
 

EXPLICIT AND IMPLICIT SOLUTIONS OF FIRST ORDER 

ALGORITHMS APPLIED TO THE EULER EQUATIONS                       

IN TWO-DIMENSIONS 

Edisson Sávio de Góes Maciel  

Mechanical Engineer/Researcher – Rua Demócrito Cavalcanti, 152 – Afogados – Recife – 

Pernambuco – Brazil – 50750-080 – edissonsavio@yahoo.com.br 

Keywords: Flux difference splitting algorithms, Flux vector splitting algorithms, First order 

schemes, Explicit and implicit formulations, Euler equations. 

Abstract. In this work, the Roe, the Steger and Warming, the Van Leer, the Chakravarthy and Osher, 

the Harten, the MacCormack, the Frink, Parikh and Pirzadeh, the Liou and Steffen Jr. and the 

Radespiel and Kroll first order schemes are implemented employing an implicit formulation to solve 

the Euler equations in the two-dimensional space. These schemes are implemented according to a 

finite volume formulation and using a structured spatial discretization. The Roe, the Chakravarthy and 

Osher, the Harten and the Frink, Parikh and Pirzadeh schemes are flux difference splitting ones, 

whereas the others are flux vector splitting schemes. The implicit schemes employ an ADI 

(“Alternating Direction Implicit”) approximate factorization or Symmetric Line Gauss-Seidel to solve 

implicitly the Euler equations. Explicit and implicit results are compared, as also the computational 

costs, trying to emphasize the advantages and disadvantages of each formulation. The schemes are 

accelerated to the steady state solution using a spatially variable time step, which has demonstrated 

effective gains in terms of convergence rate according to Maciel. The algorithms are applied to the 

solution of the physical problem of the moderate supersonic flow along a compression corner. The 

results have demonstrated that the most accurate solutions are obtained with the Harten first order 

scheme, when implemented in its explicit version. The best wall pressure distribution is obtained by 

the Radespiel and Kroll first order scheme, in both explicit and implicit cases. 
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1 INTRODUCTION 

 Conventional non-upwind algorithms have been used extensively to solve a wide variety of 

problems (Kutler, 1975). Conventional algorithms are somewhat unreliable in the sense that 

for every different problem (and sometimes, every different case in the same class of 

problems) artificial dissipation terms must be specially tuned and judicially chosen for 

convergence. Upwind schemes are in general more robust but are also more involved in their 

derivation and application. Some authors proposed first order upwind schemes applied to the 

Euler equations, namely: 

 Roe (1981) presented a work that emphasized that several numerical schemes to the 

solution of the hyperbolic conservation equations were based on exploring the information 

obtained in the solution of a sequence of Riemann problems. It was verified that in the 

existent schemes the major part of these information was degraded and that only certain 

solution aspects were solved. It was demonstrated that the information could be preserved by 

the construction of a matrix with a certain “U property”. After the construction of this matrix, 

its eigenvalues could be considered as wave velocities of the Riemann problem and the UL-UR 

projections over the matrix’s eigenvectors would be the jumps between intermediate stages. 

 Steger and Warming (1981) used the remarkable property that the nonlinear flux vectors of 

the inviscid gasdynamic equations in conservation law form are homogeneous functions of 

degree one of the vector of conserved variables to develop their algorithm. This property 

readily permitted the splitting of the flux vectors into subvectors by similarity transformations 

so that each subvector had associated with it a specified eigenvalue spectrum. As a 

consequence of flux vector splitting, new explicit and implicit dissipative finite-difference 

schemes were developed for first-order hyperbolic systems of equations. 

 Van Leer (1982) suggested an upwind scheme based on the flux vector splitting concept. 

This scheme considered the fact that the convective flux vector components could be written 

as flow Mach number polynomial functions, as main characteristic. Such polynomials 

presented the particularity of having the minor possible degree and the scheme had to satisfy 

seven basic properties to form such polynomials. 

 Chakravarthy and Osher (1983) presented an upwind, shock capturing algorithm 

generalized to arbitrary coordinate systems. It could be applied to essentially all hyperbolic 

systems of conservation laws arising in physics, but became especially simple for the Euler 

equations. The method did not require any special properties of the Euler equations such as 

homogeneity. The Chakravarthy and Osher (1983) scheme is based on a Riemann problem 

solver, where compression waves are used to approximate shocks, resulting in cleaner results. 

 Harten (1983) developed a class of new finite difference schemes, explicit and with second 

order of spatial accuracy for calculation of weak solutions of the hyperbolic conservation 

laws. These highly nonlinear schemes were obtained by the application of a first order non-

oscillatory scheme to an appropriately modified flux function. These second order algorithms 

reached high resolution, while preserving the robustness of the original scheme. 

 MacCormack (1985) developed a new implicit algorithm to solve the Euler and Navier-

Stokes equations in two-dimensions. Techniques like line Gauss-Seidel and Newton iteration 

were implemented and tested aiming to accelerate the convergence of the numerical scheme. 

The calculation of viscous flow solutions at high Reynolds number in less than twenty time 

step iterations was demonstrated. 

 Frink, Parikh and Pirzadeh (1991) proposed a new scheme, unstructured and upwind, to the 

solution of the Euler equations. They tested the precision and the utility of this scheme in the 

analysis of the inviscid flows around two airplane configurations: one of transport 
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configuration, with turbines under the wings, and the other of high speed civil configuration. 

Tests were accomplished at subsonic and transonic Mach numbers with the transport airplane 

and at transonic and low supersonic Mach numbers with the civil airplane, yielding good 

results. 

 Liou and Steffen Jr. (1993) proposed a new flux vector splitting scheme. They declared that 

their scheme was simple and its accuracy was equivalent and, in some cases, better than the 

Roe (1981) scheme accuracy in the solutions of the Euler and the Navier-Stokes equations. 

The scheme was robust and converged solutions were obtained so fast as the Roe (1981) 

scheme. The authors proposed the approximated definition of an advection Mach number at 

the cell face, using its neighbor cell values via associated characteristic velocities. This Mach 

number was used to determine the upwind extrapolation of the convective quantities. 

 Radespiel and Kroll (1995) emphasized that the Liou and Steffen Jr. (1993) scheme had its 

merits of low computational complexity and low numerical diffusion as compared to other 

methods. They also mentioned that the original method had several problems. The method 

yielded local pressure oscillations in the shock wave proximities, adverse mesh and flow 

alignment difficulties. In the Radespiel and Kroll (1995) work, a hybrid scheme, which 

alternated between the Liou and Steffen Jr. (1993) and the Van Leer (1982) schemes, in the 

shock wave regions, was proposed, assuring that strength shocks were clear and well defined. 

 Traditionally, implicit numerical methods have been praised for their improved stability 

and condemned for their large arithmetic operation counts (Beam and Warming, 1978). On the 

one hand, the slow convergence rate of explicit methods become they so unattractive to the 

solution of steady state problems due to the large number of iterations required to 

convergence, in spite of the reduced number of operation counts per time step in comparison 

with their implicit counterparts. Such problem is resulting from the limited stability region 

which such methods are subjected (the Courant condition). On the other hand, implicit 

schemes guarantee a larger stability region, which allows the use of CFL numbers above 1.0, 

and fast convergence to steady state conditions. Undoubtedly, the most significant efficiency 

achievement for multidimensional implicit methods was the introduction of the Alternating 

Direction Implicit (ADI) algorithms by Douglas (1955), Peaceman and Rachford (1955), and 

Douglas and Gunn (1964). ADI approximate factorization methods consist in approximating 

the Left Hand Side (LHS) of the numerical scheme by the product of one-dimensional parcels, 

each one associated with a different spatial direction, which retract nearly the original implicit 

operator. These methods have been largely applied in the CFD community and, despite the 

fact of the error of the approximate factorization, it allows the use of large time steps. 

