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Abstract. An analytical investigation on the fracture behaviour of a typical compact-tension (CT ) test
specimen is presented within the framework of the well-known weight-function technique. Simulations
of this test configuration, extensively used for determining the fracture properties of a wide range of
materials, have been carried out. The influence of the initial crack length is considered and a cohesive-
crack model is used to establish the relevant displacement fields as well as the load − displacement

curve. Plane-strain finite-element models were built and comparisons with these results show that the
weight-function method yields results without any appreciable error. In addition, observations of fracture
behaviour in a CT specimen of Polymethyl methacrylate (PMMA) are used to assess the relevance
of the theoretical results as well. Excellent agreement has also been achieved when comparing these
experimental results available in the literature with the theoretical predictions.
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1 INTRODUCTION

In recent decades, requirements for high loading capacity, weight reduction, and low pro-
duction cost of engineering structures, combined with high structural safety, have to be met
by new design concepts. Special efforts have been made to guarantee the structural integrity
of mechanical components, especially when the presence of defects is considered. The latter
may appear as a result of manufacturing processes, transportation or assembly of components,
although defects generally arise throughout the structure’s service life.

When safety has to be ensured, expensive test programs should be applied. Accurate models
based on fracture mechanics could help to reduce laboratory testing. Indeed, once created the
mathematical model, it is relatively easy to change the model parameters such as geometry,
boundary conditions and material properties to study its incidence on the fracture behaviour.

One of the most widely used theories for this purpose is Linear Elastic Fracture Mechanics
(LEFM ). In this theory, applicable only when the stress concentrators are cracks, the main
hypothesis is the existence of a nonlinear zone ahead of the crack tip of negligible size. As soon
as the notch is blunted the stress singularity disappears and LEFM is no longer applicable.

Besides the classical nonlinear fracture approach, cohesive-crack models (CCM ) are being
increasingly used to describe the fracture behaviour of a wide range of materials, including
ceramics, polymers, ductile metals, and composites, when the size of the nonlinear zone ahead
of the crack tip may be important compared to all other relevant dimensions of the problem,
preventing the use of LEFM .

Its basic ideas were originally formulated by Dugdale (Dugdale, 1960), assuming that the
stress on the crack line ahead of the crack tip was limited by the yield stress. The plastic
deformation was concentrated along the crack line, generating a displacement discontinuity
similar to a crack. Dugdale’s model did not include any softening or fracture criterion. It was a
purely plastic model also known as the strip yield model.

Barenblatt (Barenblatt, 1962) proposed a simple model to represent the nonlinear behaviour
ahead of the tip of a preexisting crack. He showed that the cohesive zone made it possible to
relieve the crack tip singularity while for large cracks the LEFM equations were preserved.
The fracture energy GF was related to the interatomic potential. His analysis was limited to
very large cracks compared to the cohesive zone itself.

In the late seventies, Hillerborg et al. (Hillerborg et al., 1976) postulated the fictitious crack
model by proposing that a cohesive crack may be assumed to develop anywhere, even if no
preexisting macrocrack is actually present. It is easily to show that when the fictitious crack
model is used to describe the behaviour of a preexisting crack, the mathematical formalism is
identical to that for the CCM .

This approach has been used to model the crack growth in concrete (Reinhardt, 1984),
(Hillerborg, 1985), ceramics (Foote et al., 1986), (Mai and Lawn, 1987), polymers (Knauss,
1973), (Williams, 1984), (Tijssens et al., 2000) and metals (Tvergaard and Hutchinson, 1992),
(Yuan et al., 1996). Since CCM were proposed for the first time, different methods have been
developed to solve a problem within this framework. Considering the zone surrounding the
cohesive crack as linear elastic, Ungsuwarungsri and Knauss (Ungsuwarungsri and Knauss,
1988a), (Ungsuwarungsri and Knauss, 1988b), Knauss (Knauss, 1993) and Bažant and Planas
(Bažant and Planas, 1998) used the Green’s function approach. Other available methods are the
Petersson influence method (Petersson, 1981) and the superposed-cracks method, proposed by
Planas and Elices (Planas and Elices, 1986), (Planas and Elices, 1992) and modified by Bažant
(Bažant, 1990) and Bažant and Beissel (Bažant and Beissel, 1994).
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One of the major limitations of this approach is the need to assess numerically the Green
function for selected cases, implying an important limitation in practice. Moreover, these pro-
cedures require prior numerical results, thus limiting their use when the geometry or the size of
the solid must be changed.

