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Abstract. This work, the second part of this study, presents a numerical tool implemented to simulate 

inviscid and viscous flows employing the reactive gas formulation of thermal equilibrium and 

chemical non-equilibrium. The Euler and Navier-Stokes equations, employing a finite volume 

formulation, on the context of structured and unstructured spatial discretizations, are solved. The 

aerospace problems involving the hypersonic flows around a double ellipse and around a reentry 

capsule, in two-dimensions, are simulated. As in the first part of this study was presented the 

structured formulation, in this paper, it will be presented the unstructured version to complete the 

reactive formulation. The reactive simulations will involve an air chemical model of five species: N, 

N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination, will be 

simulated. The Arrhenius formula will be employed to determine the reaction rates and the law of 

mass action will be used to determine the source terms. The algorithm employed to solve the reactive 

equations was the Van Leer, first- and second-order accurate ones. The second-order numerical 

scheme is obtained by a “MUSCL” (“Monotone Upstream-centered Schemes for Conservation 

Laws”) extrapolation process in the structured case. In the unstructured case, tests with the linear 

reconstruction process did not yield converged results. The results have demonstrated that the most 

correct aerodynamic coefficient of lift, in the reentry capsule problem, is obtained by the Van Leer 

second-order accurate scheme in the viscous, structured simulation. The biggest aerodynamic 

coefficient of drag is obtained by the Van Leer first-order accurate scheme in the viscous, structured 

simulation. Moreover, the shock position is closer to the geometries as using the reactive formulation. 
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1 INTRODUCTION 

 In several aerodynamic applications, the atmospheric air, even being composed of several 

chemical species, can be considered as a perfect thermal and caloric gas due to its inert 

property as well its uniform composition in space and constancy in time. However, there are 

several practical situations involving chemical reactions, as for example: combustion 

processes, flows around spatial vehicles in reentry conditions or plasma flows, which do not 

permit the ideal gas hypothesis (Degrez and Van Der Weide, 1999). As described in Liu and 

Vinokur (1989), since these chemical reactions are very fast such that all processes can be 

considered in equilibrium, the conservation laws which govern the fluid become essentially 

unaltered, except that one equation to the general state of equilibrium has to be used opposed 

to the ideal gas law. When the flow is not in chemical equilibrium, one mass conservation law 

has to be written for each chemical species and the size of the equation system increases 

drastically. 

 Hypersonic flows are primary characterized by a very high level of energy (Saxena and 

Nair, 2005). Through the shock wave, the kinetic energy is transformed in enthalpy. The flow 

temperature between the shock wave and the body is very high. Under such conditions, the air 

properties are considerably modified. Phenomena like vibrational excitation and molecular 

dissociation of O2 and N2 frequently occur. The energy is stored under a form of free energy 

and the flow temperature is extremely reduced as compared with the temperature of an ideal 

gas flow. The thermodynamic and transport coefficients are not more constants. In summary, 

the ideal gas hypothesis is not truer and such flow is called the hypersonic flow of reactive gas 

or “hot gas flow”. 

 As aforementioned, during the reentry and the hypersonic flights of aerospace vehicles in 

the atmosphere, reactive gas effects are present. The analysis of such hypersonic flows is 

critical to an appropriated aerodynamic and thermal project of such vehicles. The numerical 

simulation of reactive-gas-hypersonic flows is a very complex and disputed task. The present 

work emphasizes the numerical simulation of hypersonic flow in thermal equilibrium and 

chemical non-equilibrium. 

 Maciel and Pimenta (2010) have presented a work involving the numerical implementation 

of a tool to simulate inviscid and viscous flows employing the reactive gas formulation of 

thermal equilibrium and chemical non-equilibrium. The Euler and Navier-Stokes equations, 

employing a finite volume formulation, on the context of structured and unstructured spatial 

discretizations, were solved. The aerospace problem involving the hypersonic flow around a 

blunt body, in two-dimensions, was simulated. The reactive simulations involved an air 

chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, 

involving dissociation and recombination, were simulated. The Arrhenius formula was 

employed to determine the reaction rates and the law of mass action was used to determine the 

source terms of each gas species equation. 

 This work, the second part of the study started with Maciel and Pimenta (2010), presents a 

numerical tool implemented to simulate inviscid and viscous flows employing the reactive gas 

formulation of thermal equilibrium and chemical non-equilibrium flow in two-dimensions. 

The Euler and Navier-Stokes equations, employing a finite volume formulation, on the 

structured and unstructured spatial discretization contexts, are solved. The aerospace problems 

involving the “hot gas” hypersonic flow around a double ellipse and around a reentry capsule, 

in two-dimensions, are simulated. As in Maciel and Pimenta (2010) was presented the 

structured formulation of the two-dimensional Euler and Navier-Stokes reactive equations, in 

this paper it will be presented the unstructured version of the calculation algorithm in two-
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dimensions to complete the formulation on structured and on unstructured contexts. The same 

chemical reactions and number of species, as described in Maciel and Pimenta (2010), are 

studied. 

 The algorithm employed to solve the reactive equations was the Van Leer (1982), first- and 

second-order accurate ones. The second-order numerical scheme is obtained by a MUSCL 

extrapolation process in the structured case (details in Hirsch, 1990). In the unstructured case, 

tests with the linear reconstruction process (details in Barth and Jespersen, 1989) did not yield 

converged results and, therefore, were not presented. The algorithm was implemented in a 

FORTRAN77 programming language, using the software Microsoft Developer Studio. 

Simulations in three microcomputers (one desktop and two notebooks) were accomplished: 

one with processor Intel Celeron of 1.5 GHz of clock and 1.0 GBytes of RAM (notebook), one 

with processor AMD-Sempron of 1.87 GHz of clock and 512 MBytes of RAM (desktop) and 

the third one with processor Intel Celeron of 2.13 GHz of clock and 1.0 GBytes of RAM 

(notebook). 