In this work, the Roe (1981), the Steger and Warming (1981), the Van Leer (1982), the 

Chakravarthy and Osher (1983), the Harten (1983), the MacCormack (1985), the Frink, 

Parikh and Pirzadeh (1991), the Liou and Steffen Jr. (1993) and the Radespiel and Kroll 

(1995) first order schemes are implemented employing an implicit formulation to solve the 

Euler equations in two-dimensions. These schemes are implemented according to a finite 

volume formulation and using a structured spatial discretization. The Roe (1981), the 

Chakravarthy and Osher (1983), the Harten (1983) and the Frink, Parikh and Pirzadeh (1991) 

schemes are flux difference splitting ones, whereas the others are flux vector splitting 

schemes. The implicit schemes employ an ADI approximate factorization or Symmetric Line 

Gauss-Seidel to solve implicitly the Euler equations. Explicit and implicit results are 

compared, as also the computational costs, trying to emphasize the advantages and 

disadvantages of each formulation. The schemes are accelerated to the steady state solution 

using a spatially variable time step, which has demonstrated effective gains in terms of 

convergence rate (Maciel, 2005). The algorithms are applied to the solution of the physical 
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problem of the supersonic flow along a compression corner. The results have demonstrated 

that the most accurate solutions are obtained with the Harten (1983) first order scheme, when 

implemented in its explicit version. The best wall pressure distribution is obtained by the 

Radespiel and Kroll (1995) first order scheme, in both explicit and implicit cases. 

2 EULER EQUATIONS 

 The fluid movement is described by the Euler equations, which express conservation of 

mass, of the linear momentum and of the energy to an inviscid mean, heat non-conductor and 

compressible, in the absence of external forces. These equations can be represented, in the 

integral and conservative forms, to a finite volume formulation, by: 
 

                                                  0  S
yx

V
dSFnEnQdVt ,                                          (1) 

 

where Q is written to a Cartesian system, V is the cell volume, nx and ny are components of the 

normal unit vector to the flux face, S is the flux area, and E and F are components of the 

convective flux vector. The Q, E and F vectors are represented by: 
 

           TT
upeuvpuuEevuQ  2, ,   TvpepvuvvF  2

,      (2) 
 

with  being the fluid density; u and v are Cartesian components of the velocity vector in the x 

and y directions, respectively; e is the total energy; and p is the static pressure. The Euler 

equations were nondimensionalized in relation to the freestream density, , and in relation to 

the freestream speed of sound, a, to the studied problem in this work. The matrix system of 

the Euler equations is closed with the state equation of a perfect gas 
 

                                                       )(5.0)1( 22 vuep  .                                             (3) 
 

 is the ratio of specific heats. The total enthalpy is determined by    peH . 

3 NUMERICAL ALGORITHMS 

The Roe (1981), the Steger and Warming (1981), the Van Leer (1982), the Harten (1983), 

the Frink, Parikh and Pirzadeh (1991), the Liou and Steffen Jr. (1993) and the Radespiel and 

Kroll (1995) first order schemes are described in details in Maciel (2008a,b), on a finite 

volume context. The Roe (1981), the Van Leer (1982), the Harten (1983), the Liou and 

Steffen Jr. (1993) and the Radespiel and Kroll (1995) schemes employ a time splitting method 

to explicit time integration (Maciel, 2008a,b). The Steger and Warming (1981) scheme 

employs a explicit Euler method (Maciel, 2008a) and the Frink, Parikh and Pirzadeh (1991) 

scheme employs a Runge-Kutta method of five stages (Maciel, 2008b) to explicit time 

integration. In this work, only the numerical flux vector of these schemes is presented: 

3.1 Roe (1981) algorithm 

 The Roe (1981) dissipation function at the (i+1/2,j) interface is defined by: 
 

                                                         j21ij21ij21iRoe RD ,/,/,/ 
 ,                                       (4) 

 

where R,  and  are described in Maciel (2008a). The numerical flux vector at the (i+1/2,j) 

interface is described by: 
 

                                                   )(

int

)(

int

)(

int

)(

,2/1 5.0 l

Roey

l

x

ll

ji DVhFhEF  ,                                      (5) 
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with )l(

intE , )l(

intF , hx, hy and Vint calculated as indicated in Maciel (2008a,b); and “l” varies from 

1 to 4 in two-dimensions. 

3.2 Steger and Warming (1981) algorithm 

 The Steger and Warming (1981) numerical flux vector uses the following normal flux 

projection: 
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where the eigenvalues of the normal Jacobian matrix are defined as 
 

                                nvnv 


1 , anv 


2    and   anv 


3 ,                             (7) 
 

with v


 being the flow velocity vector, a is the speed of sound,  sign indicates the positive or 

negative parts of the projection flux vector and of the eigenvalues; and  is defined in Maciel 

(2008a). The eigenvalue separation is defined to the  direction, for example, as: 
 

                                                           lll





  50. .                                                      (8) 

 

The numerical flux vectors of the Steger and Warming (1981) scheme, based on a finite 

volume formulation, are, for instance, calculated as: 
 

                            jijijiji SFFF ,2/1,,1,2/1

~~~




     and     2/1,,1,2/1,

~~~




  jijijiji SFFF ,                     (9) 
 

where S is the flux area described in Maciel (2008a,b). 

3.3 Van Leer (1982) algorithm 

 The residual of the Van Leer (1982) scheme at the (i+1/2,j) interface is defined as: 
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with R [cell (i+1,j)] and L [cell (i,j)] related to right and left states, S,  Sx  and  Sy  defining  the 

flux area and its x and y components, a is the speed of sound, M is the Mach number splitting, 

 is the dissipation function which defines the particular numerical scheme (an hybrid method 

based on the Van Leer, 1982, and the Liou and Steffen Jr., 1993, schemes), and the 

superscript “e” defines Euler equations. All these quantities are defined in Maciel (2008a,b). 

The definition of the  dissipation term which determines the Van Leer (1982) scheme, 

according to Radespiel and Kroll (1995), is described as follows. 
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3.4 Chakravarthy and Osher (1983) algorithm 

Eigenvalues. The Jacobian matrices in generalized coordinates, necessary to define the 

system’s eigenvalues according to the Chakravarthy and Osher (1983) scheme, are defined by: 
 

                          
jiyxji BhAhA

,2/1,2/1
ˆ

     and    
2/1,2/1,

ˆ
 

jiyxji BhAhB ,                       (12) 

 

where QEA   and QFB   are the Cartesian Jacobian matrices. Remembering that the 

sound speed is determined by  /pa , the eigenvalues of Â  are defined by: 
 

                                nhaU )(1  , nUh 3,2    and   nhaU )(4  ,                                (13) 
 

with vhuhU yx

''   and '

xh  and '

yh  defined in Maciel (2008a,b). 

