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Abstract. In this work we provide a complete variational framework for the modeling of capillary
effects, starting from the virtual-work principle and arriving at a variational formulation suitable for
numerical treatment by means of the finite element method. This formulation is then coupled with a
level-set representation of the interface and suitable approximation spaces and stabilization terms. An
interesting aspect is that the Marangoni force arising from surface tension gradients is automatically
incorporated. This is illustrated by solving the thermocapillary migration of a droplet under a constant
temperature gradient, which has an analytical solution. The treatment of contact lines is also addressed
from within the variational framework, in particular the imposition of the static contact angle and of local
dissipation laws. Some numerical examples of spreading drops are used to clarify controversial issues of
this challenging problem.
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1 INTRODUCTION

The physics of surface tension, capillarity and wetting/dewetting phenomena is a very vast
and active field of research for which a classical reference is the work of de Gennes et al. (2004),
while an update of the state of the art can be found in the article of Bonn et al. (2009).

Over the years, a large volume of information has been published about the numerical simu-
lation of flows with interfaces, of which review articles can be found (Scardovelli and Zaleski,
1999; Sethian and Smereka, 2003; Tezduyar, 2007; Fuster et al., 2009; Idelsohn et al., 2009;
Mc Kee et al., 2008). These works consider either a passive interface or a capillary one, in
which surface tension forces have been accounted for. However, capillary forces are introduced
axiomatically, with little or no discussion of their physical and mechanical interpretation.

On the other hand, there is a growing interest in microscopic flows with quite complex in-
terfaces. Textured, superhydrophobic and electrically modifiable surfaces have already entered
microfluidic technologies (Rothstein, 2010; Squires and Quake, 2005; Stone et al., 2004), and
the study and manipulation of complex colloids and biological interfaces is now within reach
(Kim et al., 2009; Whitesides, 2006; Squires and Mason, 2010). Successful numerical modeling
of interfaces of such complexity cannot be performed without mechanical intuition and under-
standing. In fact, current research in elastic and geometric biomembranes is fundamentally
based on energy considerations (Skalak et al., 1973; Marella and Udaykumar, 2004; Lac et al.,
2004; Pozrikidis, 2003; Breyiannis and Pozrikidis, 2000; Bonito et al., 2010; Dziuk, 2008).

The plan for this article is to analyze the energetics of capillary phenomena from the view-
point of the virtual–work principle, so as to translate the well-established physics (see, e.g., de
Gennes et al. (2004)) into a language more familiar to practicioners of Computational Mechan-
ics. For this purpose, we first focus on a variational derivation of the virtual work PΓ associated
with the deformation of the interface Γ, which is the only difference with respect to the classical
Stokes problem when Γ is closed, and then extend the analysis to problems with contact lines,
in which as we will see both PΓ and P∂Ω play crucial roles. The derivation purposedly contains
all required mathematical proofs in a seldom used but very practical framework that does not
require covariant differentiation (Secomb and Skalak, 1982). Along the analysis, connections to
previous mathematical and numerical formulations are made, so as to discuss current practices
from the proposed viewpoint, and some challenging open problems are identified.

2 MATHEMATICAL FORMULATION

In this article, we focus on surface–tension phenomena involving two incompressible New-
tonian fluids at scales small enough for inertial and gravitational effects to be negligible. We
consider the flow of these fluids in a domain Ω which for simplicity is assumed bounded by a
rigid, impenetrable solid (its boundary is denoted by ∂Ω, also assumed smooth). The domain Ω
splits into two subdomains, Ω+ occupied by fluid A and Ω− occupied by fluid B. The interface
between Ω+ and Ω− is denoted by Γ, which is assumed to be a smooth surface that can either
be closed or have a boundary ∂Γ at which there exists fluid/fluid/solid contact (the well-known
“contact line”). It is also assumed that there is no slip between the fluids at the interface, so that
a global velocity field u ∈ (H1(Ω))d can be defined. A global pressure p ∈ L2(Ω) is also
defined, and the viscosity µ(x) is taken as µA(x) if x ∈ Ω+ and as µB(x) if x ∈ Ω−.