The results have demonstrated that the most correct aerodynamic coefficient of lift, in the 

reentry capsule problem, is obtained by the Van Leer (1982) second-order accurate scheme in 

the viscous, structured simulation. The biggest aerodynamic coefficient of drag, in this 

problem, is obtained by the Van Leer (1982) first-order accurate scheme in the viscous, 

structured simulation. The cheapest algorithm was the unstructured Van Leer (1982) scheme, 

first-order accurate in space, to an inviscid simulation, as pointed in Maciel and Pimenta 

(2010). Moreover, the shock position is closer to the geometries as using the reactive 

formulation than the ideal gas formulation. It was verified in the inviscid and viscous cases. 

2 FORMULATION TO REACTIVE FLOW IN THERMAL EQUILIBRIUM AND 

CHEMICAL NON-EQUILIBRIUM 

 The Navier-Stokes equations in thermal equilibrium and chemical non-equilibrium were 

implemented on a finite volume context, in the two-dimensional space. In this space, such 

equations in integral and conservative forms can be expressed by: 
 

                         




V V

C

S

dVSdSnFQdV
t


, with     jFFiEEF veve


 ,                   (1) 

 

where: Q is the vector of conserved variables, V is the computational cell volume, F


 is the 

complete flux vector, n


 is the normal unit vector to the flux face, S is the flux area, SC is the 

chemical source term, Ee and Fe are the convective flux vectors or the Euler flux vectors in the 

x and y directions, respectively, and Ev and Fv are the viscous flux vectors in the x and y 

directions, respectively. The i


 and j


 unity vectors define the Cartesian coordinate system. 

Eight (8) conservation equations are solved: one of general mass conservation, two of linear 

momentum conservation, one of total energy and four of species mass conservation. 

Therefore, one of the species is absent of the iterative process. The CFD (“Computational 

Fluid Dynamics”) literature recommends that the species to be omitted of the formulation 

should be that of biggest mass fraction of the gaseous mixture, aiming to result in the 

minimum accumulated numerical error, corresponding to the major constituent of the mixture 

(in the case, air). To the present study, in which is chosen an air chemical model composed of 

five (5) chemical species (N, N2, NO, O and O2) and seventeen (17) chemical reactions, being 

fifteen (15) dissociation reactions (endothermic reactions), this species can be the N2 or the 

O2. To this work, the O2 was the chosen species. The Q, Ee, Fe, Ev, Fv and SC vectors can, 
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hence, be defined as follows (Saxena and Nair, 2005): 
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where:  is the mixture density; u and v are the Cartesian velocity components in the x and y 

directions, respectively; p is the fluid static pressure; e is the fluid total energy; 1, 2, 3 and 

4 are the densities of the N, N2, NO and O, respectively; H is the total enthalpy of the 

mixture; the ’s are the components of the viscous stress tensor; qx and qy are the components 

of the Fourier-heat-flux vector in the x and y directions, respectively; Re is the laminar 

Reynolds number of the flow; svsx and svsy represent the diffusion flux of the species, 

defined according to the Fick law; x and y are the terms of mixture diffusion; and s  is the 

chemical source term of each species equation, defined by the law of mass action. 

 The viscous stresses, in N/m
2
, are determined, following a Newtonian fluid model, by: 
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in which  is the fluid molecular viscosity. The components of the Fourier-heat-flux vector, 

which considers only thermal conduction, are defined by: 
 

                                                   
x

T
kq x



    and   

y

T
kq y



 .                                           (5) 

 

The laminar Reynolds number is defined by: 
 

                                                                   LVRe ,                                                    (6) 
 

where “” represents freestream properties, V represents the flow characteristic velocity and 

L is a characteristic length of the studied configuration. The species diffusion terms, defined 

by the Fick law, to a thermal equilibrium condition, are determined by (Saxena and Nair, 
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2005): 
 

                                         
x

Y
Dv s

sxs



    and   

y

Y
Dv s

sys



 ,                                   (7) 

 

with “s” referent to a given species, Ys being the species mass fraction and D the binary 

diffusion coefficient of the mixture. The chemical-species-mass fraction “Ys” is defined by: 
 

                                                                    ssY                                                               (8) 
 

and the binary diffusion coefficient of the mixture is defined by: 
  

                                                                    
Cp

kLe
D


 ,                                                             (9) 

 

where: k is the mixture thermal conductivity; Le is the Lewis number, kept constant to thermal 

equilibrium, with value 1.4 (Saxena and Nair, 2005); and Cp is the mixture specific heat at 

constant pressure. The x and y diffusion terms which appear in the energy equation are 

determined by (Saxena and Nair, 2005): 
 

                                             



ns

1s

ssxsx hv    and   



ns

1s

ssysy hv ,                                 (10) 

 

being vsx and vsy the species diffusion velocities in the x and y directions, respectively; hs the 

specific enthalpy (sensible) of the chemical species “s” and “ns” the total number of chemical 

species. The thermodynamic model, the transport model and the chemical model are described 

in Maciel and Pimenta (2010). As the unstructured algorithm of Van Leer (1982) was not 

presented in Maciel and Pimenta (2010), to complete the two-dimensional studies, this 

formulation is presented in section 3 of the present work. 

3 UNSTRUCTURED ALGORITHM OF VAN LEER (1982) IN TWO-DIMENSIONS 

 To the numerical algorithm of Van Leer (1982) employing an unstructured formulation of 

the calculation domain, each rectangular cell of a structured computational mesh is 

transformed in two triangular cells to form an unstructured mesh by the use of connectivity, 

neighboring, ghost volume and nodes coordinate tables. Although the final mesh has not the 

benefits of a mesh really generated of unstructured way, the spatial discretization is 

unstructured and reliable results are obtained. 

 The numerical procedure to the unstructured algorithm of Van Leer (1982) is the same of 

the structured; in other words, the convective flux consists in uncouple the Euler equations in 

two parts, according to Ait-Ali-Yahia and Habashi (1997). One convective part associated 

with the dynamic flux of the reactive Euler equations and the other convective part associated 

with the chemical flux of the reactive Euler equations. The separation is described as follows. 

