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Abstract. This paper presents a new mathematical development, which allows to harmonize the 

technical calculation theories for moderately thick plates (first order shear deformation theory), in order 

to obtain a unique set of general governing equations, resulting in a great simplification in the theoretical 

development, while providing equally precise solutions as the classical theories. The obtained equations 

represent a major advantage for university level teaching since they simplify the theoretical 

development.  
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1    INTRODUCTION: CLASSICAL TECHNICAL THEORIES FOR PLATES 
 

Love (1944) indicated in his original treatise A Treatise on the Mathematical Theory of 

Elasticity: “the Mathematical Theory of Elasticity is occupied with an attempt to reduce to 

calculation the state of strain, or relative displacement, within a solid body which is subject to 

the action of an equilibrating system of forces, or is in a state of slight internal relative 

motion, and with endeavours to obtain results which shall be practically important in 

applications to architecture, engineering, and all other useful arts in which the material of 

construction is solid”. 

The theory for bending of thin plates is summarized in the biharmonic equation  
 

                                                D

P
w                                                                 (1) 

  

where D is a so-called cylindrical (flexural) rigidity of the plate, w is the function of the 

lateral displacements of the plate’s points and P the intensity of a load distributed over the 

area of the plate’s median surface acting in the direction of the Z-axis (see Fig. 1).                

The theory for bending of moderately thick plates was studied by Michell and Love (1994), 

but only some particular problems were tackled with it.  

Faithful to Love’s thought, Bolle (1947), Reissner (1945), Mindlin (1951), 

B.F.Vlasov (1949,1958), Hencky (1947) and Reismann (1980) elaborated their technical 

calculation theories (first order shear deformation theory), with the objective of widening the 

application field of plates. The theory for bending of thick plates (second order plate theories) is 

studied by Donnell LL. H. (1976), Kromm (1953), Panc, V. (1975), Muhammad, A.K. (1990), 

Voyiadjis, G. Z. (1990), Kienzler, R. (2004) and Meenen J. (2004). Eisenberger (2004) 

studies the natural frequencies of moderately thick plates basing his work on the hypotheses 

made by B.F. Vlasov, though he does not mention this fact expressly. 

Generally, all of those theories are characterised by the high level of mathematical 

complexity required to obtain solutions. Furthermore, the problems which are solved 

analytically only constitute several specific examples.  

A rectangular plate is usually considered thin if its thickness is lower than a tenth of the 

minor dimension. When this limitation is not fulfilled one is entering the field of moderately 

thick plates (term introduced by Love (1944)), or thick plates. In the following sections of this 

paper the Analysis Theories for moderately thick plates will be associated with the theories by 

Bolle, Reissner, Mindlin, Vlasov and Reismann, which can be called first order shear theory, 

understanding that this is sufficient for practical purposes in a lot of cases.  

Reissner (1945) suggests a correction of the previously mentioned equation in the 

following way:  
 

                                           Pw·D  P
)1(10

)2(h2





 ,                                           (2) 

 

where h is the thickness of the plate and  is a correction factor. 

This equation is valid for thick plates. and was obtained through variational calculation 

introducing the terms corresponding to deformation by shear effort into the deformation 

energy, which obviously coincides with the first one if h (thickness) is sufficiently small. 

Simultaneously, Bolle (1947) comes up with the two following equations for thick plates 

following a different approach, but taking into account similar hypotheses:   
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                                       Pw·D  P
)1(10
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where                                                                                                                   (3) 
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 and yx   y   are the rotations of the normal to the middle surface. Mindlin (1951) operates in a 

similar way to Bole, but whereas the former adopts a parabolic distribution of the shearing 

stresses depending on the thickness, the latter assumes that it is constant. The complete 

system of governing differential equations is the following. 
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Furthermore, B.F. Vlasov (1949,1958) proposes also another major correction assuming in 

addition that the normal element of the plate is bent in such a way that the shearing strains in 

the thickness of the plate vary according to parabolic law. This author proposes the following 

system of differential equation in order to solve the problem. 
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This system corresponds to the one expressed by Zienkiewicz (1994), which is the basis for 

the formulation of elements such as Quadratic Serendipity elements (QS) and Langrangian 

elements (QL).  