Introducing the spaces

W
.
= {w ∈ (H1(Ω))d | w · ň = 0 at ∂Ω} (1)

Q
.
= L2(Ω)/R (2)
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the variational formulation of the problem reads: Find (u, p) ∈ W ×Q such that∫
Ω

2µDu : Dw dΩ−
∫

Ω

p∇ ·w dΩ =

∫
Ω

b ·w dΩ + P∂Ω(w) + PΓ(w) (3)∫
Ω

q ∇ · u dΩ = 0 (4)

for all (w, q) ∈ W ×Q. In (3) b is a volume force.
Because W admits tangential movement of the fluid with respect to ∂Ω, a linear form

P∂Ω : W → R has been introduced expressing the virtual work at the boundary. Similarly,
PΓ is a linear form expressing the virtual work associated to the interface Γ. The physical and
mathematical meaning of these forms, which may depend on u or other variables, will be thor-
oughly discussed in the next sections, for the time being it suffices to accept that (3)–(4) is a
well-posed variational problem whenever the right-hand side of (3) is linear and continuous in
W . Notice that the time enters the mathematical problem parametrically.

2.1 Virtual work of surface tension

Consider a surface Γ at which there exists a heterogeneity in the composition or structure,
leading to a corresponding energy E(Γ). Assuming this energy to be additive, it can be written
as

E(Γ) =

∫
Γ

γ(x) dΓ (5)

where γ is a surface energy density that could depend on many variables, such as the deforma-
tion with respect to some relaxed configuration (as in elastic interfaces) or the local curvature of
the interface (as in lipidic membranes), as long as γ satisfies some basic locality and objectivity
principles.

The simplest constitutive behavior for γ is, of course, that the surface energy density is a
constant, depending just on the material identity of the point x. To further simplify the model, it
can also be assumed that there is no localized dissipation at Γ. The virtual work corresponding
to a velocity field w is thus equal to minus the rate of change of E(Γ) when Γ is virtually
displaced following w (in other words, −PΓ equals the shape derivative of E(Γ) along the
vector field w).

Let v be a vector field defined on Γ. It defines the one–parameter family of transformations

ϕv : Γ×]− s0, s0[→ Ω, ϕv(x, s) = x + sv(x) (6)

which transform Γ into the family of perturbed surfaces

Γv,s
.
= {y ∈ Ω | y = x + sv(x), x ∈ Γ} (7)

The energy of the perturbed surface Γv,s is,

E(Γ;v, s) =

∫
Γ

γ(x) JΓ(x, s) dΓ (8)

where JΓ(x, s) = dΓv,s/dΓ is the surface Jacobian at x of the transformation ϕv(·, s).
Now, we define the shape derivative of E(Γ) in a precise manner as

dE(Γ;v)
.
= lim

s→0

E(Γ;v, s)− E(Γ)

s
(9)
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To compute (9) we need to introduce several tools.
First, the transformation ϕv can be extended out of Γ as

ϕ̂v(x, s) = x + s v̂(x) (10)

where v̂(x) is the normal extension of v, i.e.

v̂(x)
.
= v(ΠΓ(x)) (11)

Equation (10) is a 3D deformation to which the well–known formulae from Continuum Me-
chanics (Gurtin, 1981) apply. We also decompose v̂(x) into its normal and tangential compo-
nents as

v̂ = v̂n n̂ + v̂τ (12)

Keeping v and s fixed and omitting them from the notation, we have, in particular (notice that
the developments are truncated to first order in s)

F
.
= ∇ϕ̂ = I + s∇v̂ = I + s(n̂⊗∇v̂n + v̂n∇n̂ +∇v̂τ ) (13)