 The approximation to the integral equation (1) for a triangular finite volume yields a 

system of ordinary differential equations with respect to time defined by: 
 

                                                               iii RdtdQV  ,                                                    (11) 
 

with Ri representing the net flux (residual) of mass conservation, general and of species, of the 

linear momentum conservation and of total energy in the volume Vi. One graphic 

representation of the triangular computational cell of volume Vi, with its nodes and respective 

flux interfaces and neighbors, is presented in Fig. 1. The volume Vi of the computational cell 
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described above is determined by: 
 

                            1n2n1n3n2n3n3n2n3n1n2n1ni yxxyyxyxxyyx50V  . ,               (12) 
 

with n1, n2 and n3 being the nodes of a given triangular cell, defined in Fig. 1. The cells ne1, 

ne2 and ne3 are the three neighbors of the triangular cell “i”. 

 The connectivity table gives information about the three nodes: n1, n2 and n3, which 

defines a given triangular cell. The neighboring table gives information of the three neighbors 

that share the cell faces with the cell under study. The coordinate node table allows that the 

geometric properties of the mesh be calculated: cell volume, cell flux area, normal unity 

vector to the flux face, etc. The ghost cell table is related to boundary cells, referred in the 

CFD literature as “ghost” cells. Opposed to its three neighbors, in this table are indicated the 

unique real cell that share the computational domain boundary with the ghost cell and the type 

of ghost cell which are being used. In this work, the types of ghost cells vary from 1 to 4, 

being them: 1 – Wall ghost cell; 2 – Exit ghost cell; 3 – Entrance ghost cell; and 4 – Far field 

ghost cell. 
 

 
Figure 1: Unstructured Computational Cell, Its Nodes and Flux Interfaces. 

 

 The components of the unity vector normal to the flux interface and the area of the flux 

interface “l”, l

xn , l

yn  and lS , are calculated as: 
 

             5.02

l

2

ll

l

x yxyn  ,   5.02

l

2

ll

l

y yxxn     and     5.02

l

2

l

l yxS  .    (13) 
 

Expressions to xl and yl, on an unstructured context, are given in Tab. 1. 

 

Interface xl yl 

l = 1 
1n2n xx   1n2n yy   

l = 2 
2n3n xx   2n3n yy   

l = 3 
3n1n xx   3n1n yy   

 

Table 1: Values of xl and yl to the unstructured case. 

 

The residual is calculated as: 
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                                                           321i RRRR  ,                                                     (14) 
 

where v

1

e

11 RRR  , with “e” representing the residual associated with the flux of the Euler 

equations and “v” representing the residual associated with the viscous flux at the interface l = 

1. The residuals are summed because the area components are considered with their respective 

coordinate signals. 

 As in the structured case (Maciel and Pimenta, 2009), the discrete flux of the Euler 

equations or the discrete convective flux calculated in this work follows the procedure 

described by the AUSM scheme (Advection Upstream Splitting Method) of Liou and Steffen 

Jr. (1993). This flux can be interpreted as a sum involving the arithmetical average between 

the right (R) and the left (L) states of the “l” cell face, involving cells “ne” and “i”, 

respectively, multiplied by the interface Mach number, and a scalar dissipative term, as shown 

in Liou and Steffen Jr. (1993). Hence, the discrete-dynamic-convective-flux vector is defined 

by: 
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and the discrete-chemical-convective-flux vector is defined by: 
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where  T
lyxl SSS   defines the area vector normal to the flux interface “l”, in which the 

area components are defined by: ll

x

l

x SnS   and ll

y

l

y SnS  . The quantity “a” represents the 

sound speed, calculated as: 
 

                                      pa f , for a thermal equilibrium formulation,                        (17) 
 

being f the frozen ratio of specific heats (details in Maciel, 2009 and 2010). Ml defines the 

advective Mach number at the face “l” of cell “i”, which is calculated according to Liou and 

Steffen Jr. (1993) as: 
 

                                                                      RLl MMM ,                                                 (18) 
 

where the separated Mach numbers, M
+/-

, are defined by Van Leer (1982) as: 
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ML and MR represent the Mach numbers associated with the left and right states, respectively. 

The advection Mach number is defined as: 
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                                                               SavSuSM yx  .                                               (20) 
 

The pressure at face “l” of cell “i” is calculated in a similar way: 
 

                                                                      RLl ppp ,                                                      (21) 
 

with p
+/-

 representing the pressure separation defined according to Van Leer (1982): 
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The definition of the dissipation term  determines the particular formulation of the 

convective fluxes. The choice below corresponds to the Van Leer (1982) scheme, according to 

Radespiel and Kroll (1995): 
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The time integration is performed employing a Runge-Kutta explicit method of five stages, 

second-order accurate, for the two types of convective flux. To the dynamic part, this method 

can be represented in general form as: 
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and to the chemical part it can be represented in general form by: 
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where k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 and 5 = 1. This scheme is first-order 

accurate in space and second-order accurate in time. The second-order of spatial accuracy is 

obtained by a linear reconstruction procedure (details in Barth and Jespersen, 1989). 

The viscous formulation follows that of Long, Khan and Sharp (1991), which adopts the 

Green theorem to calculate primitive variable gradients. The viscous vectors are obtained by 

arithmetical average of flow properties between cell i and its neighbors. As was done with the 

convective terms, there is a need to separate the viscous flux in two parts: dynamical viscous 

flux and chemical viscous flux. The dynamical part corresponds to the first four equations of 

the Navier-Stokes ones and the chemical part corresponds to the last four equations. The 

scheme is accelerated to the steady state solution employing a spatially variable time step 

procedure, described in details in Maciel (2005a, 2008). 

4 RESULTS 

Tests were performed in three microcomputers. The criterion adopted to reach the steady 
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state was to consider a reduction of no minimal three (3) orders of magnitude in the value of 

the maximum residual in the calculation domain, a typical CFD community criterion. In the 

simulations, the attack angle was set equal to zero. 