Reismann H.and Pawlik (1980) in his work Elasticity: Theory and applications, also 

assuming the inclusion of the terms corresponding to the deformation by shear effort in the 

deformation energy, arrives at  
 

                                                    PM·D  , 
h·G·

P
Mw

2
                                              

 

where                                                                                                                  (6) 
 

                                                        yx MMM    

and the coefficient
2

1


, which is determined by kinematic considerations, is 16.1

1

2



 for 

3.0 . 

With respect to the dynamic analysis of plates, Eisenberger (2004) compares the natural 

frequencies obtained in the case of a plate in which h=a/10 in his article Dynamic Stiffness 

vibration analysis for higher order plate models. The results can be seen in the following table: 
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m n CPT FSDT HDT 

1 1 0.0963 0.0930 0.0931 

3 1 0.4816 0.4149 0.4158 

2 2 0.3853 0.3406 0.3411 

3 3 0.8669 0.6834 0.6862 
 

CPT: classical plate theory; FSDT: first order shear deformation theory (Mindlin´s formulation); HDT: higher 

order plate model (Vlasov´s formulation) 

Table 1: Four normalized natural frequencies for example plate 

 

2     HARMONIZATION HYPOTHESIS OF THE TECHNICAL THEORIES OF THIN-

THICK PLATES WITH A CONSTANT THICKNESS 
 

As it will be seen in the following section the technical calculation equations rise in 

complexity as the hypotheses tend to consider the implications due to the shear phenomenon. 

Nevertheless, the value of the rotation around oz-axis in the different theories should be 

appealed, (see fig. 1). In the one of thin plates it is zero, and in those used by Bolle-Reissner 

(1947) and B.F. Vlasov (1949,1958) that can be seen for the lower upper side of the plate 

element  
2

hz  , one obtains equal and opposite rotations, which would imply an angular 

distortion throughout the thickness which is not in accordance with the deformation of the 

plate. 

Under the term harmonization it is understood pooling the technical theories of the first 

order shear deformation, i.e..; to complement the respective hypotheses of these theories in 

such form that an unique system of governing equations may be obtained by transforming the 

equations of each case. 
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Figure 1: Different theories of plates 

 

 On analyzing the three expressions of the rotation xy  around oz-axis, it can be seen that 

harmonization is possible if 

                                                     
0

xy

xy










                                                               (7) 

 

is postulated, being consequently the rotation xy  null in any case. 
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Figure 2: Plate element  

  

 Besides to obey to an intuition of the deformation of the plate, the fact that this equation is 

obtained if the approach of the equilibrium equations of the plate element is done in the 

deformed configuration, which corresponds to the reality that the equilibrium is really achieved 

in the bent plate, supports this new hypothesis. 

 In figure 2 and 3 an element of bent plate ( , , , ) is shown submitted to bending and 

membrane efforts (which appear separately for reasons of clarity). In these figures the forces on 

the sides, which are not seen, have been omitted. Also, the equations: 
 

 
                                                                                                                                             (8) 

 
 

are easily deduced taking into account Frenet formulae (Quesada (1996)). 

 On raising the equilibrium equations of Statics for the element 
 

       

                     (9) 
 

of which, as an example, the vectorial equation corresponding to the moments which act on 

edges  and  has been presented. 
 

   
    dx·t·dy·Qt·Mt·Mdt·Mt·Mt·Mdt·M-M xyzyxyyxyyxyxyxyxyQMy  PN 



       (10) 
 

 On differentiating and considering the value of the unitary tangent vector derivatives xt


 and 

yt


, a total of six scalar equations are obtained. The two scalar equations corresponding to 

0F ,0F yx    provide the equilibrium conditions of the membrane efforts contained in the mid 

surface:  
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 The equation 0Fz  , in which the membrane efforts contained in the mid surface are 

disregarded, and the two equations corresponding to the moments respect to x, y axes coincide 

with the equilibrium equations obtained in the non-deformed initial geometry, being 
 

    0P
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 The equation relative to the moments respect to z-axis provides us: 
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 However, if xyyx MMM  and  , are substituted with their values in the last equation, given e.g. 

by Bolle-Reissner theory, it becomes to 
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 Noticing that: 
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cannot be null for every point of the plate, the following expression is obtained    
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The magnitude 
 



1

MM yx  is called moment addition. 