F−1 = I− s∇v̂ = I− s(n̂⊗∇v̂n + v̂n∇n̂ +∇v̂τ ) (14)
J

.
= detF = 1 + s∇ · v̂ = 1 + s(v̂n∇ · n̂ +∇ · v̂τ ) (15)

Now, letting dA = ň dΓ denote the area differential vector and da its image by ϕ, it is known
that

da = J (F−1)T dA (16)

and thus

da = (1 + s∇ · v̂)dA− s∇v̂T dA (17)
= [1 + s(v̂n∇ · n̂ +∇ · v̂τ )]dA− s[∇v̂n ⊗ n̂ + (∇v̂τ )T ]dA (18)

where we have used ∇n̂ · n̂ = 0. It can be verified that the first term on the right-hand side
of (17) (or equivalently (18)) is normal to Γ, while the second term is tangential. Thus, to first
order in s, since dΓv,s = ‖da‖ we have

dΓv,s = (1 + s∇ · v̂) dΓ = [1 + s(v̂n∇ · n̂ +∇ · v̂τ )] dΓ (19)

which combined with (8) and (9) leads to

dE(Γ;v) =

∫
Γ

γ ∇ · v̂ dΓ =

∫
Γ

γ (v̂n∇ · n̂ +∇ · v̂τ ) dΓ (20)

Integration-by-parts formulae

The following integration-by-parts formulae hold (see Buscaglia and Ausas (2011)). For any
f defined and differentiable on Γ,∫

Γ

∇Γ f dΓ =

∫
Γ

f κ ň dΓ +

∫
∂Γ

f ν̌ d∂Γ (21)

G. BUSCAGLIA, R. AUSAS246

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



so that, applying it componentwise, we get for any tangentially differentiable vector field q,∫
Γ

∇Γ · q dΓ =

∫
Γ

κ ň · q dΓ +

∫
∂Γ

ν̌ · q d∂Γ (22)

where ň is the unit vector normal to Γ and ν is the unit vector tangent to Γ and normal to ∂̌Γ.
As a corollary, we have that the integral of the surface divergence of a purely tangential field on
a closed surface is zero. The detailed proof is found in Buscaglia and Ausas (2011)

Applying (22) with q = γ v to (20), since

γ∇ · v̂ = ∇ · (γ̂ v̂)−∇ γ̂ · v̂ = ∇Γ · (γ v)−∇Γγ · v (23)

gives

dE(Γ;v) = −PΓ(v) =

∫
Γ

(γ κ ň−∇Γ γ) · v dΓ +

∫
∂Γ

γ ν̌ · v d∂Γ (24)

An approach proposed by Bänsch (2001), computes PΓ(w) as follows

PΓ(w) = −
∫

Γ

γP : ∇w dΓ (25)

which comes from (20), since

∇Γ · v = ∇ · v̂ = trace(∇v ·P) = P : ∇v = (I− ň⊗ ň) : ∇v (26)

2.2 Virtual work in the presence of contact lines

Now we consider that the surface Γ touches the boundary ∂Ω splitting it into a part that is in
contact with one fluid (Γs+) and a part that is in contact with the other fluid (Γs−). The boundary
of Γ, denoted by ∂Γ, is a curve on ∂Ω.

The changes in energy at the boundary ∂Ω when Γ moves must be considered, so that the
total interface energy analogous to (5) is

E(Γ) =

∫
Γ

γ dΓ +

∫
Γs+

γs+ dΓs +

∫
Γs−

γs− dΓs (27)

where γs+ and γs− denote the energy densities of the interfaces solid/fluid A and solid/fluid B,
respectively. Let us denote by Es(Γ) the sum of the second and third terms in the definition of
E above, i.e.

Es(Γ) =

∫
Γs+

γs+ dΓs +

∫
Γs−

γs− dΓs. (28)

It can be proved that the variations of Es(Γ) are given by

dEs(Γ;w) =

∫
∂Γs+=∂Γ

(γs− − γs+) ν̌s ·w d∂Γ (29)

where ν̌s is the unit vector tangential to the solid boundary and normal to the contact line (see
Figure 1).