4.1 Initial and boundary conditions for the studied problems 

 The initial conditions are presented in Tab. 2 for the double ellipse and in Tab. 3 for the 

reentry capsule. The Reynolds number is obtained from data of Fox and McDonald (1988).  

 

Property Value 

M 15.0 

 0.00922 kg/m
3
 

p 794 Pa 

U 5,208 m/s 

T 300 K 

altitude 50,000 m 

YN 10
-9

 

2NY  0.73555 

YNO 0.05090 

YO 0.07955 

L 5.0 m 

Re  1.5778x10
6
 

 

Table 2: Initial conditions for the problem of the double ellipse. 

 

Property Value 

M 10.6 

 0.02863 kg/m
3
 

p 3,885 Pa 

U 4,628 m/s 

T 473 K 

Altitude 40,000 m 

YN 10
-9

 

2NY  0.73555 

YNO 0.05090 

YO 0.07955 

L 3.0 m 

Re  3.4718x10
6
 

 

Table 3: Initial conditions for the problem of the reentry capsule. 

 

 The boundary conditions of the double-ellipse-reactive-flow problem are detailed in Maciel 

(2009), being constituted of entrance, exit and wall boundaries. The boundary conditions of 

the reentry-capsule-reactive-flow problem are: entrance, exit, wall and continuity boundaries, 

where the last one guarantees the flow continuity at the configuration trailing edge (Kutta 

condition). The nondimensionalization employed in the Euler and Navier-Stokes equations in 

this study is also described in Maciel (2009). 
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4.2 Results of the double ellipse in thermal equilibrium and chemical non-equilibrium 

Inviscid, structured and first-order accurate case.  Figure 2 presents the pressure contours 

calculated in the computational domain. The pressure peak at the configuration nose reaches 

the non-dimensional value superior to 1,680 unities. The shock wave at the configuration nose 

is normal. A second shock wave develops at the minor ellipse. This second shock wave is 

weaker than the first one, as observed in the pressure contours. Figure 3 exhibits the Mach 

number contours obtained from the simulation. The normal shock at the configuration nose 

yields a subsonic flow region behind it. This region is also characterized at the second ellipse. 

The shock wave develops naturally passing from a normal shock wave until be attenuated to a 

Mach wave, far from de configuration. 

  
                     Figure 2: Pressure Contours.                                           Figure 3: Mach Number Contours. 

  
               Figure 4: T/R Temperature Contours.           Figure 5: Mass Fraction Distribution at the Stagnation Line. 

 

 Figure 4 presents the contours of the distribution of the translational/rotational temperature 

(one temperature model) in the computational domain. The peaks of temperature at the 

configuration nose and at the second ellipse reach approximately 8,000 K. In these regions 

occur dissociation of the O2 and N2. Figure 5 presents the mass fraction distribution of the five 

chemical species of the study, namely: N, N2, NO, O and O2, along the line of stagnation of 

the geometry. As can be observed by the figure, a meaningful dissociation of the N2 and O2 

occurs, as expected, with a consequent increase of the N, NO and O in the gaseous mixture. 
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The increase of the N presents a highlighted behavior, considering its initial value, and the 

increase of the O has also a meaningful aspect. It is interesting to note that the increase of the 

NO would be bigger at the configuration nose. However, due to the constancy reached by the 

mass fraction distribution of the N2 and the increase in the formation of the N and O, at this 

region, caused a reduction in the NO formation. 
 

Viscous, structured and first-order accurate case. Figure 6 shows the pressure contours 

calculated in the computational domain. The non-dimensional pressure peak at the 

configuration nose has a value of approximately 1,884 unities, bigger than that obtained to the 

inviscid case. Analyzing the complete pressure field, it is possible to note that it is more 

severe than its inviscid contra-part. The implemented code also captures the second shock 

wave at the minor ellipse. Figure 7 exhibits the Mach number contours calculated at the 

computational domain. The shock wave at the configuration nose is again normal, resulting in 

a subsonic region behind it. This subsonic region, due to the transport phenomena considered 

now, propagates until the second shock at the minor ellipse and to the double-ellipse-

rectilinear walls. The shock wave also develops normally, passing from a normal shock wave 

to a Mach wave, more attenuated, far from the configuration. 

  
                      Figure 6: Pressure Contours.                                           Figure 7: Mach Number Contours. 

  
                Figure 8: T/R Temperature Contours.          Figure 9: Mass Fraction Distribution at the Stagnation Line. 

Figure 8 exhibits the contours of the translational/rotational temperature distribution 

calculated at the computational domain. At the double-ellipse-configuration nose and along 
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the geometry wall, the temperature reaches a maximum value superior to 9,000 K, which 

guarantees the dissociation of the O2 and N2. Figure 9 presents the mass fraction distribution 

of the five chemical species under study along the line of stagnation of the geometry. As can 

be observed by this figure, a meaningful dissociation of N2 and O2 occurs, as expected, with 

the consequent increase of the N, NO and O in the gaseous mixture. The increase of the NO 

presents a highlighted behavior. The formation of N is also considerable, taking into account 

its initial value, and the increase of O has also a meaningful behavior. 
 

Inviscid, structured and second-order accurate case. Figure 10 exhibits the pressure contours 

to the problem of the double ellipse, employing the Van Leer (1982) scheme using the 

MUSCL procedure to obtain second-order accuracy. This MUSCL procedure employs a non-

linear-flux-limiter type minmod. The pressure peak value is slightly inferior to the respective 

one obtained from the first-order structured solution. The pressure field is also less severe. 

The normal shock wave at the configuration nose is well captured, as also the second shock at 

the minor ellipse. Figure 11 shows the Mach number contours calculated at the computational 

domain. The normal shock wave generates a subsonic flow region behind it. Other region of 

subsonic flow is also manifested at the second ellipse. The shock wave presents its normal 

behavior, developing from the normal shock wave to a Mach wave. 

