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Abstract: A singular perturbation analysis based on the WKB (Wentzel–Kramers–Brillouin) 

technique to study the hydrodynamic performance of periodic ocean waves that are incident on a shelf 

with linear transition is proposed. We derive a linear model to predict the propagation of the long 

ocean waves over the shelf. In this manner, the spatial distribution for the surface elevation of the 

ocean waves over the shelf as a function of three dimensionless parameters, namely, a small 

kinematical parameter and two geometrical parameters, is governed by a second-order linear ordinary 

differential equation. The kinematical parameter denotes the ratio of the potential head, due to gravity, 

to the kinetic head of the ocean waves along the longitudinal axis of the parabolic channel. Meanwhile 

the geometrical parameters represent a characteristic depth ratio of the shelf and the shelf slope. Using 

matching conditions, simple expressions for the reflection and transmission coefficients are obtained. 
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1 INTRODUCTION 
 

A wide variety of physical phenomena can be simulated by using shallow water 

mathematical models. An important class of problems of practical interest involves water 

flows with a free surface under the influence of gravity. This includes tides in oceans, the 

breaking of waves on shallow beaches, rolling waves in open channels, flood waves in rivers, 

surges and dam break wave modeling. Some of these relevant models can be found in Toro 

(2001) and Wu (1981).One manner to classify ocean waves is based on their relative depth. 

For the case of shallow water flows, waves for which / 1/ 20h    or /10kh   are called 

long waves or shallow waves, as was proposed by Rahman (1995). In the above relationships, 

k denotes the wave number,   is the ocean wave length and h represents a characteristic 

elevation of the ocean wave. An essential aspect of the propagation of ocean waves described 

by the shallow water approximation is that they are strongly influenced by geometrical and 

physical parameters. Among others, we can include sharp variations in the depth and width 

that are characteristic parameters of the specific geometry of the open channel and other 

factors such as friction and wind velocity effects that can also affect the motion of ocean 

waves, as was reported by Li and Jeng (2006). It is well known that one of the principal 

obstacles in obtaining adequate analytical solutions lies in the complicated geometry of 

natural estuaries; however, for some simplified geometries, it is possible to develop 

approximate analytical solutions. On the other hand, the modern use of digital computers can 

drastically reduce the numerical difficulties associated with complex geometries by enabling 

variations in depth and breadth to be incorporated in the calculations. This in turn increases 

the accuracy in the numerical solutions. Today, computational methods offer a sophisticated 

tool for studying the dynamic propagation of shallow water waves. However, for some 

relevant limits, the analytical solutions provide knowledge about the phenomenon of interest 

and can be very useful for simplifying numerical models. Therefore, the use of numerical 

methods does not detract the fundamental role of approximate analytical solutions. In this 

direction, Aubrey and Speer (1985) theoretically examined the spreading and distortion of 

long waves into shallow estuarine structures. Their observations were based on the sea surface 

elevation and horizontal currents over periods ranging from three days to one year, 

documenting the non-linear interactions associated with the offshore equilibrium. Some 

authors have treated the modeling of ocean waves indifferent ways. For instance, the 

mathematical analysis of long ocean waves characterizing discontinuous density gradients 

was reported by Ouahsine and Bois (2001). They argued that the mathematical structure of the 

pressure perturbation associated with the leading motion can be reduced to a Sturm–Liouville 

problem with well-defined eigenvalues. Mead (2004) proposed a numerical solution to the 

shallow water equation by using an analytical scheme with Lagrangian coordinates and 

plotting the particles trajectories to avoid the use of complicated generation meshes. In some 

cases, shock waves are present in long waves and these can be treated by using the well-

known Riemann solver for a hyperbolic system in the context of two-dimensional 

conservation laws. Contributions related to the above situations can be seen elsewhere see 