In the shape derivative above the fluid must slip on the surface for the contact line to move.
This is contrary to the no–slip behavior that is observed away from contact lines. It would also
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fluid A

fluid−

solid

ň

x

ν̌

Γ

Γs−

θ

ν̌s

Γs+

Figure 1: Detail of the geometrical definitions near the triple contact. The contact line ∂Γ cuts the plane of the
figure perpendicularly at the red dot.

be unphysical to assume a free–slip boundary, thus it is usual to add a Navier–type slip law at
∂Ω, corresponding to a tangential force t proportional to u (i.e.; t = − β u).

The corresponding virtual dissipation is, thus,

P∂Ω(w) = −
∫
∂Ω

β u ·w d∂Ω. (30)

Since slip is believed to take place only at molecular distances from the contact line, β is
essentially +∞ everywhere except in a very small vicinity of ∂Γ. In simulations, the size of
this vicinity is taken as the mesh size (Renardy et al., 2001). A recent discussion of slip models
and their impact on the motion of the interface Γ can be found in Ren and Weinan (2007). In the
numerical examples to be shown later, however, a constant value of β was adopted to simplify
the presentation. Though some dissipation has been added at ∂Ω through the Navier term, none
has been incorporated at Γ or at ∂Γ (the first and second integrals above are “elastic”). The lack
of a concentrated dissipation at ∂Γ has very important mechanical consequences, as detailed
next. At this point, the problem to be solved is

Let (u, p) ∈ W ×Q satisfy∫
Ω

2µDu : Dw dΩ−
∫

Ω

p∇ ·w dΩ =

∫
Γ

γ (I− ň⊗ ň) : ∇w dΓ−

−
∫
∂Γ

(γs− − γs+) ν̌s ·w d∂Γ−
∫
∂Ω

β u ·w d∂Ω (31)

for all w ∈ W , and let u also satisfy ∇ · u = 0. In (31), as before, ν̌s is the unit vector
tangential to the solid boundary and normal to the contact line. Now, based on (31) (i.e., in the
absence of a localized virtual dissipation) it is possible to obtain

ν̌ · ν̌s = cos θ =
γs+ − γs−

γ
(32)
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Let
M =

γs+ − γs−
γ

(33)

If |M | ≤ 1 define the static contact angle as

θS = arc cos M (i.e. γ cos θS = γs+ − γs−) (34)

if not, θS = 0. This latter case is perfectly physical and corresponds to the total wetting case,
in which one of the liquids spreads completely on the solid, displacing the other. The dynamics
of the spreading is limited by dissipative processes near the contact line, and can be very slow.

By direct inspection of (32) we conclude the following:

• If |M | ≤ 1, the interface shapes Γ in the variational formulation (31) make an angle
θ = θS with the solid boundary at all times. There is no “dynamic” contact angle different
from the static one, since

γ (cos θ − cos θS) ν̌s = 0 (35)

• If |M | > 1, on the other hand, the mathematical problem is not well posed.

This shows that the basic model above is contradictory with experiments, since the angle θ
is known to depend on whether the contact line is advancing or receding, and on its velocity
(see e.g. Hocking (1981); Haley and Miksis (1991) an references therein). The inability of the
model to cope with the total–wetting situation is also a drawback. Numerical implementations
yield solutions strongly dependent on the mesh, as recently shown by Afkhami et al. (2009),
Weinstein and Pismen (2008) and Spelt (2005).