  
                     Figure 10: Pressure Contours.                                        Figure 11: Mach Number Contours. 

  
              Figure 12: T/R Temperature Contours.  Figure 13: Mass Fraction Distribution at the Stagnation Line. 

 

 Figure 12 presents the contours of the translational/rotational temperature distribution 

calculated at the computational domain. The temperature peak reaches approximately 8,000 K 
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at the configuration nose and at the minor ellipse. Dissociations of O2 and N2 in this region are 

expected. Behind the shock, all region present elevated values of temperature, which 

guarantee at least the dissociation of O2. Figure 13 shows the mass fraction distribution of the 

five chemical species under study along the line of stagnation of the geometry. As can be 

observed by this figure, a meaningful dissociation of the N2 and O2 occurs, as expected, with 

the consequent increase of N, of NO and of O in the gaseous mixture. The increase of the NO 

presents a highlighted behavior. The formation of N is also considerable, taking into account 

its initial value, and the increase of O has also important behavior. This solution presented to 

the inviscid case of second-order is comparable to that obtained with the first-order solution, 

indicating that the behaviors of both solutions are equivalent. 
 

Viscous, structured and second-order accurate case. Figure 14 shows the pressure contours 

to the problem of the double ellipse, in two-dimensions, considering viscous flow simulated 

with the Van Leer (1982) scheme of second-order TVD (Total Variation Diminishing). The 

non-dimensional pressure peak is approximately equal to 1,900 unities, bigger than the 

inviscid and viscous first-order solutions and than the inviscid second-order solution, 

representing the most severe pressure field. The pressure peak occurs at the double-ellipse-

configuration nose. The second shock at the minor ellipse is also captured. Figure 15 exhibits 

the Mach number contours obtained at the computational domain. The subsonic region behind 

the normal shock is well characterized and propagates along the geometry wall. The expected 

behavior to the shock wave is ratified: normal shock, oblique shocks and Mach wave. 

  
                    Figure 14: Pressure Contours.                                         Figure 15: Mach Number Contours. 

 

 Figure 16 presents the translational/rotational temperature distribution calculated at the 

computational domain. The temperature peak at the configuration nose reaches 9,000 K, 

which characterizes bigger dissociation of O2 and N2, mainly of N2. Behind the shock, all 

regions allow the dissociation of the O2 and N2, due to the range of temperature oscillates 

between 4,000 K and 9,000 K. Figure 17 presents the mass fraction distribution of the five 

chemical species of the study, namely: N, N2, NO, O and O2, along the line of stagnation of 

the geometry. As can be observed, meaningful dissociation of the N2 and O2 occurs, as 

expected, with the consequent increase of the N, of NO and of O in the gaseous mixture. The 

increase of the NO presents a highlighted behavior. The N formation is also considerable, as 

observed its initial value, and the increase of O has also meaningful behavior. This solution 

presented to the second-order viscous case is comparable to that obtained with the first-order 

solution, indicating that the behaviors of both solutions are equivalents. 
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              Figure 16: T/R Temperature Contours.        Figure 17: Mass Fraction Distribution at the Stagnation Line. 

 

Inviscid, unstructured and first-order accurate case. Figure 18 presents the pressure 

contours obtained by the inviscid simulation, unstructured, of first-order, at the computational 

domain. The non-dimensional pressure peak, approximately 1,800 unities, is bigger than that 

obtained with the first-order inviscid structured solution. This peak occurs at the configuration 

nose. The second shock at the minor ellipse is well captured. Figure 19 exhibits the Mach 

number contours calculated at the computational domain. The subsonic region behind the 

normal shock is well characterized. In the second shock also appears a region of subsonic 

flow. The shock develops normally. 

  
                     Figure 18: Pressure Contours.                                        Figure 19: Mach Number Contours. 

 

 Figure 20 shows the translational/rotational temperature distribution around the double 

ellipse, calculated at the computational domain. The temperature peak at the regions of the 

configuration nose and at the minor ellipse presents an approximated value of 8,500 K, which 

guarantees good dissociation of N2 and O2 in these regions. Figure 21 exhibits the velocity 

vector field to the inviscid flow. The flow tangency condition is well assured by the employed 

inviscid formulation. It is not presented the mass fraction distribution along the line of 

stagnation in the unstructured case due to the difficult in determine this line in this case. On 

the other hand, the velocity vector field is presented. 
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              Figure 20: T/R Temperature Contours.                                   Figure 21: Velocity Vector Field. 

 

Viscous, unstructured and first-order accurate case. Figure 22 presents the pressure contours 

calculated at the computational domain to this viscous case of the double ellipse, on an 

unstructured context. The pressure peak is bigger than those of the respective structured 

solutions of first- and second-order spatial accuracy. The pressure peak occurs at the 

configuration nose, where appears the normal shock. The second shock at the minor ellipse is 

well captured. Figure 23 shows the Mach number contours calculated at the computational 

domain. The region of subsonic flow, behind the shock, is well characterized along the 

geometry, due to the consideration of the transport phenomena (viscosity, thermal 

conductivity and gaseous diffusion). The behavior of the shock is also the expected: normal 

shock, which develops to oblique shocks and finishing in Mach wave. 

  
                      Figure 22: Pressure Contours.                                       Figure 23: Mach Number Contours. 

 

 Figure 24 corresponds to the translational/rotational temperature distribution at the 

computational domain. The temperature peak at the configuration nose and at the minor 

ellipse is bigger than those obtained with the structured viscous first- and second-order 

solutions. This allows concluding that more dissociation of O2 and N2 will occurs. Figure 25 

exhibits the velocity vector field to a flow viscous formulation. A small detachment of the 

boundary layer at the minor ellipse occurs, which, subsequently, is reattached. The adherence 

and impermeability conditions are guaranteed by the viscous formulation. 
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        Figure 24: T/R Temperature Contours.                                   Figure 25: Velocity Vector Field. 