Riemann invariants. Riemann invariants are the building blocks for the Chakravarthy and 

Osher (1983) algorithm applied to Euler equations. Riemann invariants are associated with the 

eigenvalues of the generalized Jacobian matrices and are obtained from the corresponding 

right eigenvectors. For the Chakravarthy and Osher (1983) scheme, the Riemann invariants  

corresponding to the lth eigenvalue are obtained by solving 
 

                                                             0)(  QrlQ ,                                                        (14) 
 

where Q  is the gradient operator with respect to the vector of dependent variables denoted 

by Q and rl is the lth right eigenvector. It may easily be verified that the following are 

Riemann invariants: 

For nhaU )(1  : 
 

              )1/(21

2  aU ,   Sp /1

3 entropy   and   Vuhvh yx  ''1

4 ;           (15) 
 

For nUh 3,2 : 
 

                                                      p 3,2

1    and   U 3,2

4 ;                                                (16) 
 

For nhaU )(4  : 
 

             )1/(24

1  aU ,   Sp /4

2 entropy   and   Vuhvh yx  ''4

3 .             (17) 
 

The superscript denotes the eigenvalue to which the Riemann invariants correspond. 

Intermediate states. In finite volumes the variable of interest are defined at the (i,j) cell 

centroid, where the vector of conserved variables is denoted as Qi,j. The coordinate direction  

is treated in details in this work and the extension to the  coordinate is straightforward. By 

simplicity, the index j is suppressed in the present notation. 

 Conventional finite volume schemes employ values at the cell centroids of the conserved 

variables, or dependents, of a simple manner. Such schemes are generally symmetric, what 

simplify their numerical implementation. The Chakravarthy and Osher (1983) algorithm is 

E. DE GOES MACIEL302

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

more sophisticated. Fundamental to the Chakravarthy and Osher (1983) scheme are the 

intermediate states of the dependent variables, which are defined from the values of the cell 

states of the computational domain. While states in the computational cells are defined by Qi-1, 

Qi, etc., the correspondent intermediate states are defined by Qi-2/3 and Qi-1/3. The rest of this 

sublevel describes how these intermediate states are defined and their meanings.  

 Figure 1 serves as a guide to the construction of the intermediate values. The states i-1 and 

i are connected through a curve in the state space which is made up of three subpaths. The 

first path connects Qi-1 and Qi-2/3 and is associated with 1. 

 

 
 

Figure 1: Schematic Representation of Chakravarthy and Osher (1983) Scheme in Terms of Intermediate and 

Cell Values of Dependent Variables. 

 

Path 2 connecting Qi-2/3 and Qi-1/3 is associated with 2,3 and path 3 connecting Qi-1/3 and Qi is 

associated with 4. Thus 1

4,3,2  are constant between Qi-1 and Qi-2/3; 
3,2

4,1  are constant between 

Qi-2/3  and  Qi-1/3; and 4

3,2,1  are constant between Qi-1/3 and Qi. Equating Riemann invariants 

between the end points of each subpath it is possible to find 3+2+3 = 8 equations to obtain the 

8 unknown values of Qi-2/3 and Qi-1/3 from the known values at Qi-1 and Qi. Thus the dependent 

variables at i-2/3 and i-1/3 are defined by the following formulas: 
 

                            2/)1()2/(1

111

2)1(

3/1 /12/1 





  iiiiiiiii SSaaaUU ;          (18) 

                           2/)1(

1

)2/(1

1111

2)1(

3/1 /12/1 









  iiiiiiiii SSaaaUU ;        (19) 

                                                           

  3/213/13/2 iiii Spp ;                                            (20) 

                         3/13/13/2113/2 )1(2)1(2   iiiiiiii aaUUaaUU ;           (21) 

                                                       13/2   ii VV    and   ii VV  3/1 .                                          (22) 
 

Once Qi-1/3 and Qi-2/3 are known, 1 may be computed at i-1 and i-2/3 and 4 at i and i-1/3. It 

can be shown that 1 and 4 can at most change sign only once along paths 1 and 3, 

respectively. If these eigenvalues do indeed change sign [if 0)3/2()1( 11  ii , for 

example], it becomes necessary to compute the dependent variables at the points along paths 1 

and 4 where the respective eigenvalues 1 and 4 vanish. These “sonic” points are defined as 

3/2iQ  and 3/1iQ  and are given by the formulas that follow below: 
 

                            iii aUU )1(2113/1  , 2/1

3/1

2/)1(

3/1 )/( iii SU  



 ;                   (23) 

                                                    

  3/13/1 iii Sp , ii VV  3/1 ;                                                 (24) 

                           113/2 1211   iii aUU , 2/1

13/2

2/)1(

3/2 )/( 



  iii SU ;               (25) 

                                                 

  3/213/2 iii Sp , 13/2   ii VV .                                              (26) 
 

Along path 2, the Riemann invariant 3,2

4  is equal to nh/2 . Thus 2 does not change either 
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magnitude or sign. The 1 and 4 fields are called genuinely nonlinear and the fields 

corresponding to 2,3 are termed linearly degenerate. 

 In Equations (21) and (22), (23) and (24) and (25) and (26), it is straightforward to decode 

for u and v from U and V (in generalized coordinates, U and V would be the normalized 

velocity contravariants). From these definitions, it is possible to write for u and v: 
 

                                                            


















 










V

U

hh

hh

v

u

xy

yx

''

''

.                                               (27) 

 

Paths of integration. In this sublevel, the values of the variables of the intermediate states and 

the values of the dependent variables at the cells of the computational domain are employed to 

form the Chakravarthy and Osher (1983) algorithm to the Euler equations. Initially, the net 

numerical flux vector in the  direction is approximated by: 
 

                                      




  




 dQAXIdQAXFF

i

i

i

i

Q

Q

Q

Q
jiji

1

1

ˆ)(ˆ
,2/1,2/1 .                          (28) 

 

The matrix X(Q) and the paths of integration are what define the scheme. The subpaths of 

integration were recently defined (curves 1-3 of Fig. 1). The matrix X(Q) is defined to be: 
 

                                         )()(2/12/1)()( 1 QRQsignaldiagQRQX l

 ,                         (29) 
 

where R(Q) is the right-eigenvector matrix or the matrix of column eigenvectors of the 

Jacobian matrix in generalized coordinates Â  and R
-1

(Q) its inverse. Hence, 
 

                ARRdiagAX l
ˆ0,maxˆ 1    and        ARRdiagAXI l

ˆ0,minˆ)( 1 .       (30) 
 

The asymmetric (upwind) character of the scheme is apparent from this definition. The 

Equation (28) can be more simplified by the partition of the original integration interval 

through the subpaths of integration: 
 

             











 




i

i

i

i

i

ii

n

i

nQ

Q

Q

Q
dQAdQAdQAQhFQhFdQAXIdQAX

i

i

i

i 3/1

3/1

3/2

3/2

1

)(

1

)( ˆˆˆ),(),(ˆ)(ˆ 1

1

 

                                                         








  
1

3/2

3/2

3/1

3/1 ˆˆˆ i

i

i

i

i

i
dQAdQAdQA ,                        (31) 

 

with the normal flux to the interface defined by: 
 

                           Tnynxnn

n UhpephvUhphuUhUhVQhF  int

)( ),( .           (32) 
 

It is obvious so that the blocks of construction of the Chakravarthy and Osher (1983) scheme 

are the subintegrals along the subpaths connecting all pair of neighbor cells. To the interval 

between the pair of cells i-1 and i, for example, it is possible to define: 
 

                            








 
3/1

3/2

3/2

1

ˆ2,ˆ1
i

i

i

i

Q

Q

Q

Q
dQADdQAD    and   




i

i

Q

Q
dQAD

3/1

ˆ3 .                  (33) 