In the present work, an analytical investigation on the fracture behaviour of compact-tension
(CT ) test specimens is summarized by applying the weight-function technique. Simulations of
this test configuration, extensively used to determine the fracture properties of a wide range of
materials, have been performed. The influence of the initial crack length is considered and a
cohesive-crack model is used to establish the relevant displacement fields as well as the load−
CMOD response.

In addition to the material properties and the weight function, only a general expression
of the Stress Intensity Factor (SIF ) for the cracked geometry is needed to use the proposed
method. This procedure can be easily implemented to solve a problem with any geometry and
does not require previous numerical results. It has important advantages in comparison to other
available methods such as better ability to modify the geometry or the size of the test specimens
as well as the softening curve of the material.

This paper begins by introducing a general outline of the cohesive-crack model. In Section
3 the weight-function technique is developed and a description of the problem to be solved
and the results of the analytical modeling are shown in Section 4. The following section deals
with the finite element modeling of a CT specimen and the results of its fracture behaviour are
presented. The paper concludes with the validation of the analytical method with numerical as
well as experimental results and final remarks.

2 OUTLINE OF THE COHESIVE-CRACK MODEL

Fracture behaviour of some materials such as concrete, ceramics, and composites (i.e. so-
called quasi-brittle materials) is characterized by the location of a nonlinear zone near the crack
tip. The cohesive crack model (CCM ), which extends the ideas of Dugdale (Dugdale, 1960)
and Barenblatt (Barenblatt, 1962), is now a well-established approach in computational fracture
mechanics to analyse these kinds of problems.

The basic assumption is the existence of a crack (normally termed as cohesive or fictitious
crack) able to transfer stress from one face to the other while opening, as shown in Fig. 1.

Figure 1: Two-dimensional body containing a cohesive crack

Cohesive-crack models are versatile and effective tools for numerical simulation of various
separation phenomena in solids. The simplest assumptions regarding CCM are as follows:
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• The bulk material is considered as linear-elastic with Young modulus E and Poisson ratio
ν.

• As soon as the cohesive stress, σc, is reached at any point in the material, a cohesive crack
perpendicular to the cohesive stress direction occurs.

• From then on, a crack of length a is considered, corresponding to the amount of the initial
crack length, a0, and the process zone, ∆a.

• The analysis is restricted to mode I . The cohesive stress transferred at any point is a
unique function of the crack opening, as illustrated in Fig. 2 and is assumed to be a
material property called the softening curve:

σ = f(u) (1)

Figure 2: General definition of the softening curve: (a) initially elastic; (b) initially rigid

• The area under the softening curve is the fracture-energy release rate, GF , and is the
external energy supply required to create and fully break a unit surface area of cohesive
crack.

• A further parameter related to the critical size of the process zone is the characteristic
length, lc, defined as follows:

lc = E ′GF

σc
2

(2)

where E ′ = E for plane stress and E ′ = E/(1− ν2) for plane strain.

There are two basic types of CCM which are distinguished mainly by the presence of the
initial elastic curve. In the case of initially elastic cohesive laws, Fig. 2 (a), the closing traction
is initially zero at zero separation. Under monotonic separation, the traction increases with
growing separation until a maximum value is reached, after which the traction diminishes to
zero at some finite relative displacement. The compliance introduced by these kinds of cohesive
laws has no physical explanation but is generally of little consequence where only a single pre-
existing surface is designated as the fracture surface. This is appropriate for symmetrical cases
where the crack path can be easily inferred.
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On the other hand, an initially rigid class of cohesive laws, Fig. 2 (b), down hold that the
prospective separation surfaces remain connected until a critical traction is reached, whereupon
the traction declines continuously to zero as separation proceeds. In both cases the post-peak
unload/reload behaviour is generally assumed to occur along a straight trajectory from the ori-
gin.