Virtual dissipation at the contact line

One possible (numerical) cure to the the unphysical behaviors previously mentioned is to
add a localized dissipation of the form

P∂Γ,diss(w) =

∫
∂Γ

fdiss ·w d∂Γ (36)

to the right-hand side of the variational formulation (31). Implying that the flow will adjust so
that

fdiss = F ν̌s (37)

where F is called out-of-balance interfacial tension

F = γ(cos θS − cos θ). (38)

For example, if the adopted model reads

fdiss = − ζ u (39)

with ζ a parameter that may depend on the flow variables. A fortiori this implies that the velocity
will be parallel to ν̌s and thus perpendicular to the contact line; i.e.,

u(x, t) = V (x, t) ν̌s(x, t) for x ∈ ∂Γ(t) (40)
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3 NUMERICAL EXAMPLES

3.1 Thermocapillary migration of a droplet

Let Wh ⊂ W be the standard P1 element for velocity, and let Qh ⊂ Q be the discrete space
for pressure proposed by Ausas et al Ausas et al. (2010a). The stabilized discrete variational
formulation adopted reads: Find (uh, ph) ∈ Wh ×Qh such that∫

Ω

2µDuh : Dwh dΩ−
∫

Ω

ph∇ ·wh dΩ = −
∫

Γh

γ P : ∇wh dΓ (41)∫
Ω

qh ∇ · uh dΩ +

∫
Ω′
τh∇ph · ∇qh dΩ = 0 (42)

for all (wh, qh) ∈ Wh × Qh, where Ω′ = Ω \ Γ = Ω+ ∪ Ω− and τh = cτ
h2

µ
(Hughes

et al., 1986; Codina, 2001; Codina et al., 2001), with cτ = 1
40

. As an additional approximation,
Γh is defined as the zero–level set of a piecewise–linear function φh. The integral over Γh is
performed exactly, with γ assumed constant in each element. As done in Ausas et al. (2010a),
the stabilization is turned off (τh = 0) in the elements cut by the interface.

We aim to show here, by means of a numerical example, that the formulation (41)–(42)
accurately accounts for both the surface tension force and the Marangoni force. Remember that
the Marangoni force equals ∇Γγ, and induces tangential motion of the fluid at the interface.
Physically, non–uniformities of γ can result from a non–uniformly distributed surfactant or
due, for instance, to temperature gradients (the surface tension coefficient γ decreases with
increasing temperature).

The example we have chosen is the migration of an immiscible spherical droplet in an un-
bounded domain (in the absence of gravity) with a linear distribution for γ,

γ(x) = γ0 − γ̇ x, γ̇ > 0 (43)

This problem has been thoroughly studied both theoretically and experimentally in the past
(see e.g. Young et al. (1959); Balasubramaniam and A-T. (1987) and references therein). A
sketch of the geometry and choice of coordinates can be found in Figure 2. The corresponding
differential equations and interface conditions are

− µ∇2u +∇p = 0 on Ω′ (44)
∇ · u = 0 on Ω (45)

JσK · ň = −γ κ ň +∇Γγ on Γ (46)

to be solved subject to the far–field conditions

u(x→∞) = 0 p(x→∞) = p∞ (47)

The exact solution to (44)–(47) exhibits a motion of the droplet along +x, with velocity

U =
2

15

γ̇ R

µ
(48)

which drives the interface towards regions with lower values of γ, thus reducing its energy. Let
us define

v = u− U ǐ (49)
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Marangoni force

drop motion

θ

x

vθ(r, θ)

r

vr(r, θ)

Γ

∇Γγ

γ = γ0 − γ̇ x

R

Figure 2: Problem setting for the thermocapillary motion of a spherical droplet.

with ǐ the unit vector along x. Then, the radial and tangential components of v, and the pressure,
can be shown to be

r > R


v+
r = −U cos θ

(
1− R3

r3

)
v+
θ = U sin θ

(
1 + R3

2 r3

)
p+ = p∞

(50)

r < R


v−r = 3

2
U cos θ

(
1− r2

R2

)
v−θ = 3U sin θ

(
r2

R2 − 1
2

)
p− = p∞ + 2

R
(γ0 − γ̇ r cos θ)

(51)

Notice that v is purely tangential at the fluid interface, i.e., the radial component is zero (v−r (r =
R, θ) = v+

r (r = R, θ) = 0). This implies that the shape does not change with time and thus the
droplet moves at a constant velocity.