4.3 Results of the reentry capsule in thermal equilibrium and chemical non-equilibrium 

Inviscid, structured and first-order accurate case. Figure 26 presents the pressure contours 

calculated at the computational domain. The non-dimensional pressure peak is approximately 

equal to 1,261 unities. This peak is originated by the strong shock wave ahead of the reentry 

capsule geometry. Good symmetry characteristics are observed. Figure 27 exhibits the Mach 

number contours calculated at the computational domain. The normal shock ahead of the 

geometry generates a subsonic flow region behind it. Good characteristics of symmetry are 

observed. The shock presents the expected behavior: normal shock ahead of the geometry, 

followed by oblique shock waves and, finally, by a Mach wave far from the geometry. 

  
                      Figure 26: Pressure Contours.                                      Figure 27: Mach Number Contours. 

 

 Figure 28 shows the translational/rotational temperature distribution calculated at the 

computational domain. The temperature peak reaches an approximated value of 7,100 K at the 

nose and at the configuration trailing edge. These regions present excellent characteristics of 

dissociation of the N2 and of O2. Figure 29 presents the mass fraction distribution of the five 

chemical species of the study, namely: N, N2, NO, O and O2, along the line of stagnation of 

the geometry. As can be observed, a meaningful dissociation of N2 and of O2 occurs, with 

subsequent increase of N, of NO and O in the gaseous mixture. The increase of N presents a 

meaningful behavior, considering its initial value, and the increase of O has also highlighted 
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behavior. It is interesting to note that the increase of NO would be bigger at the configuration 

nose. However, due to the constancy reached in the mass fraction of N2 and the increase in the 

formation of N and O, the formation of NO is reduced close to the nose configuration. 

  
              Figure 28: T/R Temperature Contours.        Figure 29: Mass Fraction Distribution at the Stagnation Line. 

 

Viscous, structured and first-order accurate case. Figure 30 exhibits the pressure contours 

calculated at the computational domain. Due to the mesh refinement and the characteristics of 

the viscous reactive flow, the shock is closer to the geometry nose. The non-dimensional 

pressure peak assumes the value of 1,370 unities, superior to that obtained by the inviscid 

simulation. In other words, the viscous simulations in all studied examples of this work 

captured stronger shocks than the ones due to inviscid simulations. Good symmetry 

characteristics are observed. Figure 31 exhibits the Mach number contours obtained in this 

viscous simulation at the computational domain. The pos-shock subsonic region at the frontal 

region of the reentry capsule is well captured. A wake is formed at the geometry trailing edge. 

The shock develops normally: normal shock, oblique shocks and Mach wave. 

  
                      Figure 30: Pressure Contours.                                       Figure 31: Mach Number Contours. 

 

 Figure 32 shows the contours of the translational/rotational temperature distribution 

calculated at the computational domain. The temperature reaches a peak of approximately 

8,440 K at the configuration trailing edge. This is an indicative of great release of energy in 

this region, probably boundary layer separation to a viscous formulation, allowing the elevated 

dissociation of N2 and O2 and formation of N, NO and O. Even the configuration nose 
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presents elevated values of temperature, approximately 8,000 K, which allows concluding that 

this region is also of elevated dissociation of N2 and O2, with meaningful formation of N, NO 

and O. Figure 33 exhibits the velocity vector field to the reentry-capsule-viscous case. As can 

be observed, a boundary layer separation at the trailing edge of the reentry capsule occurs, in 

both lower and upper surfaces, allowing the appearance of a pair of circulation bubbles. As 

expected, this is a region of intense energy exchange and heating due to viscosity and thermal 

conductivity. Hence, the behavior observed in this problem relative to bigger production of N, 

NO and O at the reentry-capsule-trailing edge is justified. 

  
              Figure 32: T/R Temperature Contours.                   Figure 33: Streamlines in the Velocity Vector Field. 

 

 Figure 34 shows the mass fraction distribution of the five chemical species under study 

along the line of stagnation of the geometry. As can be observed, a meaningful dissociation of 

N2 and of O2 occurs, as expected by the temperature peak of approximately 8,000 K at the 

configuration nose, with the subsequent increase of N, of NO and of O in the gaseous mixture. 

The increase of N presents a more discrete behavior, but meaningful, considering its initial 

value, and the increase of O has a highlighted behavior. It is interesting to note that the 

increase of NO would be bigger at the configuration nose. However, due to the constancy 

reached by the mass fraction of N2 and the increase in the formation of N and of O, a 

reduction in the formation of NO is characterized in this region. 

 
Figure 34: Mass Fraction Distribution at the Stagnation Line. 

 

Inviscid, structured and second-order accurate case. Figure 35 exhibits the pressure contours 
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obtained by the inviscid simulation with the Van Leer (1982) scheme, employing a minmod 

non-linear flux limiter to obtain spatial second-order accuracy. The shock wave appears well 

defined and closer to the configuration nose than the first-order simulation. The non-

dimensional pressure peak reaches a value close to 1,262 unities, slightly superior to that 

obtained with the first-order solution. Good symmetry characteristics are observed. Figure 36 

shows the Mach number contours at the computational domain. The subsonic region behind 

the normal shock is formed. The shock behaves naturally, sweeping the configurations of 

normal shock until Mach wave. 

  
                     Figure 35: Pressure Contours.                                       Figure 36: Mach Number Contours. 

  
              Figure 37: T/R Temperature Contours.        Figure 38: Mass Fraction Distribution at the Stagnation Line. 