 

3    THEORY OF THIN PLATES 
 

The specific hypotheses according to Kirchhoff are the following ones: 

1.- Any fibre pertaining to the plate which is parallel to z axis, and thus perpendicular to the 

middle surface before the deformation, is marked perpendicular to the deformed middle 

surface ( 0yz  , 0xz  ). 

2.- Any surface which is parallel to the middle surface of the plate before the deformation 

continues to be parallel to the deformed middle surface, that is to say that the relative distance 

between each other continues being the same ( 0z  ). 

3.- The loads will be perpendicular to the middle surface and the displacements of the points 

located in the middle surface go in the direction of the loads that produce them (inelastic 

middle surface).  

Consequently, the parallel components to x,y axes of the displacement of a generic point, 

are defined by  
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The stresses will be expressed by means of  
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and the moment stress resultants and transverse shear forces are expressed as  
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The rigidity constant of the plates, D, is 
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The governing equation, well-known as Lagrange equation, is obtained from the 

equilibrium of the plate element 
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eliminating xzQ  and yzQ  from the equilibrium equations, it yields 
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This system is presented by Timoshenko for thin plates (1970). 

 Apart from the exterior transversal loads P, in the stability calculation the bending forces 

and moments (see Fig. 2) and the forces contained in the middle surface of the plate, N (see 

Fig. 3), are taken into account, which may have a great influence on the bending 

phenomenon. Their influence is revealed when considering the equilibrium of the plate in its 

deformed geometry.  

 The equation obtained assuming 0Fz  , is 
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Figure 3: Plate element. Thin plates  

 

The behaviour of thin plates after the loss of stability, for deflections w comparable with 

the thickness h of the plate, is analyzed with the following Karman equations  
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while   is the stress function which complies with  
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                                             (24) 
 

 

4    TECHNICAL THEORY FOR THICK PLATES BY BOLLE-REISSNER AND ITS 

HARMONIZATION 
 

 The study of moderately thick rectangular plates implies an awareness of the influence of the 

shear phenomenon. The theory which Bolle (1947) - Reissner (1945) suggested is based on the 

assumption of a parabolic distribution of the shearing stresses throughout the thickness. Thus, 

taking into account that the dimensions of the middle surface of the plate do not vary, the 

authors suggest a modification of the hypothesis relative to the fibres of the plate perpendicular 

to the middle surface before the deformation, in the sense that after the deformation the fibre 

which was perpendicular to the middle surface continues being straight, but it does not have to 

continue being perpendicular. As a consequence the shearing strains yz  and xz  will not be 

zero. The displacements of a generic point located at a distance z from the middle surface 

(which is assumed to coincide with the coordinate x or y) are given by  
 

                                     z·u y ; z·v x ;  y,xww                                      (25) 
 

 Additionally a parabolic distribution of the shearing stresses, given by  
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 is postulated along the thickness, where   takes the value 5/4. 

 The strains can be deduced from the displacements  
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The rotations around the axes are  
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 According to the hypotheses, the shearing stresses are provided by  
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and the normal stresses are given by  
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The moment stress resultants and transverse shear forces are expressed by 
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The governing equations are obtained considering the equilibrium of the plate element and 

they are as follows 
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 The equations (32) are the ones deduced according to the Bolle-Reissner theory (1945). 