Baghlani et al. (2008), Guinot (2005) and George (2008). In parallel, Läuter et al. (2005) 

developed a new class of unsteady analytical solutions to a spherical shallow water equation 

using the transformation method. Camassa et al. (2006), introduced an asymptotic higher-

order model for the wave dynamics of a shallow water problem by combining analytical and 

numerical analyses. Bautista et al. (2011), proposed a singular perturbation analysis to study 

the hydrodynamic performance of periodic ocean waves that are incident on an open parabolic 
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channel of constant depth. O'Hare and Davies (1992), presented a model for the 

monochromatic propagation on a smoothly varying bed profile divided into a series of shelves 

separated by abrupt steps. Wang et al. (2002), proposed a three-point method for estimating 

wave reflection to account for monochromatic oblique incident waves propagating over a 

sloping beach. The submerged obstacles with different shapes, solids and porous solids have 

been studied extensively in order to determine the reflection and transmission of ocean waves, 

and representative works can be found elsewhere see Losada et al. (1989), Pengzhi (2004), 

Pengzhi and Liu (2005), Wang et al. (2008).  

The ocean wave reflection is a phenomenon that has to be taken into account in the ocean 

wave mechanic, due to the importance in the design and construction of coastal structures. In 

the past, different researchers conducted fundamental contributions on this topic related to the 

propagation of ocean waves in complex geometries with the aid of experimental and 

theoretical models to obtain the reflection and transmission coefficients.  

In this direction, there are a number of analytical studies for the transformation of ocean 

waves, one important case that had been studied widely is the ocean waves propagating over 

an infinite step, Lamb (1932), presented the long-wave solution to the reflection or 

transmission of waves for an  infinite step by using matching conditions for surface and 

normal mass flux at the boundary. In the specialized literature, approximated analytic 

solutions for the long wave equations with different propagation conditions based on Bessel 

functions can be found elsewhere, see Goring (1979), Bender and Dean (2003), Dean and 

Dalrymple (2004), Hsien-Kuo and Jin-Cheng (2007), Tae-Hwa and Yong-Sik (2009). 

In this work, we develop a new theoretical model for studying the spreading of ocean 

waves over a shelf with linear transition. We consider the lineal shallow water flow 

approximation by taking into account the influence of the bottom variation on wave 

propagation, the model is based under a potential flow theory. Special attention is placed on 

the effects of the perturbation for a small amplitude ocean wave propagating over the shelf. 

The governing equations for the ocean wave propagation are presented in dimensionless form 

as a function of dimensionless parameters. For this purpose, we apply the well-known WKB 

(Wentzel–Kramers–Brillouin) perturbation technique, see Bender and Orzag (1978). In order 

to obtain the reflection and transmission coefficients and considering that our physical model 

is subdivided into three different regions, we anticipate that the continuity of kinematic and 

dynamic conditions will prevail, the reflection and transmission coefficient are function of the 

relative depth, shelf slope and the small kinematic parameter. For instance, the surface 

elevation and mass flow between each pair of regions must be the same, as was originally 

proposed by Mei et al. (2005). The new analytical solution is a versatile tool that can be 

extended to analyze engineering structures as breakwater with trapezoidal shapes or any 

continuous bottom shapes. 

2 FORMULATION 

The physical model under study is shown in Fig. 1. In the Cartesian coordinate system the

x axis points in a direction of the incident waves, with the z axis pointing outwards in a 

direction normal to the mean sea-water level. In addition, the physical model is divided into 

three different regions: R1, R2 and R3, with prescribed depths defined respectively by the 

following relationships: 
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Fig. 1. Transversal section of the physical model 
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2

2 3
2

3

R2: For 0

R1: For 0

R3: For

h x

h h
h x h x x L

L

h x L

 
 
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  

 (1) 

where L is the horizontal projection length of region R1, for regions R2 and R3 the x  axis 

extends from 0x    and L x   , respectively. At the bottom, we assume that the 

walls are impermeable which means no mass transfer. On the other hand, the boundary 

conditions on the right and left sides of the system are completely open to the passage of the 

sum of incident and reflected waves on the left and only a transmitted wave on the right. As 

stated previously, in the present study, we assume that the following two shallow water 

equations (SWE), under the theory of potential flow and assuming small amplitudes, can be 

written as follows: 

 
   , ,U x t x t

g
t x

 
 

 
 (2) 

 
     ,, U x t h xx t

t x

      
 

 (3) 

The first equation represents the conservation of momentum, and the second one represents 

the conservation of mass. In the above equations,  ,U x t is the mean velocity,  ,x t is the 

level of the water surface measured from the sea level at rest, t  is the physical time, g is 

gravitational acceleration and  h x is the depth variation. The above set of equations can be 

written for each region by using appropriate dimensionless variables, and together with the 

boundary conditions, define the basic characteristics of the present model. 