 

 Figure 37 exhibits the contours of translational/rotational temperature distribution at the 

computational domain. The peak of temperature occurs at the configuration nose, 

approximately 7,300 K. This temperature allows a good dissociation of N2 and O2. Figure 38 

presents the mass fraction distribution of the five chemical species under study, namely: N, 

N2, NO, O and O2, along the line of stagnation of the geometry. As can be observed, a 

meaningful dissociation of N2 and of O2 occurs, as expected, with the consequent increase of 

N, of NO and of O in the gaseous mixture. The increase of N is meaningful, considering its 

initial value, and the increase of O has also a highlighted behavior. The maximum increase 

was in the formation of the NO. 
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Viscous, structured and second-order accurate case. Figure 39 presents the pressure contours 

of the reentry capsule obtained by the viscous case, with second-order accuracy, studied in this 

work. The non-dimensional pressure peak is approximately equal to 1,346 unities, inferior to 

the respective obtained in the first-order case. The complete pressure field is less severe than 

that obtained with the first-order scheme, for the viscous case. The pressure contours present 

good symmetry characteristics. Figure 40 exhibits the Mach number contours calculated in the 

computational domain. A subsonic region behind the normal shock is formed and propagates 

until the wake, formed at the configuration trailing edge. 

  

                     Figure 39: Pressure Contours.                                       Figure 40: Mach Number Contours. 

  
              Figure 41: T/R Temperature Contours.                  Figure 42: Streamlines in the Velocity Vector Field. 

 

 Figure 41 shows the contours of the translational/rotational temperature distribution at the 

computational domain. The temperature peak reaches approximately 7,600 K at the 

configuration nose. It is expected a good dissociation of N2 and O2. A wake less intense than 

that observed in the first-order solution is verified. Values of temperature in a range of 6,000 

K are expected in this region, with mainly good dissociation of O2 and reasonable dissociation 

of N2. Figure 42 presents the velocity vector field obtained by the viscous formulation. As 

observed, a formation of a viscous wake is obtained from the solution. This wake is originated 

from the boundary layer detachment close to the trailing edge, with consequent formation of a 

pair of circulation bubbles. This happens because of in the geometry back side, there are the 

wall skin friction due to viscosity and a severe adverse pressure gradient due to the wall 
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inclination. These two factors contribute to the boundary layer detachment close to the 

configuration trailing edge. 

 
Figure 43: Mass Fraction Distribution at the Stagnation Line. 

 

Figure 43 presents the mass fraction distribution of the five chemical species studied in this 

work, namely: N, N2, NO, O and O2, along the line of stagnation of the geometry. As can be 

observed by the figure, a meaningful dissociation of N2 and of O2 occurs, as expected by the 

temperature peak of approximately 7,600 K at the configuration nose, with the consequent 

increase of N, of NO and of O in the gaseous mixture. The increase of N presents a 

highlighted behavior, considering its initial value, and the increase of O has also an important 

behavior. It is interesting to note that the increase of NO should be bigger at the configuration 

nose. However, due to a slightly increase in the mass fraction of N2 (recombination) and the 

increase in the formation of N and O, the formation of NO is reduced. 

4.4 Shock position 

 In this section is presented the behavior of the shock position in ideal and in thermal 

equilibrium and chemical non-equilibrium conditions. Only first-order solutions are compared 

because the second-order ideal gas solutions did not present converged ones. 

  
      Figure 44: Shock Detachment (Inviscid Case).                  Figure 45: Shock Detachment (Viscous Case). 

 

 The detached shock position in terms of pressure distribution to the double ellipse problem, 
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in the inviscid case and first-order accurate solution, is exhibited in Fig. 44. It is shown the 

ideal-gas-shock position and the thermal equilibrium and chemical non-equilibrium shock 

position. As can be observed, the ideal-gas-shock position is located at 1.20 m, whereas the 

thermal equilibrium and chemical non-equilibrium position is located at 1.00 m. As referred 

in the CFD literature, in reactive flow the shock is closer to the configuration. As can be 

observed in this inviscid solution, the reactive shock is actually closer to the double ellipse. 

 The detached shock position in terms of pressure distribution to the double ellipse problem, 

in the viscous case and first-order accurate solution, is exhibited in Fig. 45. It is shown the 

ideal-gas-shock position and the thermal equilibrium and chemical non-equilibrium shock 

position. As can be observed, the ideal-gas-shock position is located at 1.02 m, whereas the 

thermal equilibrium and chemical non-equilibrium position is located at 0.84 m. As 

mentioned above, in reactive flow the shock is closer to the configuration. As can be observed 

in this viscous solution, the reactive shock is actually closer to the double ellipse. 

 The detached shock position in terms of pressure distribution to the reentry capsule 

problem, in the inviscid case and first-order accurate solution, is exhibited in Fig. 46. It is 

shown the ideal-gas-shock position and the thermal equilibrium and chemical non-equilibrium 

shock position. As can be observed, the ideal-gas-shock position is located at 1.85 m, whereas 

the thermal equilibrium and chemical non-equilibrium position is located at 1.60 m. As 

referred in the CFD literature, in reactive flow the shock is closer to the configuration. As can 

be observed in this inviscid solution, the reactive shock is actually closer to the reentry 

capsule than the ideal shock. 

  
      Figure 46: Shock Detachment (Inviscid Case).                  Figure 47: Shock Detachment (Viscous Case). 

 

The detached shock position in terms of pressure distribution to the reentry capsule 

problem, in the viscous case and first-order accurate solution, is exhibited in Fig. 47. It is 

shown the ideal-gas-shock position and the thermal equilibrium and chemical non-equilibrium 

shock position. As can be observed, the ideal-gas-shock position is located at 1.50 m, whereas 

the thermal equilibrium and chemical non-equilibrium position is located at 1.30 m. As 

mentioned above, in reactive flow the shock is closer to the configuration. As can be observed 

in this viscous solution, the reactive shock is actually closer to the reentry capsule. 

4.5 Aerodynamic coefficients of lift and drag 

 Table 4 exhibits the aerodynamic coefficients of lift and drag obtained by the problem of 

the reentry capsule, with structured discretization, for the reactive formulation. These 
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coefficients are due to the pressure term alone. The contribution of the friction term was not 

considered. To the problem of the reentry capsule, a symmetric geometry in relation to the x 

axis, a zero value is expected for the lift coefficient. By Table 4, it is possible to note that the 

solution closest to this value for cL was that of the Van Leer (1982) scheme with second-order 

accuracy, in a viscous formulation. The maximum cD was obtained by the solution of the Van 

Leer (1982) scheme, first-order accurate and employing a viscous formulation. 