 

While the integral formulae in the above equations seem very complex to be evaluated, 

they simplify considerably and each subintegral is reduced to the flux difference )Q(F )n(  in 

each mesh cell and in each cell of the intermediate and sonic states. Therefore, it is possible to 

write: 
 

              )Q,h(F)Q,h(FD i

)n(

/i

)n(

1321   , if  0)( 11  iQ   and  0)( 3/21  iQ ;            (34) 
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             )Q,h(F)Q,h(FD /i

)n(

/i

)n(

32321   , if  0)( 11  iQ   and  0)( 3/21  iQ ;          (35) 

               )Q,h(F)Q,h(FD i

)n(

/i

)n(

1321   , if  0)( 11  iQ   and  0)( 3/21  iQ ;           (36) 

                                    01D , if  0)( 11  iQ   and  0)( 3/21  iQ ;                                     (37) 

                         )Q,h(F)Q,h(FD /i

)n(

/i

)n(

32312   , if  0)( 3/13,2  iQ ;                         (38) 

                                                   02 D , if  0)( 3/13,2  iQ ;                                                 (39) 

                )Q,h(F)Q,h(FD /i

)n(

i

)n(

313  , if  0)( 3/14  iQ   and  0)(4  iQ ;              (40) 

                )Q,h(F)Q,h(FD /i

)n(

i

)n(

313  , if  0)( 3/14  iQ   and  0)(4  iQ ;              (41) 

             )Q,h(F)Q,h(FD /i

)n(

/i

)n(

31313   , if  0)( 3/14  iQ   and  0)(4  iQ ;            (42) 

                                     03D , if  0)( 3/14  iQ   and  0)(4  iQ .                                     (43) 
 

Chakravarthy and Osher (1983) algorithm. The complete algorithm of Chakravarthy and 

Osher (1983) to update the dependent variables at the (i,j) cell of the n temporal level to the 

next n+1 level can be simply write as a concise sequence of steps. 

 contribution: 

1) Evaluate the dependent variables at the intermediate cells between i-1 and i using Eqs. (18) 

to (22). The metric terms are calculated at i-1/2 interface (pointing to inside the cell); 

2) Using Eqs. (23) to (26), evaluate the sonic cells which appear between i-1 and i (if the 

eigenvalues change signal). The metric terms are calculated at i-1/2 interface (pointing inside 

the cell); 

3) Evaluate the subintegrals D1, D2 and D3 between cells i-1 and i using Eqs.  (34)  to  (43). 

The fluxes )n(F  at the cells of the computational domain and at the intermediate states are 

evaluated as necessary; 

 4) Repeat steps 1-3 between cells i and i+1. The metric terms are calculated at the i+1/2 

interface (poinitng outside the cell); 

5) Substitute the subintegrals and fluxes in Eq. (31) to evaluate the  contribution. 

 contribution: 

6) Repeat steps 1-5 to the cells j-1, j and j+1 and the metric terms calculated at the j-1/2 and 

j+1/2 interfaces [the formulae to  are obtained substituting areas and volumes at the 

interfaces (i-1/2,j) and (i+1/2,j) by areas and volumes at interfaces (i,j-1/2) e (i,j+1/2)]. 

Update: 

7) Update the conserved variables using the explicit Euler method to the time march with first 

order of accuracy: 
 

             












  








 1

1

1

1

1 j,i

j,i

j,i

j,i

j,i

j,i

j,i

j,i

Q

Q

Q

Q

Q

Q

Q

Q
j,ij,i

n

j,i

n

j,i dQB̂dQB̂dQÂdQÂVtQQ ,     (44) 

 

with the terms multiplying ti,j being evaluated in steps 1-6. This version of the algorithm of 

flux difference splitting of Chakravarthy and Osher (1983) is first order accurate in space. 

3.5 Harten (1983) algorithm 

 The Harten (1983) dissipation function at the (i+1/2,j) interface is defined by: 
 

                                                  
jijijijiHarten tRD

,2/1,,2/1,2/1 
 ,                                 (45) 

 

with  described in Maciel (2008b). The inviscid numerical flux vector to the (i+1/2,j) 
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interface is described by: 
 

                                          )(

int

)(

int

)(

int

)(

,2/1 5.0 l

Harteny

l

x

ll

ji DVhFhEF  ,                                      (46) 

3.6 MacCormack (1985) algorithm 

 Applying Green’s theorem to Eq. (1) and adopting a structured mesh notation: 
 

                                                  
jiS jijiji dSnPVtQ

,
,,, )(1 .                                          (47) 

 

The time integration is accomplished using the following first order scheme: 
 

                                               

jiS jijiji

n

ji

n

ji dSnPVtQQ
,

,,,,

1

, )( ,                                      (48) 

 

The discretization of the surface integral in Eq. (48) results in: 
 

                   njijijijiji

n

ji

n

ji SPSPSPSPVtQQ ,2/12/1,,2/12/1,,,

1

, )()()()( 

  .   (49) 
 

In a generalized curvilinear coordinate system, MacCormack (1984) suggests the use of 

normalized area vectors, orientated in the positive  and  directions. These vectors are 

defined as: 
 

                                                   Sss xx 
,    and   Sss yy 

,                                            (50) 
 

where   5.022

yx ssS  . The sx and sy terms are defined in Maciel (2008b). Equation (49) can 

be rewritten using the following expressions 
 

                                              
2/1,2/1,

,,

2/1,)(
 

jijiyxji SFsEsSP ;                                    (51) 

                                               
jijiyxji SFsEsSP

,2/1,2/1

,,

,2/1)(
  ;                                    (52) 

                                                 ;)(
2/1,2/1,

,,

2/1,  
jijiyxji SFsEsSP                                     (53) 

                                               
jijiyxji SFsEsSP

,2/1,2/1

,,

,2/1)(
  .                                   (54) 

 

 Literature commonly references MacCormack schemes as upwind. In reality, it is only the 

MacCormack scheme (1985) using flux vector splitting, which includes an analysis of 

propagation of information in characteristic directions, that can be classified as an upwind 

scheme. The MacCormack scheme (1985) takes into account Steger and Warming’s flux 

vector splitting (1981) and convective fluxes in face (i+1/2,j) are written as: 
 

               jijijijiji QAQAE ,1,2/1,,2/1,2/1)( 







     and   jijijijiji QBQBF ,1,2/1,,2/1,2/1)( 







  .   (55) 
 

For example, the convective fluxes are calculated as, 
 

                       
jijijiyxjijiyxji SQsBsAQsBsASP

,2/1,1,2/1

,,

,,2/1

,,

,2/1)(








  ;         (56) 

                       
2/1,1,2/1,

,,

,2/1,

,,

2/1,)(








 
jijijiyxjijiyxji SQsBsAQsBsASP  .         (57) 

 

By definition, the reconstructed Jacobian matrices can be determined as follows: 
 

           
jiyjijixjiji sBsAA

,2/1

,

,2/1,2/1

,

,2/1,2/1

,













  ,  
jiyjijixjiji sBsAA

,2/1

,

,2/1,2/1

,

,2/1,2/1

,













  ;     (58) 
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2/1,

,

2/1,2/1,

,

2/1,2/1,

,













 
jiyjijixjiji sBsAB   and  

2/1,

,

2/1,2/1,

,

2/1,2/1,

,













 
jiyjijixjiji sBsAB .  (59) 

 