Combining Eqs. (2) and (3), the motion equation for region R1 is given by the following: 

 

  
 2 2

2 2

h x
g h x

t x x x

      
  

    
 (4) 
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Taking into account the relationships,  Eq. (1), for the interval 0 x L  , Eq. (4) become 

 
2 2

2 3 2 3
22 2

h h h h
g h x

t L x L x

          
      

      
 (5) 

Eq. (5) describes the unsteady oscillations of the water surface level. The above equation 

can be simplified in order to reduced to an ordinary differential equation by considering that 

the surface level  ,x t
 

has a periodic response and modulated only by the variable 

amplitude as follows: 

      , cosx t x t    (6) 

where  x  is the wave amplitude in any cross section along the coordinate x , 2 / T  is 

the ocean wave angular frequency and T  is the period.  

Substituting Eq. (6) into Eq.(5), we obtain the following 

 
2

22 3 2 3
2 2

0
h h d h h d

g h x
L dx L dx

 
 

     
       

    
 (7) 

In the following section, we present a dimensionless version of the equations to clarify the 

influence of the dimensionless parameters. 

We can write Eq. (7) in dimensionless form by introducing the following variables: 

 

 
22

2
2 3

,
xx

hL h h


  

 
 

substituting the previous dimensionless variables into Eq. (7) we obtain: 

 
   

2

2

1
0

1 1

d d

d d

  
 

   
  

 
 (8) 

where the dimensionless parameters in the above equation are defined as 

 
 22 2 3 3

22 2
22 3

, 1 1 , and =
g h h h h

m m
L hL h h

   



    

  
   

Eq. (8) is a singular boundary value problem, which describe the oscillation of the water 

surface level as a function of the dimensionless variable  . 

3 WKB THEORY: ASYMPTOTIC LIMIT FOR 1  

In this section, the asymptotic limit for 1  using the WKB perturbation technique is 

analyzed in order to obtain an approximated analytical solution of Eq. (8), which is an 

ordinary linear second order differential equation with the highest-order derivative multiplied 

by the small parameter  . It should be noted that the physical meaning of the limit  tends to 

zero is basically interpreted as a shallow water wave propagation for which the potential head, 

2gh
 
is dominated by the kinetic head,  

22 2

2 3L h h   
 

, associated to the frequency   of 

the wave. This case physically  corresponds to a well-established propagation of the water 

waves. In addition, we must emphasize the fundamental importance for selecting the 

dimensionless form of the governing equations derived in the previous section: WKB theory 
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is a powerful tool for obtaining a global approximation to the solution of a linear differential 

equation whose highest derivative is multiplied by a small parameter. However, the useof the 

WKB technique is not restricted if the differential equation is written in dimensional or 

dimensionless form. Therefore, the reason for applying the WKB method to the dimensionless 

form of governing equations is only based on the fact that the corresponding dimensionless 

form of the equations is usual in most theoretical analyses of fluid mechanics. In our case, the 

perturbation parameter in Eq. (8) is given by the kinematical parameter,  . Therefore, the 

mathematical structure of this dispersive problem clearly defines a well-known singular 

behavior which can be analyzed by the proposed perturbative technique. 

In order to applied the WKB perturbation technique, using the Liouville transformation the 

Eq.(8) is transformed in a canonical form , as follows, see Milson (1997). 

      '' 0Q       (9) 

where    correspond to a change of variable of the form 

    
 

 0 2

b
d

a
e

 



   


  (10) 

The variable coefficient  Q   in Eq. (9) is calculated as follows  

  
' 2

2

4 2 ' 2

4

a c a b b a b
Q

a

      




      (11) 

In Eqs. (10) and (11), the variable coefficients ,a b  and c , correspond to the coefficients 

of Eq. (8) as follows: 

 

2

2

1
, ' 0, , ' and

1 11
a a b b c

 


 
      

 
 

Taking into account the above relationship in Eq. (11) and Eq. (10), we obtain the 

following 

  
   

2

2

1

1 4 1
Q




  
 

 
 (12) 

and 

     
1/2

1 E       (13) 

where E  is a constant of integration. 