Most existing analytical methods has been developed to analyse a two-dimensional cracked
body in mode I . The problem consists of the determination of the cohesive zone length, stresses
within that zone and the displacement field into a 2D cracked body under a boundary-loading
system. The solution is based on the discretization of the cracked section as sketched in Fig. 3,
which is easily determined from the symmetrical mode I loading conditions, into M ′+1 nodes
separated by a distance h = W/M ′ where W is a representative dimension of the geometry,
defining the following three zones:

1. Initial notch: spanning the nodes 1 and N .

2. Cohesive zone: extended between the nodes N + 1 and C.

3. Uncracked ligament: include the node C to node M ′ + 1.

Figure 3: Node layout of the analytical methods

The following equations must be satisfied along the central cross-section:

σi = 0 i = 1, ..., N (3)
σi = f(ui) i = N + 1, ..., C (4)

ui = 0 i = C, ...,M (5)

where σi are the nodal stresses and ui are the nodal crack openings. Eq. (4) and Eq. (5) must to
be satisfied at node C which implies that this node is the cohesive-crack tip.

3 THE WEIGHT-FUNCTION TECHNIQUE

According to its definition, the relationship between KI and the strain energy release rate,
G, can be written in terms of the crack length, a, as follows:

G =
K2

I

E ′ =
∂U

∂a
=

1

2

∫

a

σi(x)
∂u(x, a)

∂a
dx (6)
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in which
U =

1

2

∫

a

σi(x)u(x, a)dx (7)

is the strain energy, σi(x) is the stress distribution along the x-axis and u(x, a) is the crack
shape.

With the rearrangement of Eq. (6) the following expression is achieved:

KI =

∫

a

σi(x)m(x, a)dx (8)

where

m(x, a) =
E ′

2KI

∂u(x, a)

∂a
(9)

is the weight function first introduced by Bueckner (Bueckner, 1970) and Rice (Rice, 1972),
who have demonstrated that m(x, a) is unique to the given geometry, and is independent of the
loading from which it was derived.

4 PROBLEM FORMULATION AND ITS SOLUTION

The fracture toughness of a wide range of materials is usually measured by using both the
three-point bending (TPB) test or the double-cantilever beam (DCB) test. For materials deliv-
ered in the form of sheets a solution may be found by using a compact-tension (CT ) test such as
that depicted in Fig. 4. This specimen, initially developed for the study of crack propagations
in metallic materials, can be used to determine the fracture toughness of composite laminates
as well. In such configurations it is desirable for the fracture path to follow essentially the
prolongation of the crack starter and not deviate strongly to one side.

Figure 4: General layout or the compact-tension specimen

For a given value of the external load P , the problem consists on determining of the cohesive
zone length, the stresses within that zone, and the associated displacements field. In addition to
the weight function and a general expression for the stress-intensity factor, the data required to
solve the problem is as follows:

• The dimensions of the specimen.

• The initial crack length, a0.
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• The external load, P .

• The constitutive equation outside the cohesive zone.

• The softening curve, σ = f(u).

A general expression to evaluate the SIF in a CT specimen proposed by Srawley and Gross
(Srawley and Gross, 1972) will be used:

KI∞ =
P (2W + a)

B(W − a)3/2
f ∗(α) (10)

where B is the specimen width, W is the loaded length, the load is denoted by P and α is the
non-dimension crack length, given by:

α =
a

W
(11)

The function f ∗(α) has been tabulated by Srawley and Gross (Srawley and Gross, 1972)
using the boundary collocation method. The corresponding values are shown in Table 1.

α f ∗(α)

0.3 1.466
0.4 1.419
0.5 1.364
0.6 1.327
0.7 1.312
0.8 1.312

Table 1: Tabulated values of f∗(α), Eq. (10).

Since the resolution of the proposed method requires the determination of the SIF at as
many points as the discretization of the axis of crack propagation has (may be hundreds or even
thousands, depending on the characteristic length of the material), the tabulated values of f ∗(α)
have been adjusted using a fourth-degree polynomial, yielding the following expression:

f ∗ (α) = 1, 08 + 3, 97α− 13, 25α2 + 16, 30α3 − 6, 88α4 (12)

As shown in Fig. 5, an excellent agreement is achieved between the polynomial fit and the
values proposed by Srawley and Gross (Srawley and Gross, 1972).