The same reasoning is true to other flux faces. In the Steger and Warming’s flux vector 

splitting (1981), it is verified that these positive and negative reconstructed matrices can be 

determined as: 
 

              1

,2/1,2/1

,, 









  TTA jiji ,  
,,,

,2/1

1

,2/1,2/1











  jijiji ATTA ,  1

2/1,2/1,

,, 









  TTB jiji ;    (60) 

                                                         
,,,

2/1,

1

2/1,2/1,











  jijiji BTTB ,                                     (61) 
 

where matrices 



 TTT ,, 1 and 1

T  are defined in subsection 4.2. In this case, based on the 

equivalence between finite difference and finite volume formulations, in generalized 

curvilinear coordinates, it is possible to obtain for the predictor step: 

 Matrices 
,

,2/1



 jiA  and 
,

,2/1



 jiA : 

          
jixxjiyyjixx skskskTandT

,2/1

,

,2/1

,

,2/1

,1 ~
,,)(





  and 
jiyy sk

,2/1

,~


 , where ,xk  ,yk  

xk
~

and yk
~

 are parameters to construct matrices T and 1

T , similars to '

xh  and '

yh . 

Eigenvalues of Euler equations in  direction are defined by: 
 

         vsus
jiyjix ,2/1

,

,2/1

,

1

,


 ,  vsus

jiyjix ,2/1

,

,2/1

,

2

,


 ,  avsus

jiyjix 
 ,2/1

,

,2/1

,

3

,

;     (62) 

                                                       avsus
jiyjix 

 ,2/1

,

,2/1

,

4

,

.                                           (63) 

 

 Matrices 
,

2/1,



jiB  and 
,

2/1,



jiB : 

          
2/1,

,

2/1,

,

2/1,

,1 ~
,,)(





 
jixxjiyyjixx skskskTandT and 

2/1,

,~



jiyy sk , where ,xk  ,yk  

xk
~

and yk
~

 are parameters to construct matrices T and 1

T , similars to '

xh  and '

yh .  

Eigenvalues of Euler equations in  direction are: 
 

          vsus
jiyjix 2/1,

,

2/1,

,

1

,


 ,  vsus

jiyjix 2/1,

,

2/1,

,

2

,


 ,  avsus

jiyjix 
 2/1,

,

2/1,

,

3

,

;    (64) 

                                                        avsus
jiyjix 
 2/1,

,

2/1,

,

4

,

.                                          (65) 

 

Calculating the convective flux terms of Eq. (49), according to Eqs. (51) through (61), and 

determining the reconstructed Jacobian matrices like (62) and (63) and (64) and (65), the 

MacCormack scheme (1985), in its explicit version, is written as: 

 Predictor step: 
 

            




n

ji

n

ji

n

jip

n

jijijijijijijijijiji

jijijijijijijijijijiji

n

ji

QQQ

SQAQASQBQB

SQAQASQBQBVtQ

,,

1

,

,2/1,,,1,2/1,1,1,,1,

,2/1,1,1,,12/1,,,1,,,,

)()(

)()(

,,,,

,,,,











































;       (66) 

 Corrector step: 
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


 1

,

1

,,

1

,

1

,2/1,,1,1,12/1,1,,,,

,2/1,1,,,2/1,,1,1,1,,

1

,

2

1

)()(

)()(

,,,,

,,,,







































n

jic

n

jip

n

ji

n

ji

n

jipjijijijijipjijijiji

jipjijijijijipjijijijiji

n

jic

QQQQ

SQAQASQBQB

SQAQASQBQBVtQ

.      (67) 

3.7 Frink, Parikh and Pirzadeh (1991) algorithm 

 The Frink, Parikh and Pirzadeh (1991) dissipation function can be written in terms of three 

flux components, each one associated with a distinct eigenvalue of the Euler equations: 
 

                                                   431

~~~
FFFDFPP  ,                                                 (68) 

 

where: 
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211 ;                   (69) 
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anv

anu

a

Uap
F

y

x

~~~

~~

~~
1

~2

~~
~~

24,34,3 ,                                    (70) 

 

with yx nvnuU ~~~
 ; vnunU yx  ; ~ , H

~
, u~  and v~ are obtained from Roe (1981) 

average; a~  is the speed of sound obtained from the average variables; and       jiji ,,1   , 

to the (i+1/2,j) interface. 

 The present author suggests the implementation of an entropy function ~  aiming to avoid 

zero contributions from the system’s eigenvalues to the dissipation function of Frink, Parikh 

and Pirzadeh (1991). The entropy condition is implemented in the eigenvalues U
~~

1  , 

aU ~~~
3   and aU ~~~

4   of the following way: 
 

                               
 









ll

ll

l
ZifZ

ZifZ

,5.0

,~
22

,   with: llZ 
~

,                          (71) 

 

where the  parameter assumes the value 0.01, recommended by the present author. The 

convective numerical flux vector at the (i+1/2,j) interface is defined as: 
 

                                   
ji

l

FPPy

l

x

ll

ji SDnFnEF
jiji ,2/1

)()(

int

)(

int

)(

,2/1 5.0
,2/1,2/1  


,                            (72) 

 

with S, nx and ny calculated as the same way as indicated in Maciel (2008b). 
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3.8 Liou and Steffen Jr. (1993) algorithm 

 The definition of the residual or the numerical flux vector of the Liou and Steffen Jr. 

(1993) scheme is defined by Eq. (10). The definition of the  dissipation term which 

determines the Liou and Steffen Jr. (1993) scheme, based on Radespiel and Kroll (1995), is: 
 

                                               ji

LS

jiji M ,2/1,2/1,2/1   .                                                (73) 

3.9 Radespiel and Kroll (1995) algorithm 

 The definition of the residual or the numerical flux vector at the (i+1/2,j) interface of the 

Radespiel and Kroll (1995) scheme is defined by Eq. (10). The definition of the  dissipation 

term which determines the Radespiel and Kroll (1995) scheme combines the Van Leer (1982) 

scheme and the Liou and Steffen Jr. (1993) (AUSM) scheme. Hence, 
 

                                                   LS

ji

VL

jiji ,2/1,2/1,2/1 1   ,                                      (74) 
 

with: 
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M
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,     (75) 

    

where 
~

 is a small parameter, 0 < 
~
 0.5, and  is a constant, 0    1. In this work, the 

values used to 
~

 and  were: 0.2 and 0.5, respectively. 

4 IMPLICIT FORMULATIONS 

Except the implicit MacCormack (1985) first order scheme, all other implicit schemes 

studied in this work used an ADI formulation to solve the algebraic nonlinear system of 

equations. In these cases, the nonlinear system of equations is linearized considering the 

implicit operator evaluated at the time “n” and, posteriorly, the five-diagonal system of linear 

algebraic equations is factored in two three-diagonal systems of linear algebraic equations, 

each one associated with a particular spatial direction. Thomas algorithm is employed to solve 

these two three-diagonal systems. All the implicit schemes studied in this work were only 

applicable to the solution of the Euler equations, which implies that only the convective 

contributions were considered in the RHS (“Right Hand Side”) operator. 
 