 

Substituting Eq.(12) into Eq. (9), and multiplying the result with  we obtain the canonical 

form of Eq. (8) as follows: 

  
   

 
2

2

1
'' 0

1 4 1


   

 

 
   

   

 (14) 

An approximated WKB analytical solution for Eq. (14) can be proposed as a potential  

series given by the following: 
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    
0

1
exp , 0;n

n

n

S    






 
 

 
  (15) 

with the first and second derivatives given by the following: 

 

     

       

0 0

2

2
0 0 0

1 1
' ' exp , 0

1 1 1
'' ' '' exp , 0;

n n

n n

n n

n n n

n n n

n n n

S S

S S S

      
 

        
  

 

 

  

  

   
   

   

    
     

     

 

  

 (16) 

where 
nS , the phase function, is an unknown function of the dimensionless kinematical 

parameter  and must be determined for each value of n , as a part of the mathematical 

procedure. 

Obviously, the phase 
nS  is assumed to be a non-constant function and slowly varying in a 

break down region. Taking into account the solution given by Eq. (15) and the relationships in 

Eq.(16), Eq.(14) leads to the following expression: 

        
   

2
2 2

' ' ' ' '' ''

0 0 1 1 0 12

1
2 0

1 4 1
S S S S S S

   
 

    

 
       

  
 (17) 

and by a simple dominant balance, we obtain the following: 

 1/2   (18) 

in this manner, Eq. (17) can now be written as 

 
   

2
0 ' 2 1/2 ' ' '' 1 '2 ''

0 0 1 0 1 1

1
2 0

1 4 1
S S S S S S


  

 

   
               

 (19) 

Therefore, from Eq. (19), we can collect terms of order 0  and 1/2 , and the following 

equations up to terms of order 1/2 , are obtained as follows: 

 
 

0 ' 2

0

1
: 0,

1
S


 


 (20) 

and 

 
1/2 ' ' ''

0 1 0: 2 0S S S    (21) 

Eq. (20) yields the solution for 
'

0S as follows: 

 
 

'

0
1

i
S


 


 (22) 

where  
1/2

1i   , and thus, the solutions for 
0S  are given by the following relationships: 

  
1/2

0

2
1 ,

i
S C


     (23) 
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and 

  
1/2

0

2
1 ,

i
S C


    (24) 

 

The constant C  can be determined with appropriated boundary conditions. 

In a similar way, from Eq. (21), 
'

1S
 
is obtained as follows: 

 
 

'

1 1/2
4 1

S



 


 (25) 

and therefore, 
1S  is given by 

  1

1
n 1

4
S L D    (26) 

In Eq. (26), D  is another integration constant that is also determined by the boundary 

conditions. The procedures for estimating both constants are given below. Substituting 

Eqs.(24) and (26) into Eq. (15), the WKB solution to the modified differential equation, Eq. 

(14), is given by the following: 

    
   

1/2 1/2

1/2 1/2

2 1 2 1

1/4
1 , 0.

i i

C e D e

 

      

 
 

    
 
 

 (27) 

Finally, substituting Eq. (27) into Eq. (13), we obtain the solution to the original 

differential equation Eq. (8) 

  
 

   
1/2 1/2

1/2 1/2

2 1 2 1

1/4

1
, 0.

1

i i

C e D e

 

     


 
 

   
 
 

 (28) 

The determination of constants C and D will deduced in the next sections. 

For the regions of uniform depth, R2 and R3, Eq. (4)simplifies to 

 
2 2

2,32 2
gh

t x

  


 
 (29) 

where 2,3h  is the constant depth of region R2 and R3. 

Eq. (29) is reduced to a boundary value problem, considering that the surface level has a 

periodic response and is modulated only by the variable amplitude; thus, we propose asolution 

given by  

  2,3 cos    (30) 

substituting Eq. (30) into Eq. (29), we obtain 

 

2 2
2,3

2,3

2,3

0
d

dx gh

 
   (31) 

where 2,3  is the ocean wave amplitude in any transversal section of the region R2 and R3, 

respectively. 
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The above equation has a direct solution. A general solution of  Eq. (31) can be expressed 

as follows: 

      
1/2 1/2

2 2

2

i i
gh gh

I Rx A e A e

 




   (32) 

and 

    
1/2

3

3

i
gh

Tx A e



   (33) 

where 
IA  is the  known physical incident ocean wave amplitude , 

RA  and 
TA  are the 

unknown physicals reflected an transmitted ocean waves amplitudes, that have to be 

determined. 