For the numerical simulations, we solve (41)–(42) using an axisymmetric 2D code, so that
the horizontal coordinate is x and the vertical coordinate y is in fact the distance from the x-
axis. Once uh is obtained, we compute vh = uh − U ǐ. The computational domain is taken
as 0 < x < 12R, 0 ≤ y < 4R, with R = 0.25. It is discretized with 60000 linear triangular
elements which do not follow Γ. The approximate interface Γh is obtained as the zero-level
set of the nodal signed distances to Γ and cuts the elements arbitrarily. We consider viscosities
µA = µB = 1 and p∞ = 0, and surface tension parameters γ0 = 3 and γ̇ = 1. The numerical
results obtained match quite well the exact solution, as shown in Figure 3 where the numerical
and exact v-velocity contours are shown, respectively, above and below the x-axis. The velocity
vectors, which are painted with the pressure field, are tangent to the droplet interface. We
also show in Figure 4 the normal and tangential components of the velocity field vh on Γ, as
a function of the angle θ, and compare them with the exact values vr(r = R, θ) = 0 and
vt(r = R, θ) = 3/2U sin θ. As can be noticed in the figure, there is good agreement between
them showing that the Marangoni force is accurately accounted for.

A cross-section of the pressure field along the x-axis is plotted in Figure 5. The pressure
jump across Γ depends on the position, since JpK = 2γ/R and γ depends on x. This is captured
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Numerical solution

Exact solution

Numerical solution

Detail of pressure field

Figure 3: Comparison of the velocity magnitude and pressure fields for the thermocapillary migration of a droplet.
The solution above the symmetry line corresponds to the numerical results and the one underneath is the exact
solution. The maximum in the colour scale of the velocity field (red) corresponds to 0.05 and the minimum (blue)
to 0. The velocity vectors are shown in the insert, with the colors corresponding to the pressure field.

by the method, as can be inferred from the left (JpK`) and right (JpKr) pressure jumps shown in
the figure, which agree well with the exact values.

We also report an assessment of the numerical method in the three dimensional case. A
mesh with 1, 110, 000 linear tetrahedral elements is used to discretize the computational domain
[0, 3R] × [0, 2R] × [0, 2R]. As before, the mesh does not conform to the interface. The results
are in good agreement with the axisymmetrical ones, as shown in Figure 6, where the velocity
field vh and its streamlines are plotted. Notice in the insert the field uh, the direct result of the
code.

3.2 Spreading droplets

Level–set finite element method

In the previous example the interface was fixed. Now, we adopt the same stabilized finite
element method of the previous section, but considering the temporal evolution of the interface.
The time step size is denoted by ∆t, and all variables are assumed known at time tn, so that the
unknowns correspond to time tn+1. The level–set function φh belongs to the space Φh, which
is taken as the standard P1 space. The time–step index appears as a supre–index. The discrete
problem at each time step thus reads:

Find (un+1
h , pn+1

h , φn+1
h ) ∈ Wh ×Qh × Φh such that
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Figure 4: Comparison of the numerical and exact normal and tangential components of the velocity field for the
thermocapillary migration of a droplet.
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Figure 5: Comparison of the numerical and exact pressure fields along the symmetry axis for the thermocapillary
migration of a droplet.

γ = γ0 − γ̇ x

x

Field vh (= uh − U ǐ)

Field uh

Figure 6: Velocity field for the three dimensional simulation of the thermocapillary migration of a droplet. To
provide an idea of the mesh size the reconstructed facets of Γh are drawn.
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∫
Ω