4.1 Implicit formulation to the Roe (1981), the Chakravarthy and Osher (1983), the 

Harten (1983) and the Frink, Parikh and Pirzadeh (1991) first order algorithms 

 The ADI form to the Roe (1981), the Chakravarthy and Osher (1983), the Harten (1983) 

and the Frink, Parikh and the Pirzadeh (1991) first order schemes is defined by the following 

two step algorithm: 
 

                n
j,i)FDS(

*

j,ij,/ij,ij,/ij,i RHSQKtKtI  













 2121 , to the  direction;          (76) 

                      *

j,i

n

j,i/j,ij,i/j,ij,i QQJtJtI  















1

2121 , to the  direction;              (77) 

                                                            11   n

j,i

n

j,i

n

j,i QQQ ,                                                   (78) 
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where: 
 

                    n j,/ij,/i

n

j,/ij,/i RRK 21

1

212121 




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n

/j,i/j,i RRJ 21

1

212121 







  ;               (79) 

                                n
j,/i

l

j,/i diag
2121 






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2121 







  ;                         (80) 

          lll
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  50. ,    lll
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 1 ;   (81) 

                                                1



  jiji ,, ,     jiji ,,  



 1 .                                        (82) 
 

In Equation (79), the R matrix is defined in Maciel (2008a,b); diag[] is a diagonal matrix; in 

Eqs. (80) and (81), “l” assumes values from 1 to 4 and ’s are the eigenvalues of the Euler 

equations, defined in Maciel (2008a,b). The matrix R
-1

 is defined as: 
 

 

   

 

 
    
































































































































2

intint

'

int2

intint

'

int2

int

'

int

'

int

int

2

int

2

int

2

int

''

int

'

int

'

2

int

int2

int

int2

int

2

int

2

int

2

int

2

intint

'

int2

intint

'

int2

int

'

int

'

int

int

2

int

2

int

2

int

1

2

11

2

11

2

11

2

1

2

1

0

111

2

1
1

2

11

2

11

2

11

2

1

2

1

aa

h
v

aa

h
u

a
hvhu

a

vu

a

hhuhvh

a
v

a
u

a

vu

a

aa

h
v

aa

h
u

a
hvhu

a

vu

a

R

yx
yx

xyyx

yx
yx

,   (83) 

 

with '

xh  and '

yh  defined according to Maciel (2008a,b); uint and vint are the Cartesian 

components of velocity at the cell interface; aint is the speed of sound at the cell interface; and 

 is the ratio of specific heats. The interface properties are defined either by arithmetical 

average or by Roe (1981) average. In this work, the Roe (1981) average was used. The 

RHS(FDS) is defined as the residual of the flux difference splitting schemes, which is defined, 

for instance, by the Roe (1981) scheme as: 
 

                               n)Roe(

/j,i

)Roe(

/j,i

)Roe(

j,/i

)Roe(

j,/ij,ij,i

n

j,iRoe FFFFVtRHS 21212121   ,                (84) 

 

with )Roe(

j,/iF 21  defined in Maciel (2008a, 2011b); Vi,j is the cell volume; and ti,j is the time step. 

The other schemes follow similar formulae. Details of the RHS definition to the flux 

difference splitting schemes see Maciel (2008a,b and 2011b). This implementation is first 

order accurate in time due to the definition of  and of , as reported in Yee, Warming and 

Harten (1985), and is first order accurate in space due to the RHS of the numerical schemes. 
 

4.2 Implicit formulation to the Steger and Warming (1981), the Van Leer (1982), the 

Liou and Steffen Jr. (1993) and the Radespiel and Kroll (1995) first order 

algorithms 

 

 The ADI form to the Steger and Warming (1981), the Van Leer (1982), the Liou and 

Steffen Jr. (1993) and the Radespiel and Kroll (1995) first order schemes is defined by the 

following two step algorithm: 
 

                n
jiFVSjijijijiji RHSQAtAtI

,)(

*

,,2/1,,2/1,  













 , to the  direction;               (85) 
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                     *
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                                                              11   n
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n

j,i

n

j,i QQQ ,                                                 (87) 
 

where the matrices A

 and B


 are defined as: 
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with the similarity transformation matrices defined by: 
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with int defined as the interface density. The properties defined at interface are calculated by 

arithmetical average. The RHS(FVS) is defined as the residual of the flux vector splitting 

schemes, similar to Eq. (84). Details of the RHS definition to the flux vector splitting schemes 

see Maciel (2008a,b and 2011b). This implementation is first order accurate in time. 
 

4.3 Implicit formulation to the MacCormack (1985) first order algorithm 

 The MacCormack implicit scheme (1985) uses the development described in subsection 3.6 

with flux vector splitting to obtain a pentadiagonal full block linear system. This system 

presents a dominant main diagonal in comparison to the other diagonals. With this procedure, 

when large time steps are considered, the resulting algorithm is closer to the Newton method 

and an excellent convergence rate to the steady state solution is reached. 

 It is noted that the pentadiagonal system described by Eqs. (93) and (94) has a dominant 

main diagonal when compared to the adjacent diagonals (MacCormack, 1984, and 

MacCormack, 1985). This is the main advantage of MacCormack’s implicit scheme (1985). 

One disadvantage is that, with this implementation, MacCormack method (1985) becomes a 

first order scheme in space. 

 This five-diagonal system, in the predictor and corrector steps, typical of MacCormack’s 

schemes, is solved by a symmetric line Gauss-Seidel relaxation method with two sweeps: one 

forward and other backward. This procedure results in a tridiagonal linear system in the  

direction. The first time step adopts the trivial solution for the correction in the conserved 
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variables when solving the predictor step. In the corrector step the currently available solution 

for correction is used. Afterwards, all other Gauss-Seidel sweeps use the latest available 

values for the corrections. According to MacCormack (1984), the symmetric line Gauss-

Seidel relaxation method should be solved only with two sweeps to avoid excessive 

computational cost. 

 Predictor step: 
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(93) 
 

 Corrector step: 
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(94) 
 

MacCormack’s implicit scheme (1985) is obtained using the backward Euler method to 

accomplish time integration in both predictor and corrector steps, resulting in the above 

scheme. 

5 SPATIALLY VARIABLE TIME STEP 

 The basic idea of this procedure consists in keeping constant the CFL number in all 

calculation domain, allowing, hence, the use of appropriated time steps to each specific mesh 

region during the convergence process. Hence, according to the definition of the CFL number, 

it is possible to write: 
 

                                                            jijiji csCFLt ,,,  ,                                                 (95) 
 

where CFL is the “Courant-Friedrichs-Lewy” number to provide numerical stability to the 
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scheme;    jiji avuc ,

5.022

,   is the maximum characteristic speed of information 

propagation in the calculation domain; and   jis ,  is a characteristic length of information 

transport. On a finite volume context,   jis ,  is chosen as the minor value found between the 

minor centroid distance, involving the (i,j) cell and a neighbor, and the minor cell side length. 

6 RESULTS 

Tests were performed in a microcomputer with processor INTEL CELERON, 1.5GHz of 

clock, and 1.0Gbytes of RAM. Converged results occurred to 4 orders of reduction in the 

maximum residual value. An entrance angle equal to 0.0 and a freestream Mach number of 

3.0 were employed as initial conditions. The ratio of specific heats, , assumed the value 1.4. 

The initial and boundary conditions to this supersonic flow are described in Jameson and 

Mavriplis (1986) and in Maciel (2002, 2011b). 
 

6.1 Compression corner physical problem – Explicit simulations 

 The compression corner configuration is described in Fig. 2. The corner inclination angle is 

10
o
. An algebraic mesh of 70x50 points or composed of 3,381 rectangular cells and 3,500 

nodes was used and is shown in Fig. 3. The points are equally spaced in both directions. 

