid (c=0.4) 57.04 11029.61 31588.97 11313.12 20 0.89 0.11
Hybrid (c=0.3) 86.65 10259.60 34366.06 11410.75 20 0.88 0.12
Hybrid (c=0.2) 75.92 7151.14 33918.37 9724.87 20 0.94 0.06
Hybrid (c=0.1) 41.23 11107.58 36609.25 11204.32 20 0.92 0.08

Hybrid (c=0.01) 633.20 17740.93 38723.99 11514.63 20 0.63 0.37
Fixed probab. 2624.95 20572.14 37142.78 10440.43 20 0.94 0.06

Table 5: Results for G–12, G–18, G–19
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Function G–21
Algorithm Best Avg Worst Std FR pDE pGA

DE 377.67 399.15 420.63 21.48 2 1.00 0.00
GA – – – – – – –

Hybrid (c=0.5) – – – – – – –
Hybrid (c=0.4) 245.73 394.41 497.65 79.95 7 0.93 0.07
Hybrid (c=0.3) 292.93 385.97 450.77 47.97 7 0.93 0.07
Hybrid (c=0.2) 276.76 396.22 465.20 62.32 6 0.92 0.08
Hybrid (c=0.1) 216.54 406.76 500.69 96.21 7 0.88 0.12

Hybrid (c=0.01) – – – – – – –
Fixed probab. 382.38 382.38 382.38 0.00 1 0.93 0.07

Function G–23
Algorithm Best Avg Worst Std FR pDE pGA

DE -390.19 -97.61 0.00 156.84 16 1.00 0.00
GA – – – – – – –

Hybrid (c=0.5) -0.00 -0.00 -0.00 0.00 5 0.42 0.58
Hybrid (c=0.4) -400.05 -185.81 149.95 205.78 18 0.71 0.29
Hybrid (c=0.3) -399.97 -186.29 149.95 184.31 20 0.72 0.28
Hybrid (c=0.2) -391.00 -167.73 149.95 186.53 20 0.71 0.29
Hybrid (c=0.1) -400.01 -130.60 149.95 192.95 20 0.71 0.29

Hybrid (c=0.01) -192.36 70.20 700.00 233.53 14 0.54 0.46
Fixed probab. -300.05 56.63 476.35 143.44 19 0.72 0.28

Function G–24
Algorithm Best Avg Worst Std FR pDE pGA

DE -3.00 -3.00 -3.00 0.00 20 1.00 0.00
GA -4.87 -3.36 -3.00 0.60 20 0.00 1.00

Hybrid (c=0.5) -5.51 -3.69 -3.00 0.92 20 0.40 0.60
Hybrid (c=0.4) -5.51 -3.49 -3.00 0.94 20 0.39 0.61
Hybrid (c=0.3) -5.51 -3.54 -3.00 0.92 20 0.43 0.57
Hybrid (c=0.2) -5.51 -3.53 -3.00 0.87 20 0.32 0.68
Hybrid (c=0.1) -5.51 -3.88 -3.00 1.09 20 0.46 0.54

Hybrid (c=0.01) -5.51 -3.55 -3.00 0.90 20 0.50 0.50
Fixed probab. -5.51 -3.74 -3.00 0.86 20 0.46 0.54

Table 6: Results for G–21, G–23, G–24
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Figure 2: Probabilities of DE and GA during the process for G–02 (upper plots ) and G–03 (lower plots).
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Figure 3: Probabilities of DE and GA during the process for G–04 (upper plots ) and G–06 (lower plots).
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Figure 4: Probabilities of DE and GA during the process for G–07 (upper plots ) and G–08 (lower plots).

Mecánica Computacional Vol XXIX, págs. 9541-9562 (2010) 9555

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 5: Probabilities of DE and GA during the process for G–09 (upper plots ) and G–10 (lower plots).
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Figure 6: Probabilities of DE and GA during the process for G–12 (upper plots ) and G–18 (lower plots).
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Figure 7: Probabilities of DE and GA during the process for G–19 (upper plots ) and G–21 (lower plots).
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Figure 8: Probabilities of DE and GA during the process for G–23 (upper plots ) and G–24 (lower plots).
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The most common way of assessing the relative performance of a set V of variants vi, i ∈
{1, . . . , nv} is to define a set F of representative test-functions fj, j ∈ {1, . . . , nf} and then
test all variants against all problems measuring the performance tf,v of variant v ∈ V when
applied to function f ∈ F . The performance indicator to be maximized here is the inverse of
the minimum objective function value found by variant v in test-function f after 20 runs.

Now a performance ratio can be defined as

rf,v =
tf,v

min{tf,v : v ∈ V }
(4)

It is interesting to be able to assess the performance of the variants in V on a potentially large
set of test-functions F in a compact graphical form. This can be attained following Dolan &
More (Dolan and Moré, 2002) and defining

ρv(τ) =
1

nf

|{f ∈ F : rf,v ≤ τ}|

where |.| denotes the cardinality of a set. Then ρv(τ) is the probability that the performance
ratio rf,v of variant v ∈ S is within a factor τ ≥ 1 of the best possible ratio. If the set F is
large and representative of problems yet to be tackled then variants with larger ρs(τ) are to be
preferred. The performance profiles thus defined have a number of useful properties (Dolan
and Moré, 2002; Barbosa et al., 2010) such as (i) ρv(1) is the probability that variant v will
provide the best performance in F among all variants in V . If ρV 1(1) > ρV 2(1) then variant
V 1 was the winner in a larger number of problems in F than variant V 2, and (ii) a measure
of the reliability of variant v is its performance ratio in the problem where it performed worst:
Rv = sup{τ : ρv(τ) < 1}. As a result, the most reliable variant is the one that minimizes Rv;
that is, it presents the best worst performance in the set F :

v∗ = arg min
v∈V

Rv = arg min
v∈V

sup{τ : ρv(τ) < 1}

It can be seen in figure 9 that (i)the variant (algorithm) Hybrid (0.1) is the most efficient,
being the winner in about 80% of the problems, (ii)the variant Hybrid (0.1) is also the most
reliable, since it is able to solve all problems within 1.3 times the value obtained by the best
solver.

7 CONCLUSIONS

This paper presented a new hybrid and adaptive algorithm to combine Differential Evolution
and Genetic Algorithms, two important Evolutionary Algorithms applied in several fields. With
this new hybrid algorithm we obtained expressive results when compared with the algorithms
separately.

Our proposal reached the best results or the same result that other algorithms in practically
all problems with different values for the control parameter c. Moreover, the results show that
the best region of c values is [0.1, 0.3].

Another important observation is the behavior of the probabilities during the process with
several changes of trajectory. This showed an adjustment of probabilities for the current instant
of the search.

The results of this work encourages us to apply the algorithm on other optimization problems
of interest.
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Figure 9: Performance profiles comparing the algorithms.
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