2µDun+1
h : Dwh dΩ−

∫
Ω

pn+1
h ∇ ·wh dΩ =

∫
Γn+1
h

γPn+1 : ∇wh dΓ−

−
∫
∂Γn+1

h

(
γ M + ζ ν̌s · un+1

h

)
ν̌s ·wh d∂Γ −

∫
∂Ω

β un+1
h ·wh d∂Ω (52)∫

Ω

qh ∇ · un+1
h dΩ +

∫
Ω′
τh∇pn+1

h · ∇qh dΩ = 0 (53)∫
Ω

[
φn+1
h − φnh

∆t
+ un+1

h · ∇φn+1
h

] [
ψh + τ̃h u

n+1
h · ∇ψh

]
dΩ = 0 (54)

for all (wh, qh, ψh) ∈ Wh × Qh × Φh. Above, τ̃h = c̃ h
‖un

h‖
and c̃ = 0.5, corresponding to a

SUPG treatment of advection. Notice that

Γn+1
h = {x ∈ Ω | φn+1

h (x) = 0} (55)

and

Pn+1 = I− ň⊗ ň with ň =
∇φn+1

h

‖∇φn+1
h ‖

(56)

The level set is periodically reinitialized using a geometrical mass–conserving technique (Mut
et al., 2006; Ausas et al., 2010b).

Let us begin by assessing the finite element formulation (52)–(54) in the case without contact
line dissipation (F = 0, i.e., ζ = 0). The parameters are set to

θS = 45◦, µA = 10−5, µB = 0.2× 10−6, γ = 0.075, β = 10−5, ∆t = 2× 10−7

and the problem is considered two-dimensional (not axisymmetric).
The initial condition corresponds to an interface that forms an angle θ(t = 0) = 90◦. The

numerically–obtained interfaces at later times are shown in Figure 7. On the left side of the
figure the interface is plotted, while the detail of the contact point (on the right) shows that
the interface assumes the static angle near the wall from the very beginning. The last frame
corresponds to the steady state shape of the droplet. A snapshot of the field variables at time
t = 8 × 10−6 is shown in Figure 8. The previous simulation was run on a mesh with typical
mesh size h = 1.3× 10−3.

In Figure 9 we plot the contact angle as a function of time. It is clear that if ζ = 0 the
numerical simulation yields contact angles that are at all times equal to the static angle. The
numerical contact angle was measured as the angle of the zero–level set of φh with the boundary,
and exhibits some oscillations that result from the reinitialization and from the passage of the
interface from one element to another.

In the same figure we also show the numerically–obtained angles for non–zero local contact–
line dissipation. To simplify the presentation, three constant values were chosen: ζ = 10−5,
10−4 and 5 × 10−3. In this case dynamic contact angles are observed, that relax towards θS as
time evolves. No attempt has been made to tune ζ (probably as a function of u) so as to fit some
set of experimental data, since the numerical tests are oriented towards a critical assessment of
the variational formulation.

It should be noticed that a length scale `β appears as a result of the Navier’s boundary con-
dition,

`β =
µA
β
,
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Figure 7: Interface at different times for the spreading droplet. For each time in the right column, a detail of the
interface and a straight line with 45◦ inclination is drawn.
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Figure 8: Snapshot of the flow field at t = 8 × 10−6 for the case of Figure 7. Velocity magnitude contours,
streamlines and normalized velocity vectors. Slip coefficient β equal to 10−5 (corresponding to a slip length well
resolved by the mesh) and without considering local dissipation (ζ = 0). The maximum in the colour scale (red)
corresponds to 2673 and the minimum (blue) to 0.
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Figure 9: Measured angle as a function of time for the spreading droplet with θS = 45◦ and different values for
the constant ζ.

which in the case discussed above takes the value `β = 1, so that h � `β . In general, simula-
tions are not able to resolve the slip length, making it important to assess the numerical method
for larger values of β and coarser meshes.