The weight function used has been proposed by Fett and Munz (Fett and Munz, 1997):

m(x, a) =

√
2

πa

1√
1− ρ

{
1 +

4∑
η=1

5∑
µ=1

Aηµα
µ−1

(1− α)3/2
(1− ρ)η

}
(13)

where
α =

a

W
; ρ =

x

a
(14)

and the constants Aηµ are shown in Table 2 below.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 α

1.3

1.35

1.4

1.45

1.5

f(
α)

Eq (12)
Srawley and Gross [24]

Figure 5: Polynomial fit of the values proposed by Srawley and Gross (Srawley and Gross, 1972)

η µ=1 2 3 4 5
1 2.673 -8.604 20.621 -14.635 0.477
2 -3.557 24.9726 -53.398 50.707 -11.837
3 1.230 -8.411 16.957 -12.157 -0.940
4 -0.157 0.954 -1.284 -0.393 1.655

Table 2: Coefficients of the weight function, Eq. (13).

The displacement field generated by the external load, u∞(x, a), could be determined by
integrating Eq. (9). Setting the weight function in dimensionless form, i.e.:

m(x, a) =
1√
W

m̄(x̄i, α) (15)

where

m̄(x̄i, α) =

√
2

π

1√
α− x̄i

{
1 +

(1− ρi)

(1− α)3/2
H̃(α)

}
(16)

the following expression is found to define the displacement field due to the external load:

u∞(x̄i, αi) =

√
W

E ′

∫ αi

x̄i

KI∞m̄(x̄i, α)dα (17)

in which
x̄i =

xi

W
(18)

and H̃(α) can be found in the appendix.
From Eq. (10), (16) and (17) the following expression for the displacements caused by the

external load is formulated:

u∞(x̄i, αi) =
P

E ′b

√
2

π

∫ αi

x̄i

f ∗(α)(2 + α)

(1− α)3/2(α− x̄i)1/2

(
1 +

(1− ρi)

(1− α)3/2
H̃(α)

)
dα (19)

The integral in Eq. (19) is not defined in the lower limit of integration, and thus, when the
following change of variable is made:

α = x̄i + t2 = ∆t (20)
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the following expression results, which can be solved numerically:

u∞(x̄i, αi) =
2P

E ′b

√
2

π

∫ √
αi−x̄i

0

f ∗(∆t)(2 + ∆t)

(1−∆t)3/2

(
1 +

t2

∆t(1−∆t)3/2
H̃1(t)

)
dt (21)

where the function f ∗(∆t) is given by:

f ∗(∆t) = 1, 08 + 3, 97∆t − 13, 25∆2
t + 16, 30∆3

t − 6, 88∆4
t (22)

and analytical expression of H̃1(t) can be found in the appendix.
In the present work a linear softening curve is considered, i.e.:

σi (x̄) = τ + ζu(x̄, α) (23)

in which the parameters τ and ζ take the following values:

τ = σc ; ζ = −σc/uc if u < uc

τ = 0 ; ζ = 0 if u ≥ uc
(24)

Taken into account that cohesive stress is different from zero only in the cohesive zone, i.e.:

σi (x̄) =

{
σi (x̄) if α0 ≤ x̄ ≤ α
0 if x̄ < α0

(25)

and replacing Eq. (15) into Eq. (8), it is possible to get the SIF due to the cohesive stress as:

KIcohe =

√
2W

π

∫ αi

α0

σi (x̄, αi)√
αi − x̄

{
1 +

(1− ρ̄)

(1− αi)3/2
H(x̄)

}
dx̄ (26)

where
ρ̄ =

x̄

αi

(27)

and H(x̄) can be found in the appendix.
As can be seen, the integral in Eq. (26) is not defined in the upper limit of integration.