They will be transformed below according to our harmonization hypothesis. In order to do so, 

the equation (16) is substituted in system (32) and, as a result 
 

 
P·

h·E·5

1·12
w

yx

xy 










 

                          
 

0
y

w
·

h

1·5
x2x 

















                                (33) 

 
0

x

w
·

h

1·5
y2y 















  

 

which will be transformed applying the Laplace operator in the first equation of (33) 
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 Now, for the second and third one it is found  
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and making the substitution in (34) one obtains  
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 This leads to a harmonized governing equation system decoupled in displacements-rotations 

which is 
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which constitutes a partial differential equation system of general character, with the unknown 

functions ( w , x , y ) decoupled, for the linear study of plates. From (31) it may be formed 
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 After that, this last expression can be replaced in (33) and (36) 
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and it yields 
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In order to know the behaviour of plates for deflections w, which are comparable with the 

plate thickness h, the equilibrium of the plate is raised in its deformed geometry and taking 

some more exact expressions into account for the strains, in which the values of the 

displacements given in (25) are substituted 
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 might be formed with the strains for the points in 

the middle surface (z=0), which are distinguished by the superscript pm, and obtain  
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The first member can be expressed in function of the axial and shear forces contained in 

the middle surface: xyyx N  ,N  ,N  as 
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On defining the stress function   with  
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 it yields 
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together with the equilibrium equation 0Fz  , which provides us the following equation 
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constitute the governing system of Karman given in (23) for thin plates. This means that the 

behaviour of plates for deflections w, which are comparable with the thickness h of the plate, 

is given by the same Karman equation system for both thin and moderately thick plates. 

 

5   TECHNICAL THEORY FOR THICK BY B. F. VLASOV AND ITS 

HARMONIZATION  

 

 As regards the previous theory, this author suggests modifying the hypothesis relative to the 

fibre which is perpendicular to the middle surface, in the sense that after the deformation the 

fibre which was perpendicular to the middle surface does not continue being perpendicular and 

does not lengthen  0z   but it does bend. Additionally, 0z   is postulated for the thickness 

and a parabolic distribution throughout the thickness for the shearing strains defined by 
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with xz


 and yz


 being the shearing strains in the points of the middle surface.  
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Figure 4: Bending of plates 

 

The angle rotated by the rectilinear segment normal to the middle surface around ox-axis is 

called x  and the one around oy-axis is called y  , figure 4.  

The shearing strains in the xz, yz surfaces, in the point m located on the middle surface, are  
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They can also be written 
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 being xz
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 the shearing stresses in the points located on the middle surface. 

Therefore the shearing stresses and strains in the points of the middle surface are 
 

   
G

xz


 
x

w
  y




 ;  

G

y z


 
y

w
- x




 ;  

x

w
  yxz







;  

y

w
-  xyz







             (51) 

 

The shearing strains in a generic point are  
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and the displacements  
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 The rotations around the axes are 
 























x

w

G
·

h

z·4
·

2

1 xz
2

2

yxz


 

                                            






















y

w

G
·

h

z·4
·

2

1 yz

2

2

xyz



                           (54) 
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xy ·

xy
·

2

z xy








































2

2

h·3

z·4
1  

 

The rest of the strains are  
 

                                      x z·
x

y




·

h·G·3

z·4

2

3

  
x

τxz






; y
z·

y

x




 ·

h·G·3

z·4

2

3

  
y

y z






                   (55)
 

xy
z·

x

x




 ·

h·G·3

z·4

2

3

  
x

y z






+ z·
y

y




·

2h·G·3

3z·4
  

y

xz






=
yx

w
·

h·3

z·8

xy
·

h·3

z·4
z

2

2

3
xy

2

3












































 
 

The stresses are defined by Hooke’s Law  
 




























y
·

x
·

1

z·E xy

2x ·
h·G·3

z·4

2

3

 ·
1

E

2























y
·

x

yzxz


 



























x
·

y
·

1

z·E yx
2y ·

h·G·3

z·4

2

3

 ·
1

E

2























x
·

y

xzyz


 

                                                                    0z                                                           (56) 

xy
yx

w
·

h·3

z·G·8

xy
·

h·3

z·4
z·G

2

2

3
xy

2

3










































 ; xz2

2

xz ·
h

z·4
1 
















  ;  yz2

2

yz ·
h

z·4
1 


















 
 