Introducing the next dimensionless variables for region R2 and R3 

 

   
2 3

1/2 1/2

2 32 3

ˆˆ, and ,
/ /

x x

h hgh gh

 
   

 
   

 

the corresponding Eq. (32) and (33) are written in dimensionless variables as follows: 

   i i

I Re e        (34) 

and 

   ˆˆ ˆ i

Te    (35) 

where 
2/I IA h  , 

2/R RA h  and 
3/T TA h  . The complex constants 

R  and 
T have to 

be determined with appropriated boundary conditions. 

The procedures for estimating the constants C, D ,
R  and 

T  given by the equations (28), 

(34) and (35) are given below. 

4 REFLECTION AND TRANSMISSION COEFFICIENTS 

Matching conditions must be applied to conserve the surface elevation and flow fluxes 

across in commune regions. These are given by the following relationships: 

 

For regions R2 and R1 

 
1/2

00
00

and
d d

d d


 
  

 


   (36) 

and for regions R1 and R3 

 

 
 

1/22
3 1/22

3

1/2 1/2
1

ˆ 1
1 ˆ

1

ˆ
ˆ and

ˆ
L

Lm gh
m gh

d d

d d
   

 
    

  
  



   (37) 

In the matrix form, the above equations are written as 
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 

 

1/2 1/2

1/2 1/2

1/2 1/2

1/2
1/2 1/2

3

1/2 1/2

1/2
1/2 1/2

3

2 2

2 21/2 1/2

2 2

5/4

2 21/2 1/2
5/4

1/2 1/2

1 0

1 1 1 0
4 4

0

0 1 1
4 4

i i

i i

L
ii i

gh

L
ii i

gh

e e

e i e i

e e e

e i e i e

   

   

 

   

 

   

   



   


 













   
      
    





   
      

   

0

0

R I

I

T

C

D

 





   
   
   
   
   
    
   
   
    
    
    
    

 (38) 

the solution of the system equations (38), yields the following relationships: 

 

 

   

   

   

1/2

1/2

2
1/2

1/2 1/2

1/2

1/2

2
1/2

1/2 1/2

1
1 sin

1
1 cos sin

4

1
8cos 1 sin

1
1 cos 8 sin

4

R

I

i

i

  



   

 


   




   

 

 
   

 

  
    

  
 

    
 

   
      

    

 (39) 

and 

                           
   

   

1/2

1/2

5/4

1/2 2

1/2 1/2

1

1
cos 1 sin

8

1
1 cos 1 sin

8 32

iT

I

e

i



  
 




  
 

 




  
     

  
 

                

 (40) 

 

where    1/2 1/22 1 /      and  
1/2

3/L gh   

The constants C and D are given as follows: 

 
 

1/2

1/2

2

1/2 1/2

2 2
1/2

1/2 1/2 1/2

1
8 1

8 8

i

I

i i

i e
C

e i e



 

 

   

 
 

  








  

     
  

,  (41) 

and 

 

1/2

1/2

21/2

1/2

2 2 1/2

1/2 1/2 1/2

4 1
8

1
4 1

16 16 2

i

I

i i

i e

D

e i e



 

 

 




   

  



 
  

 
  

     
  

 (42) 
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In order to calculate the reflection and transmission coefficient of long ocean waves 

spreading over a shelf in the limit of 1 , in this work we considered the wave energy times 

the group velocity concept, that is 

 2 Wave Reflected 3 Wave Transmitted 2 Wave Incident;C E C E C E   (43) 

where 2

Wave Incident /2IE gA , 2

Wave Reflected /2RE gA  and 2

Wave Transmitted /2TE gA  are the 

energy of the incident, reflected and transmitted ocean waves, respectively. For linear 

nondispersives long waves the group velocity is given by 2 2C gh and 3 3C gh , thus Eq. 