 

  
          Figure 2: Compression Corner Configuration.                                Figure 3: Compression Corner Mesh. 

 

 Figures 4 to 12 exhibit the pressure contours obtained by the Roe (1981), the Steger and 

Warming (1981), the Van Leer (1982), the Chakravarthy and Osher (1983), the Harten (1983), 

the MacCormack (1985), the Frink, Parikh and Pirzadeh (1991), the Liou and Steffen Jr. 

(1993) and the Radespiel and Kroll (1995) first order schemes, respectively, to the explicit 

case. As can be observed the most severe pressure after the shock is captured by the Liou and 

Steffen Jr. (1993) first order scheme. The smallest shock wave thickness is also captured by 

the Liou and Steffen Jr. (1993) first order scheme. All solutions present the shock wave 

smeared out due to the predominant diffusive characteristics of first order schemes. To a 

comparison involving the shock wave thickness obtained by first order schemes with that 

generated by second order TVD schemes, see the works of Maciel (2010 and 2011a,c). 

 Figure 13 shows the wall pressure distributions generated by all the studied schemes in this 

work, to the explicit case. They are compared with the oblique shock wave theory. All 

solutions present a smooth behavior typical of first order schemes, except the Liou and Steffen 

Jr. (1993) first order scheme, which present a peak at the beginning of the compression 

corner. Even so, all solutions capture the shock discontinuity using three cells. 
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                     Figure 4: Pressure Contours (Roe).                                             Figure 5: Pressure Contours (SW). 

  
                       Figure 6: Pressure Contours (VL).                                            Figure 7: Pressure Contours (CO). 

  
                   Figure 8: Pressure Contours (Harten).                                         Figure 9: Pressure Contours (Mac). 

  
                     Figure 10: Pressure Contours (FPP).                                        Figure 11: Pressure Contours (LS). 
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                       Figure 12: Pressure Contours (RK).                            Figure 13: Wall Pressure Distributions (Exp). 

 

All solutions slightly underpredict the shock plateau. The best wall pressure distribution 

obtained in this explicit case is due to the Radespiel and Kroll (1995) first order algorithm. 

 One way to quantitatively verify if the solutions generated by each scheme are satisfactory 

consists in determining the shock angle of the oblique shock wave, , measured in relation to 

the initial direction of the flow field. Anderson Jr.
 
(1984) (pages 352 and 353) presents a 

diagram with values of the shock angle, , to oblique shock waves. The value of this angle is 

determined as function of the freestream Mach number and of the deflection angle of the flow 

after the shock wave, . To the compression corner problem,  = 10º (corner inclination angle) 

and the freestream Mach number is 3.0, resulting from this diagram a value to  equals to 

27.5º. Using a transfer in Figures 4 to 12, it is possible to obtain the values of  to each 

scheme, as well the respective errors, shown in Tab. 1. As can be observed, the Harten (1983) 

first order scheme has yielded the best result. Errors less than 5.00% were observed. 

 

 Algorithm:  (): Error (%): 

Roe (1981) 28.2 2.55 

Steger and Warming (1981) 28.5 3.64 

Van Leer (1982) 28.3 2.91 

Chakravarthy and Osher (1983) 28.5 3.64 

Harten (1983) 27.9 1.45 

MacCormack (1985) 28.8 4.73 

Frink, Parikh and Pirzadeh (1991) 28.4 3.27 

Liou and Steffen Jr. (1993) 28.0 1.82 

Radespiel and Kroll (1995) 28.4 3.27 
 

Table 1: Shock angle and percentage errors to the compression corner problem (Explicit case). 

 

6.2 Compression corner physical problem – Implicit simulations 

 Figures 14 to 22 exhibit the pressure contours obtained by the Roe (1981), the Steger and 

Warming (1981), the Van Leer (1982), the Chakravarthy and Osher (1983), the Harten (1983), 

the MacCormack (1985), the Frink, Parikh and Pirzadeh (1991), the Liou and Steffen Jr. 

(1993) and the Radespiel and Kroll (1995) first order schemes, respectively, to the implicit 

case. As can be observed the most severe pressure after the shock is again captured by the 

Liou and Steffen Jr. (1993) first order scheme. The smallest shock wave thickness is also 

captured by the Liou and Steffen Jr. (1993) first order scheme. All solutions present the shock 
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wave smeared out due to the predominant diffusive characteristics of first order schemes. 

    
                        Figure 14: Pressure Contours (Roe).                                        Figure 15: Pressure Contours (SW). 

         
                         Figure 16: Pressure Contours (VL).                                      Figure 17: Pressure Contours (CO). 

     
                      Figure 18: Pressure Contours (Harten).                                    Figure 19: Pressure Contours (Mac). 

     
                        Figure 20: Pressure Contours (FPP).                                        Figure 21: Pressure Contours (LS). 
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                       Figure 22: Pressure Contours (RK).                            Figure 23: Wall Pressure Distributions (Imp). 

 

 Figure 23 shows the wall pressure distributions generated by all the studied schemes in this 

work, to the implicit case. They are compared with the oblique shock wave theory. All 

solutions present a smooth behavior typical of first order schemes, except the Liou and Steffen 

Jr. (1993) first order scheme, which present a peak at the beginning of the compression 

corner. Even so, all solutions capture the shock discontinuity using three cells. All solutions 

slightly underpredict the shock plateau. The best wall pressure distribution obtained in this 

implicit case is due to the Radespiel and Kroll (1995) first order algorithm. 

 Analyzing the oblique shock wave angle, using a transfer in Figures 14 to 22, it is possible 

to obtain the values of  to each scheme, as well the respective errors, shown in Tab. 2. As can 

be observed, the Steger and Warming (1981), the MacCormack (1985) and the Frink, Parikh 

and Pirzadeh (1991) first order schemes have yielded the best result. Errors less than 5.10% 

were observed. 

 

Algorithm:  (): Error (%): 

Roe (1981) 28.8 4.73 

Steger and Warming (1981) 28.0 1.82 

Van Leer (1982) 28.5 3.64 

Chakravarthy and Osher (1983) 28.5 3.64 

Harten (1983) 28.5 3.64 

MacCormack (1985) 28.0 1.82 

Frink, Parikh and Pirzadeh (1991) 28.0 1.82 

Liou and Steffen Jr. (1993) 28.2 2.55 

Radespiel and Kroll (1995) 28.9 5.09 
 

Table 2: Shock angle and percentage errors to the compression corner problem (Implicit case). 

 

As conclusion, the explicit result of Harten (1983) first order scheme, with an error of 

1.45%, has presented the best solution considering explicit and implicit ones. 
 

6.3 Numerical data of the simulations 

 Table 3 presents the numerical data of the explicit simulations, involving maximum CFL 

number employed in the simulation by each scheme, iterations to convergence and 

computational cost of each scheme. The cheapest scheme is the Liou and Steffen Jr. (1993) 

first order scheme, whereas the most expensive scheme is the Frink, Parikh and Pirzadeh 

(1991) first order scheme. The former is 1,853.13% cheaper than the latter. 
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Algorithm: CFL: Iterations: Cost
(1)

: 

Roe (1981) 0.9 453 0.0000059 

Steger and Warming (1981) 0.9 446 0.0000066 

Van Leer (1982) 0.9 449 0.0000040 

Chakravarthy and Osher (1983) 0.9 450 0.0000322 

Harten (1983) 0.9 471 0.0000069 

MacCormack (1985) 0.9 466 0.0000476 

Frink, Parikh and Pirzadeh (1991) 2.6 161 0.0000625 

Liou and Steffen Jr. (1993) 0.9 457 0.0000032 

Radespiel and Kroll (1995) 0.9 453 0.0000039 
       (1): Measured in seconds/per cell/per iteration. 