The moment stress resultants and transverse shear forces are expressed by 
 

  
























y
·

x
·DM xy

x ·
G·5

D

























y
·

x

yzxz


; 

























x
·

y
·DM

yx
y ·

G·5

D

























x
·

y

xzyz


 

                              



























xy
·D·

2

1
M xy

xy
 

·
G·10

D1 

























x
·

y

yzxz



                           (57)
 

xzQ xz··
3

h·2



·
3

G·h·2
 














x

w
y ;   yzQ yz·

3

h·2



·
3

G·h·2
 
















y

w
· x

 
 

The governing equations are obtained when considering the equilibrium of the plate 

element and they are 

P·
h·G·2

3
w

yx

xy










 

       
 

 
 





















































y

w
·

h

1·5
w

y
·

4

1

xyx2

1
x2

xy
x (58) 

 




























yxy2

1 yx
y  w

x
·

4

1







 

















x

w
·

h

1·5
y2

 

Comparing system (58) with system (32) the difference in the terms  w
y

·
4

1





 can be 

noticed, being these terms consequence of the first hypothesis. On substituting (16) in system 

(58) a harmonized system similar to the one in (33) is found 
 

P·
h·G·2

3
w

yx

xy










 

                                                 
 

 
























y

w
·

h

1·5
w

y
·

4

1
x2x                                        (59) 
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        y  w
x

·
4

1







 

















x

w
·

h

1·5
y2

 
 

applying the Laplace operator to the first equation, it is transformed 
 

                     
























 w

yx

xy
P·

h·G·2

3
 , or     









w

yx
xy P·

h·G·2

3
          (60) 

 

 Then, from the second and third previous equations  
 

     xy
yx










   w

y
·

4

1
w

x
·

4

1

2

2

2

2












 


































2y

w2

y

x
2x

w2

x

y
·

2h

1·5
            (61) 

 

which according to (59) leaves us with 
 

    
   xy

yx










w·

4

1


 
·

h

1·5

2


 P·

h·G·2

3
                        (62) 

 

 So substituting in (60) it is obtained 
 

                                              
w·

4

1


 
·

h

1·5

2


 P·

h·G·2

3
 w P·

h·G·2

3


                           (63) 
 

which leaves us with the following, after operating and reordering, 
 

                                                          

 
P·

h·E·5

1·12

D

P
w 




                                             (64) 
 

 The harmonized governing equation system decoupled in displacements-rotations is 

therefore 
 

    
 

P·
h·E·5

1·12

D

P
w 


        

     x
 




 x2
·

h

1·5
 w

y
·

4

1







 
y

w
·

h

1·5

2 


                        (65) 

                                         y
 




 y2
·

h

1·5
 w

x
·

4

1




  
x

w
·

h

1·5

2 




 
 

The first one of the equations, which provides us the displacements w, is identical to the 

first equation in system (33), this is the reason why the displacements provided are the same. 

The other two, which provide us the rotations x , y , only differ in the terms  w
y

·
4

1





of the 

equation system (33), and therefore they only contribute to a more accurate approach to the 

value of the referred rotations. 

 Due to the fact that a unique solution (uniqueness guarantee) and quick convergence are 

being looked for, and the calculation is done by numerical methods, system (65) must be 

transformed.  

 According to (58) it may be formed 
 

               









D

M

yx

xy
























yxG·5

1 yzxz



                                (66) 

 

However the derivatives of the shearing stresses in the middle surface are obtained from 

(51) from which it is deduced 
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










y

yz

x

xz



































2y

w2

x

x
2x

w2

x

y
G
























 w

x

x

x

y
G

               (67) 
 

Thus, (66) is transformed into: 
 

                                                       























x

x

x

y
·4 w

D

M
5  .                                         (68) 

 

According to (58) 
 

               











y

yz

x

xz


P·
h·2

3
                                 (69) 

 

so (66) gives us 
 

         D

M

yx

xy











h·G·10

P·3
                                (70) 

 