Considering thus β = 2× 10−2 (i.e.; `β = 5× 10−4), the code was run both on the previous
mesh (h = 1.3× 10−3) and on a coarser one (h = 5× 10−3). The numerically obtained angles
are shown in Figure 10, both for ζ = 0 and ζ = 5 × 10−3. In agreement with Ganesan and
Tobiska (2009), for these underresolved cases the contact angle seems to be different from θS
even with ζ = 0. Notice however that this “dynamics” is strongly dependent on the mesh and
thus a numerical artifact. With ζ = 5 × 10−3, on the other hand, the dynamics of the contact
angle is less mesh–dependent and thus indicative of some true underlying dynamics. The same
strong mesh sensitivity of the case ζ = 0 is observed for the interface position (see Figure
11). Though the difficulty persists with ζ = 5 × 10−3, it is less pronounced, thus showing the
numerical advantage of adding a local dissipation at the contact line.

In Figures 12 and 13 we show the flow variables corresponding to underresolved simulations
β = 2 × 10−2 on the fine mesh (h = 1.3 × 10−3), for ζ = 0 and ζ = 5 × 10−3, respectively.
The instants (t = 7.5 × 10−5 and t = 3.1 × 10−3) were chosen so that the contact line is near
the position x = 0.15, which is also the case in Figure 8 (t = 8× 10−6).

As additional illustration, let us show that simulating the case of total wetting (M > 1) is
also possible with this formulation. In Figure 14 we show the evolution of a 2D droplet with a
spreading parameter M = 2. In this case the droplet does not reach a steady state but continues
spreading at a monotonously decreasing speed. Another M = 2 case is reported in Figure
15. This case is three–dimensional, with an initially–prismatic shape, and was run on a mesh
consisting of 480,000 tetrahedra.
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Figure 10: Interface angle at the contact point as a function of time on a coarse mesh (h = 5.6× 10−3) and a fine
mesh (h = 1.3× 10−3). The case without local dissipation (ζ = 0) and with local dissipation (ζ = 5× 10−3) are
shown.
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are shown.

Mecánica Computacional Vol XXX, págs. 243-264 (2011) 259

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 12: Velocity magnitude contours, streamlines and normalized velocity vectors. The image corresponds to
time t = 7.5× 10−5 and the simulation parameters are: β = 2× 10−2, h = 1.3× 10−3 and ζ = 0. The maximum
in the colour scale (red) corresponds to 394 and the minimum (blue) to 0.
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Figure 13: Velocity magnitude contours, streamlines and normalized velocity vectors. The image corresponds to
time t = 3.1× 10−3 and the simulation parameters are: β = 2× 10−2, h = 1.3× 10−3 and ζ = 5× 10−3. The
maximum in the colour scale (red) corresponds to 7.6 and the minimum (blue) to 0.
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Figure 14: Interface at different times for the spreading droplet with total wetting. Simulation parameters: M = 2,
β = 10−5, ζ = 10−4.
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Figure 15: Interface at different times for the spreading of an initially–prismatic droplet with total wetting. The
simulation parameters are: M = 2, β = 2 × 10−2, ζ = 10−4. Shown are the times t = 0, 2 × 10−5, 10−4,
2× 10−4, 3× 10−4 and 4× 10−4. Prism geometry: (−0.125, 0.125)× (−0.175, 0.175)× (0, 0.125). Symmetry
used at x = 0 and y = 0.

4 FINAL REMARKS

In this article a discussion on surface tension related phenomena within the framework of
variational formulations, has been presented. In this formulation, the capillary forces are de-
rived from variations of the interfacial energy. This has been done by embedding Γ into R3 and
adopting fixed Cartesian coordinates in 3D space thus avoiding covariant differentiation. The
proposed formulation is very appealing for numerical treatment by means of the finite element
method. Two illustrative numerical examples have been presented. First, the thermocapillary
migration of a droplet under a constant temperature gradient was simulated. The aim in this
case is to show that both, the surface tension force and the Marangoni force are accurately ac-
counted. The numerical formulation has been assessed by means of comparing in two and three
spatial dimensions the numerical results with the exact solution obtaining an excelent agree-
ment between them. The spreading of droplets has also been studied from within the variational
framework. In particular the imposition of the static contact angle and of local dissipation laws
was considered. The case of total wetting, corresponding to a spreading parameter M > 1 was
simulated both in two and three dimensions.
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