(43) become   

 
2 2 2

2 3 2
2 2 2

R T IgA gA gA
gh gh gh

  
   (44) 

dividing Eq. (44) by  2

2/ 2IgA gh , we obtain 

 

2 2

3

2

1R T

I I

hA A

A Ah

   
    

   
 (45) 

The first and the second term on the left side in the above equation, represent the 

percentage of the energy that is reflected and transmitted, these values are  always positive 

quantities, therefore the Eq. (45), can be expressed in terms of the absolute value as follows 

 

2 2

3

2

1R T

I I

hA A

A Ah
   (46) 

Eq. (46) is written in a simplified form as 

 
2 2 1R TC C   (47) 

where
RC  and 

TC  are the reflection and transmission coefficient respectively under the 

concept of energy conservation and are given by the next expressions: 

 R
R

I

A
C

A
  (48) 

and 

 

1/4

3

2

T
T

I

A h
C

A h

 
  

 
 (49) 

Now, substituting the values of  
2/I IA h  , 

2/R RA h   and 
3/T TA h   into Eqs. (48)

and (49) the reflection and transmission coefficient are rewritten in the next form 

 R
R

I

C



  (50) 

and 
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5/4T

T

I

C





  (51) 

Now, substituting the Eqs. (39) and (40) into the above equations and taking into account 

that the absolute value of a complex number is given by its modulus, Eqs. (50) and (51) can 

be written as follows 

 

     

       

22 2
1/2 1/2

1/2 1/2 1/2

22 2
1/2 1/2

1/2 1/2 1/2

1 1
1 sin 1 cos sin

4

1 1
8cos 1 sin 1 cos 8 sin

4

RC


      

  


       

  

     
         

      


      
              

       

 (52) 

and 

       

22
1/2 1/2 2

1/2 1/2 1/2

1

1 1
cos 1 sin 1 cos 1 sin

8 8 32

TC

    
   

  



       
              

       

 (53) 

5 RESULTS AND DISCUSSION 

In this work, we have analytically solved a simplified mathematical model for the linear 

shallow water ocean wave equations. Although in the past similar problems have widely been 

studied by using conventional techniques for other types of different geometries to those used 

in this work, see Bokhove (2005) and Prokof (2002), we have introduced a dimensionless 

motion equation for predicting the hydrodynamic behavior of the surface elevation of the 

ocean wave. The reason for choosing dimensionless quantities lies in the fact that they are 

pure parameters, and this in turn allows us to reduce the number of required physical variables 

and parameters. 

In this study, there are two physical limitations to the applications derived from the present 

theory that should be noted. First, the ocean wave propagation is parallel to the longitudinal 

axis x ; therefore, the mathematical solution does not provide oblique incident waves. Second, 

the mathematical model is based on a linearized theory of long waves, i.e.,  / 1h x and 

  / 1h x  . 

For the energy conservation concept, the magnitude of the reflection coefficient is in the 

interval 0 1RC 
 
and transmission coefficient is in the interval 0 1TC  , when the ratio 

1   and the shelf slope 0m  (Horizontal bottom) the Eqs. (52) and (53) take the values 

0RC  , there is not reflection and 1TC  , perfect transmission as expected. Under these 

conditions, the governing equation of the propagation of ocean waves given by the Eq.(8) 

takes the form: 

 
2

0
d

d


 


   (54) 

The above equations describe a boundary value problem for the propagation of long waves 

over a region with flat bottom and is similar to those obtained for regions R2 and R3. 

For values of m  and depth ratio 1 , the shelf geometry degenerate into an infinite 

step, this case has been widely studied using different techniques. The wave propagation over 
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a step is a singular problem that needs to be studied as a particular case, in this work for 

values 1  and m , the Eqs. (52) and (53) take the values of 0RC   and 1TC  , 

however, due to the singularity of the step, this mathematical model not reproduce properly 

the wave hydrodynamic for different depth ratios in the range 0 1   for the step case, thus 

is necessary that for this model the shelf slope have to be finite. 