Then the equations decoupled in displacements – moments addition can be obtained, by 

eliminating the parenthesis in which the variations of the rotations appear, between this last 

equation and the first of (58), obtaining 
 

       P·
h·G·5

6

D

M
w                                          (71) 

 

From (61) it is deduced  
 

                 

 



































2

2
x

2

2
y

2 y

w

yx

w

x
·

h

1·5      xy
yx










 -    ]w

y
w

x
[·

4

1

2

2

2

2











         (72) 
 

According to (59), the first member is:  
 

                                           

 
·

h

1·5

2




 
P·

h·E

1·3 

D·4

P5
 .                                                (73) 

 

 The first addend of the second member, according to (66), is: 
 

                                                          D

M

h·G·10

P3


                                                      (74) 
 

 and the second addend of the second member, according to (65), is: 
 

                                               

 
P·

h·E·20

1·12

D4

P



 .                                                   (75) 

 

Substituting, one obtains 

                                 




D

M

D·4

P5


D·4

P


h·G·10

P3


 
P·

h·E·20

1·12



 .                                    (76) 

 

After operating and reordering it yields M P . Finally, along with equation (71) it is 

obtained  
 

M P                                                     (77) 

        P·
h·G·5

6

D

M
w               

 

Mecánica Computacional Vol XXX, págs. 99-115 (2011) 113

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

 

 

 

 

 

 

  

Each one of the equations (77) constitutes a typical Dirichlet problem, in which the 

uniqueness of the solution is guaranteed, and the solution known as the Green Function 

(1996). It allows for resolution by numerical methods and is strongly convergent, even for 

meshes which are not very dense, using finite differences or finite elements approximating the 

integral formulation by means of the Galerkin method (very common in the elementary 

elliptical problems, Haberman, R (1998)). The system (77), decoupled in displacements – 

moments addition, is identical to the one described in (41) and formally analogue to the one 

deduced by Reismann and Pawlik (1980), formulae 6.60 and 6.61, page 235 and section 3 of 

the present paper], and it is a generalisation for moderately thick plates of what is shown in 5 

and what was presented by Timoshenko (1997). (Note: the coefficient 
5

6  is replaced with 
2

1


 

in the Reismann and Pawlik theory, which adopts the value 16.1
1

2



 for 3.0 ).  

 On the other hand, if it is called  
 

                                                               21 www                                                       (78) 
 

so that  
 

                                               D

M
w1  and P·

h·G·5

6
w 2  ,                                      (79) 

 

one gets  
 

                                                  D

P
w1   and P·

h·G·5

6
w 2  .                                   (80) 

 

The last one is identical to the one presented by Panc (1947) in his Component Theory for 

thick plates. 

Regarding the precision obtained with these equations, in a second part of this article it will 

be shown that the analytical solutions obtained for simply supported or clamped plates are 

identical to the ones obtained by the authors. 

 

6   CONCLUSIONS 
 

 In this article an harmonization hypothesis of the technical theories of thin-thick plates 

with a constant thickness is presented. The conclusions obtained are:  

1.- The second Bolle equation (16) 
2h

10
 is inappropriate because of this parameter being 

null for the whole plate.  

2.- The coupled and harmonized differential equation system (33)  
 

 
P·

h·E·5

1·12

D

P
w 


  

                  x
 




 x2
·

h

1·5
 w

y
·

4

1







 
y

w
·

h

1·5

2 


                     (81)  

                         y
 




 y2
·

h

1·5
 w

x
·

4

1




  
x

w
·

h

1·5

2 




 
 

or the decoupled and harmonized differential equation system (77)  
 

M P                           
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P·
h·G·5

6

D

M
w 

                                                        (82) 
 

provide correct solutions in the case of thin as well as moderately thick plates.  

3.- The decoupled system (77) is formally analogue to the one deduced by Reismann (1980) 

and to the one presented by Panc (1947) in his Component Theory for thick plates, and that it 

is a generalisation for moderately thick plates of what is said in section 5 and what was 

presented by Timoshenko (1970). 
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