 

Studied Case cL cD 

First-Order/Inviscid/TECNE
(1)

 5.616x10
-4

 28.76 

First-Order/Viscous/TECNE 1.718x10
-4

 31.30 

Second-Order/Inviscid/TECNE -2.496x10
-4

 28.76 

Second-Order/Viscous/TECNE 1.079x10
-4

 31.00 
                 (1) TECNE: Thermal Equilibrium and Chemical Non-Equilibrium. 

 

Table 4: Aerodynamic coefficients of lift and drag to the structured reentry capsule case.  

4.6 Computational performance of the studied algorithm 

 Table 5 presents the computational data of the reactive simulations performed with the Van 

Leer (1982) scheme to the problem of the double ellipse in two-dimensions. In this table are 

exhibited the studied case, the maximum number of CFL employed in the simulation, the 

number of iterations to convergence and the number of orders of reduction in the magnitude 

of the maximum residual in relation to its initial value for convergence. As can be observed, 

the first-order test cases converged with no minimal four orders of reduction in the value of 

the maximum residual. The second-order cases converged with three orders of reduction in the 

value of the maximum residual. The maximum numbers of CFL presented the following 

distribution: 0.2 in two (2) cases (33.33%) and 0.1 in four (4) cases (66.67%). The 

convergence iterations did not overtake 10,000, in all studied cases. However, the time wasted 

in the simulations was much raised, taking until days to convergence (to four orders of 

reduction in the maximum residual and viscous cases). This can be verified in Maciel (2009). 

 

Studied Case CFL Iterations 

Orders of 

Reduction of 

the Residual 

First-Order/Structured/Inviscid/2D/TECNE
(1)

 0.2 1,470 4 

First-Order/Structured/Viscous/2D/TECNE 0.1 7,831 4 

Second-Order/Structured/Inviscid/2D/TECNE 0.1 2,042 3 

Second-Order/Structured/Viscous/2D/TECNE 0.1 5,704 3 

First-Order/Unstructured/Inviscid/2D/TECNE 0.2 2,844 4 

First-Order/Unstructured/Viscous/2D/TECNE 0.1 9,146 4 
(1) TECNE: Thermal Equilibrium and Chemical Non-Equilibrium. 

 

Table 5: Computational data of the reactive simulations of the double ellipse. 

 

 Table 6 presents the computational data of the reactive simulations performed with the Van 

Leer (1982) scheme to the problem of the reentry capsule in two-dimensions. In this table are 

exhibited the same parameters as in the double ellipse case (Tab. 5). As can be observed, half 

of the test cases (first-order solutions) converged with no minimal four orders of reduction in 

the value of the maximum residual and the other half of the test cases (second-order solutions) 

converged with no minimal three orders of reduction in the value of the maximum residual. 
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The maximum numbers of CFL presented the following distribution: 0.4 in one (1) case 

(25.00%) and 0.1 in three (3) case (75.00%). The convergence iterations did not overtake 

9,000, in all studied cases. However, the time wasted in the simulations was much raised, 

taking until days to convergence (to four orders of reduction in the maximum residual and 

viscous cases). This aspect can be verified in Maciel (2009). It is important to emphasize that 

all two-dimensional viscous simulations were considered laminar, without the introduction of 

a turbulence model, although high Reynolds number were employed in the simulations. 

 

Studied Case CFL Iterations 

Orders of 

Reduction of 

the Residual 

First-Order/Structured/Inviscid/2D/TECNE
(1)

 0.4 1,132 4 

First-Order/Structured/Viscous/2D/TECNE 0.1 8,572 4 

Second-Order/Structured/Inviscid/2D/TECNE 0.1 4,944 3 

Second-Order/Structured/Viscous/2D/TECNE 0.1 5,161 3 
(1) TECNE: Thermal Equilibrium and Chemical Non-Equilibrium. 

 

Table 6: Computational data of the reactive simulations of the reentry capsule. 

5 CONCLUSIONS 

 This work, the second part of the study started with Maciel and Pimenta (2010), presents a 

numerical tool implemented to simulate inviscid and viscous flows employing the reactive gas 

formulation of thermal equilibrium and chemical non-equilibrium flow in two-dimensions. 

The Euler and Navier-Stokes equations, employing a finite volume formulation, on the 

structured and unstructured spatial discretization contexts, are solved. The aerospace problems 

involving the “hot gas” hypersonic flow around a double ellipse and around a reentry capsule, 

in two-dimensions, are simulated. As in Maciel and Pimenta (2010) was presented the 

structured formulation of the two-dimensional Euler and Navier-Stokes reactive equations, in 

this paper it will be presented the unstructured version of the calculation algorithm in two-

dimensions to complete the formulation on structured and on unstructured contexts. 

 To the simulations with unstructured spatial discretization, a structured mesh generator 

developed by the first author (Maciel, 2004), which create meshes of quadrilaterals (2D), was 

employed. After that, as a pre-processing stage (Maciel, 2005b), such meshes were 

transformed in meshes of triangles. Such procedure aimed to avoid the time which would be 

waste with the implementation of an unstructured generator, which was not the objective of 

the present work, and to obtain a generalized solver for the solution of the reactive equations. 

The results have demonstrated that the most correct aerodynamic coefficient of lift, in the 

reentry capsule problem, is obtained by the Van Leer (1982) second-order accurate scheme in 

the viscous, structured simulation. The biggest aerodynamic coefficient of drag, in this 

problem, is obtained by the Van Leer (1982) first-order accurate scheme in the viscous, 

structured simulation. The cheapest algorithm was the unstructured Van Leer (1982) scheme, 

first-order accurate in space, to an inviscid simulation, as pointed in Maciel and Pimenta 

(2010). Moreover, the shock position is closer to the geometries as using the reactive 

formulation than the ideal gas formulation. It was verified in the inviscid and viscous cases. 
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