Therefore, it is necessary to make a change of variable, which in this case is given by:

x̄ = αi − t2 (28)

After some algebra, the following expression for KIcohe is found:

KIcohe = 2

√
2W

π

∫ √
αi−α0

0

σi (αi, t)

{
1 +

t2

αi(1− αi)3/2
H2(t)

}
dt (29)

where the function H2(t) is reported in the appendix.
Integrating Eq. (9) the displacement field caused by the cohesive stress is determined:

ucohe(x̄i, αi) =

√
W

E ′

∫ αi

x̄i

KIcohem̄(x̄i, α)dα (30)

in which m̄(x̄i, α) is the weight function in dimensionless form. Thus, Eq. (30) may be rewritten
in the following way:

ucohe(x̄i, αi) =
1

E ′

√
2W

π

∫ αi

x̄i

KIcohe√
α− x̄i

(
1 +

(1− ρi)

(1− α)3/2
H(α)

)
dα (31)
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Since the last integral is not defined in the lower limit of integration, it is necessary to make
the change of variable that is shown in Eq. (20) again, giving the following expression, which
makes it possible to calculate the crack profile caused by the cohesive stress:

ucohe(x̄i, αi) =
1

E ′

√
8W

π

∫ √
αi−x̄i

0

KIcohe(t)

(
1 +

t2

∆t(1−∆t)3/2
H1(t)

)
dt (32)

H1(t) is the same function that was used for calculating u∞(x̄i, αi) and is reported in the
appendix. KIcohe(t) results by interpolating linearly between the values of KIcohe calculated
with Eq. (29).

5 NUMERICAL VALIDATION

Analytical predictions corresponding to the fracture behaviour of compact-tension specimens
determined with the technique proposed in this work were compared with the FEM results
found using a commercial code, ABAQUS/Standard (ABAQUS, 2005).

The general outline of the specimen analysed is as shown in Fig. 4, considering B = 16
mm and W = 64 mm. Three different conditions corresponding to initial crack lengths of
35%, 50%, and 65% have been analysed. It is assumed that the material, whose mechanical
properties are listed in Table 3, behaves as linear softening.

E (MPa) ν σc (MPa) GF (N/mm)
30000 0,28 3,00 0,10

Table 3: Mechanical properties of the material considered.

Only half the specimen has been simulated using four-node plane-strain elements. Displace-
ments in y-direction to nodes located in the uncracked ligament were restricted. In correspon-
dence with the load direction a displacement, v, was imposed, see Fig. 6.

Figure 6: Boundary conditions

Cohesive elements available in the FEM code with initial zero thickness were used to model
the uncracked ligament. An example of the finite-element meshes used is shown in Fig. 7. For
each of the three conditions of analysis, the results found using the FEM and the method
proposed are shown below.
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The solution algorithm was implemented in MATLAB, and the governing equations were
integrated numerically using Simpson’s three-eights rule (Hildebrand, 1965).

Figure 7: Finite-element mesh used in the simulations

Fig. 8 to 10 represent the variation of the applied load in terms of the ∆δ, defined as the
increment of the distance between two points, P1 y P2, located at the intersection of the lips of
the crack to the load direction, as can bee seen in Fig. 6. Two curves are shown on any graph
corresponding to the proposed method and to the FEM results.

0 0.025 0.05 0.075 0.1 0.125
∆δ (mm)

0

100

200

300

400

500

L
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d 
(N

)

Analytical Solution
Numerical Simulation

Figure 8: Validation results corresponding to α = 0, 35

As can be seen, there is a good prediction of the shape of the load−∆δ curve, especially in
the initial slope. The method is especially powerful to predict the value of both the peak load
recorded, as well as the respective ∆δ. The major differences compared with the FEM results
remained below 1.5% for the shortest initial crack length.

It should be noted that the results found with the proposed method, in addition to differing
very little, are conservative in relation to the FEM analysis.
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Figure 9: Validation results corresponding to α = 0, 50
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Figure 10: Validation results corresponding to α = 0, 65
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6 EXPERIMENTAL VALIDATION

The analytical method proposed has also been validated by comparing their predictions with
experimental results reported in the literature (Gómez et al., 2005). The general outline of the
specimen is depicted in Fig. 4, with B = 16 mm, W = 64 mm and a = 31.50 mm.

The chosen material was a glassy polymer (PMMA) whose mechanical properties and soft-
ening function are shown in Table 4.

E (MPa) ν σc (MPa) GF (N/mm) Softening
5050 0,40 128,00 0,48 Rectangular

Table 4: Material properties considered in the experimental validation.