 

Table 3: Numerical data of the explicit simulations. 

 

 Table 4 presents the numerical data of the implicit simulations, considering the same 

parameters evaluated in Tab. 3. The cheapest scheme is the Radespiel and Kroll (1995) first 

order scheme, whereas the most expensive scheme is the MacCormack (1985) first order 

scheme. The former is 223.93% cheaper than the latter. All algorithms presented significant 

values of CFL number in the implicit simulations. The minimum value employed, the worst 

case, was 3.0 (three) by the Van Leer (1982) first order scheme, but the gain in terms of 

convergence rate was approximately 209.66%. It is also important to emphasize the large CFL 

number employed by the implicit MacCormack (1985) first order scheme, achieving 

convergence in 28 iterations. The gain in terms of convergence rate was 1,564.29%. In other 

words, a relaxation procedure yields best gains in terms of convergence rate than an ADI 

procedure, because of the absence of the factorization error. On the other hand, the 

computational cost severely increases. 

 

Algorithm: CFL: Iterations: Cost
(1)

: 

Roe (1981) 5.5 84 0.0000493 

Steger and Warming (1981) 3.5 126 0.0000352 

Van Leer (1982) 3.0 145 0.0000347 

Chakravarthy and Osher (1983) 6.0 82 0.0000721 

Harten (1983) 4.5 101 0.0000469 

MacCormack (1985) 44.0 28 0.0001056 

Frink, Parikh and Pirzadeh (1991) 5.5 84 0.0000528 

Liou and Steffen Jr. (1993) 4.5 108 0.0000329 

Radespiel and Kroll (1995) 3.5 127 0.0000326 
   (1): Measured in seconds/per cell/per iteration. 

 

Table 4: Numerical data of the implicit simulations. 

 

 Table 5 shows the comparison between the explicit and implicit computational costs of 

each scheme and the increase due to passing from the former to the latter. As can be observed 

the increase in the computational cost of the numerical schemes varies from 122% to 928%. It 

is important to highlight the decrease in the computational cost of the Frink, Parikh and 

Pirzadeh (1991) first order scheme as passing from implicit to the implicit case. As observed 

in Maciel (2011a), such behavior is due to the use of a Runge-Kutta method of five stages in 

the explicit case, which damages severely the computational cost of the explicit scheme. As 
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emphasized in Maciel (2011a), the implicit formulation is well optimized, which guarantees a 

reduction in the implicit computational cost in relation to its explicit counterpart. The minus 

signal is to highlight the reduction in the computational cost. 

 

Algorithm: Cost
(1)

/Exp: Cost
(1)

/Imp: Increase (%): 

Roe (1981) 0.0000059 0.0000493 735.59 

Steger and Warming (1981) 0.0000066 0.0000352 433.33 

Van Leer (1982) 0.0000040 0.0000347 767.50 

Chakravarthy and Osher (1983) 0.0000322 0.0000721 123.91 

Harten (1983) 0.0000069 0.0000469 579.71 

MacCormack (1985) 0.0000476 0.0001056 121.85 

Frink, Parikh and Pirzadeh (1991) 0.0000625 0.0000528 -18.37 

Liou and Steffen Jr. (1993) 0.0000032 0.0000329 928.13 

Radespiel and Kroll (1995) 0.0000039 0.0000326 735.90 
(1): Measured in seconds/per cell/per iteration. 

 

Table 5: Comparison of the explicit and implicit computational costs. 

7 CONCLUSIONS 

 In this work, the Roe (1981), the Steger and Warming (1981), the Van Leer (1982), the 

Chakravarthy and Osher (1983), the Harten (1983), the MacCormack (1985), the Frink, 

Parikh and Pirzadeh (1991), the Liou and Steffen Jr. (1993) and the Radespiel and Kroll 

(1995) first order schemes are implemented employing an implicit formulation to solve the 

Euler equations in two-dimensions. These schemes are implemented according to a finite 

volume formulation and using a structured spatial discretization. The Roe (1981), the 

Chakravarthy and Osher (1983), the Harten (1983) and the Frink, Parikh and Pirzadeh (1991) 

schemes are flux difference splitting ones, whereas the others are flux vector splitting 

schemes. The implicit schemes employ an ADI approximate factorization or Symmetric Line 

Gauss-Seidel to solve implicitly the Euler equations. Explicit and implicit results are 

compared, as also the computational costs, trying to emphasize the advantages and 

disadvantages of each formulation. The schemes are accelerated to the steady state solution 

using a spatially variable time step, which has demonstrated effective gains in terms of 

convergence rate (Maciel, 2005). The algorithms are applied to the solution of the physical 

problem of the supersonic flow along a compression corner. 

 The results have demonstrated that the most accurate solutions are obtained with the Harten 

(1983) first order scheme, when implemented in its explicit version. The best wall pressure 

distribution is obtained by the Radespiel and Kroll (1995) first order scheme, in both explicit 

and implicit cases. All algorithms present solutions free of oscillations, under- or overshoot in 

the pressure contours and in the wall pressure distribution. Only the Liou and Steffen Jr. 

(1993) first order scheme presents a pressure peak at the beginning of the compression corner. 

In both explicit and implicit cases, the shock discontinuity is captured within three cells by all 

algorithms. All schemes estimate the shock angle of the oblique shock wave with errors less 

than 5.10% in both explicit and implicit solutions. The best solution, involving explicit and 

implicit simulations, is due to the explicit Harten (1983) scheme. 

 As can be observed from Table 3, the cheapest scheme, in its explicit version, is due to the 

Liou and Steffen Jr. (1993) first order scheme, whereas the most expensive scheme is due to 

the Frink, Parikh and Pirzadeh (1991) first order scheme. The former is 1,853.13% cheaper 
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than the latter. From Table 4, its implicit counterpart, the cheapest scheme is due to the 

Radespiel and Kroll (1995) first order scheme, whereas the most expensive scheme is due to 

the MacCormack (1985) first order scheme. The Radespiel and Kroll (1995) scheme is 

223.93% cheaper than the MacCormack (1985) scheme. It is important to highlight the 

significant gain in terms of convergence rate when using the MacCormack (1985) first order 

scheme, as passing from explicit to implicit implementation. This gain is estimated in 

1,564.29%, which is very encouraging, although the high computational cost of the implicit 

implementation deserves special attention. 

Another important consideration taking into account Tab. 5 is the great increase in the 

computational cost involving the same variant of a numerical scheme when passing from 

explicit to implicit implementation. The Liou and Steffen Jr. (1993) first order scheme 

presents the biggest increase in the computational cost involving all schemes (about 928%), 

but it is important to note that all schemes suffer an increase of no minimal 122% when 

passing from explicit to implicit formulation, which means a great penalty to improve the 

numerical results. In the present study, this penalty was not accepted because the best 

estimative of the shock angle was obtained with the explicit version of the Harten (1983) first 

order scheme. Moreover, no meaningful gains in terms of the improvement in the capture of 

the shock discontinuity by each scheme was achieved because the same number of cells – 

three – was obtained in both explicit and implicit cases. Hence, the author concludes that an 

explicit formulation yields satisfactory behavior in the capture of shock discontinuities. 
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