Fig. 2 show the comparison of the present analytical model and the analytical solutions for 

an infinite step, m , obtained by Lamb (1932), Eq. (55), Sugimoto et al. (1987), Eq. (56) 

and the numerical solution given by Pengzhi (2004). For the results shown, in this work we 

considered a finite shelf slope 15m   which is equivalent to 86.2 and not m  that was 

because, as was mentioned previously, the step is a highly singular problem, however as can 

be appreciated the results for the shelf slope proposed have a very good agreement. In the 

same figure the solution given by Sugimoto et al. (1987) underestimates the reflection 

coefficient. The present model provides larger values than those obtained Pengzhi (2004); this 

is because the present model was obtained by potential flow theory and Pengzhi (2004) 

considered  the solution of a turbulent flow model, however for values of   less than or equal 

to 0.2, there is a difference of approximately 1.7 %, for values above 0.2 , both solutions are 

almost identical. The reflection and transmission coefficient have to preserve energy, for 

instance, if 0.5  , the reflection and transmission coefficients are 0.17157RC   and 

0.99924TC  , Fig. 2 and 3, that is 2 2 1.027R TC C  , which slightly exceed the unit, this may 

be due to the approximated analytical solution over the shelf, region R1, which is obtained 

considering only an expansion series to the first order, however the results are in the same 

magnitude order to those reported by Hsien-Kuo and Jin-Cheng (2007). 

 
1/2

1/2

1

1
RC









 (55) 

 

2
1/2

1/2

1 1
1 8 1

4 1
RC





  
    

   

 (56) 

Fig. 3, depicted the reflection and transmission coefficients for different values of the 

kinematic parameter , in this figures the shelf  slope change as a function of the parameter , 

the horizontal projection of the shelf L  remain constant, the shelf slope  2 3 /m h h L   is 

expressed as  1m    , where 
2 /h L   is constant. In the same figures the coefficients 

RC  and 
TC  are evaluated  with different values of the parameter  0.001, 0.01and 0.05  , 

the results show that for large values of parameter  , the reflection coefficient increase and 

the transmission decrease. In this figures we have include results for the coefficient 
RC  and 

TC  for a slope 100m   in order to appreciate the singularity of the infinite step, as can be 

observed if the slope increase, the solution diverge. 
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Fig. 2. Wave reflection coefficient for the case of an infinite step using the present model, Lamb, Pengzhi Lin 

and Sugimoto et al. methods. 

 

Fig. 3. Wave reflection coefficient for various kinematical parameters ( 0.0001, 0.01and 0.05)   and 

sloping faces, the horizontal projection of the shelf remain constant. 
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Fig. 4. Wave reflection coefficient  as a function of the kinematical parameter   with values of 

 0.2, 0.4 and 0.6   and 1m  .

 

Fig. 5. Wave transmission coefficient  as a function of the kinematical parameter   with values of 

 0.2, 0.4 and 0.6   and 1m  . 

Mecánica Computacional Vol XXX, págs. 225-242 (2011) 239

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

Fig. 6. Wave reflection coefficient  as a function of the kinematical parameter   with values of 

 0.2, 0.4 and 0.6   and 10m  . 

 

Fig. 7. Wave transmission coefficient  as a function of the kinematical parameter   with 

values of ( 0.2, 0.4 and 0.6)   and 10m  . 
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6 CONCLUSIONS 

An analytical model based on the WKB perturbation technique in order to calculate the 

hydrodynamic response of the reflection coefficient 
RC

 
for an ocean wave propagation over a 

shelf with linear transition has been proposed and solved in a dimensionless form. In the 

present model the shelf slope can take different values. In particular we have recovered the 

limits of a flat bottom, 1  , that is 0RC   and 1TC  .  

On the other hand, in order to validate this analytical model, we obtain the reflection and 

transmission coefficients of waves in the limit of 1  and a finite shelf slope 15m  , this 

case tends to the hydrodynamics of an infinite step. Our results were compared with the 

analytical and numerical solutions for the strict case of a infinite step, reported by Lamb 

(1932), Pengzhi (2004), Sugimoto et al. (1987). The results were in a good agreement. 

The asymptotic analytical model proposed can be used widely in order to analyze in a first 

approximation, continental shelf effects on the propagation of long waves with large periods 

and can be extended to analyze different  geometries of breakwaters.  
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