The only reported case has been considered. In Fig. 11 experimental results are shown with
the prediction of the analytical method proposed for the same geometry.

As it can be seen, there is an excellent agreement between the shape of the load − CMOD
curve found experimentally and that determined with the proposed method.

Figure 11: Results of the experimental validation

7 CONCLUSIONS

In this work an analytical investigation on the fracture behaviour of compact-tension test
specimens, a configuration extensively used in testing mechanics, has been carried out within
the framework of a novel application of the well-known weight-function technique. In addi-
tion to the material properties and the weight function, only a general expression of the stress
intensity factor is needed.
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An algorithm for numerically solving the governing equations has been implemented in
MATLAB. A linear softening curve is adopted and the predictions of the proposed method
have been compared with the numerical results obtained using the finite-element method. The
validation involves the analysis of compact-tension specimens with different initial crack lengths
and the results demonstrate the benefits of the technique developed here, which yields results
without any appreciable error.

The predictions using the methodology proposed by the authors have also been compared
with experimental results available in the literature considering a rectangular softening curve.
As in the numerical validation, there is an excellent agreement between the shape of the load−
CMOD curve found experimentally and that determined with the proposed method.

This procedure, which offers an alternative for determining the fracture behaviour of quasi-
brittle materials, also has important advantages such as a better ability to modify the geometry
as well as the size of the specimen. It allows the fracture behaviour of materials with different
characteristic lengths to be analysed, leading to an important saving of time and computing cost
with respect to the finite-element method.
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APPENDIX. AUXILIARY FUNCTIONS

The following are the auxiliary functions H(α), H1(t) and H2(t).

H(α) =
{
A11 + A21(1− ρi) + A31(1− ρi)

2 + A41(1− ρi)
3+

+ A12α + A22α(1− ρi) + A32α(1− ρi)
2 + A42α(1− ρi)

3+

+ A13α
2 + A23α

2(1− ρi) + A33α
2(1− ρi)

2 + A43α
2(1− ρi)

3+

+ A14α
3 + A24α

3(1− ρi) + A34α
3(1− ρi)

2 + A44α
3(1− ρi)

3+

+ A15α
4 + A25α

4(1− ρi) + A35α
4(1− ρi)

2 + A45α
4(1− ρi)

3
}

where
ρi =

x̄i

α

H1(t) =

{
A11 +

t2

x̄i + t2

[
A21 + A31

t2

x̄i + t2
+ A41

(
t2

x̄i + t2

)2
]

+

+
(
x̄i + t2

)
[
A12 +

t2

x̄i + t2

(
A22 + A32

t2

x̄i + t2
+ A42

(
t2

x̄i + t2

)2
)]

+

+
(
x̄i + t2

)2

[
A13 +

t2

x̄i + t2

(
A23 + A33

t2

x̄i + t2
+ A43

(
t2

x̄i + t2

)2
)]

+

+
(
x̄i + t2

)3

[
A14 +

t2

x̄i + t2

(
A24 + A34

t2

x̄i + t2
+ A44

(
t2

x̄i + t2

)2
)]

+

+
(
x̄i + t2

)4

[
A15 +

t2

x̄i + t2

(
A25 + A35

t2

x̄i + t2
+ A45

(
t2

x̄i + t2

)2
)]}

H2(t) =

{
A11 + A21

(
t2

αi

)
+ A31

(
t2

αi

)2

+ A41

(
t2

αi

)3

+

+ αi

[
A12 + A22

(
t2

αi

)
+ A32

(
t2

αi

)2

+ A42

(
t2

αi

)3
]

+

+ αi
2

[
A13 + A23

(
t2

αi

)
+ A33

(
t2

αi

)2

+ A43

(
t2

αi

)3
]

+

+ αi
3

[
A14 + A24

(
t2

αi

)
+ A34

(
t2

αi

)2

+ A44

(
t2

αi

)3
]

+

+ αi
4

[
A15 + A25

(
t2

αi

)
+ A35

(
t2

αi

)2

+ A45

(
t2

αi

)3
]}

The values of the coefficients Aηµ are shown in Table 2.
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