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Abstract. The goal of this work is to present a new methodology to solve computational 

fluid dynamics (CFD) problems based on a particle method minimizing the usage of mesh 

based solvers in order to get a potential computational efficiency to get rid of the new 

challenges of engineering and science. Thanks to the recent advances in hardware, in 

particular the possibility of using graphic processors (GPGPU), high performance computing 

is now available if and only if software development gives an important jump to incorporate 

this technology. Due to the complexity in programming over such a platform the best way to 

take advantage of its performance rests on the design of numerical methods able to be viewed 

as cellular automata. In this sense explicit methods seem to be an attractive choice. However it 

is well known that explicit methods have a severe stability limitation. On the other hand, the 

spatial discretization of particle methods offers some advantages against others like finite 

elements or finite volumes in terms of computational costs. The main reasons of this rest on 

the low dimensionality of this method (particle methods are a zero dimensional representation 

of the solution of a given set of PDE’s while finite elements are 3D and finite volume are part 

2D and part 3D). In addition particle methods are generally written in Lagrangian formulation 

avoiding the necessity of defining a spatial stabilization in convection dominated flows. Finite 

elements and finite volume are generally designed using an Eulerian formulation with some 

extra diffusion in the solution due to this stabilization requirement. However, some particle 

methods often require a mesh to interpolate and also to solve the problem losing some of their 

advantages in terms of efficiency. Even though there are some methods that do not use any 

mesh in their formulation, the interpolation methods become very complex introducing errors 

in the computation with noticeable extra diffusion. Having detected two main limitations of 
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particle methods to solve Navier-Stokes equations for viscous incompressible flows, we 

propose in this work the following: • to enhance the time integration using an explicit 

streamline based scheme computed with the old velocity vector allowing to enlarge the time 

steps of standard explicit schemes in advection dominated flows • in order to minimize the use 

of mesh based solvers, the velocity predictor and its correction is formulated purely on the 

particles as any spatial collocation method using a gradient recovery technique to include the 

pressure gradient and the viscous terms. This method is written in a Lagrangian formulation in 

a segregated way like a fractional step method. The computation of the predicted fractional 

velocity and its correction is done using our proposal explained above, i.e. streamline in time 

collocation in space scheme. On the other hand the pressure correction (Poisson solver) is 

carried out using a FEM like method. This method may be implemented in two ways: • the 

mobile mesh version: where the particles represent the mesh nodes and a permanent 

remeshing is needed in order to avoid the severe restriction in the time steps imposed by the 

mesh motion. Remember that the mesh is only used to solve the Poisson problem for the 

pressure correction. • the fixed mesh version: where there is a background mesh to do some 

computations, mainly for the pressure, and a certain amount of particles that move in a 

Lagrangian way transporting the velocity. Some interpolation between the particles and the 

fixed mesh is needed but the remeshing is completely avoided. This paper presents this novel 

approach built with the above mentioned features and shows some results to demonstrate its 

ability in terms of stability and accuracy with a high potential to be optimized in order to solve 

the challenging engineering problems of the next decades. 

N. NIGRO et.al.452

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

INTRODUCTION 

The main target of this work is to look for algorithms to simulate CFD problems as fast as 

possible, improving the current performance of general-purpose commercial codes. This goal 

does not mean yet obtaining Real Time CFD solution but this goal is on this way, with the aim 

of changing days of simulations for hours of simulations making feasible the present 

challenging demands of engineering design. 

Even though implicit time integration schemes are preferred in the literature against 

explicit ones, the latter are in a better position attending to the present of hardware technology 

that is oriented to the usage of general purpose graphic processor units (GPGPU). 

On the other hand it is not obvious that an Eulerian approach is better in terms of efficiency 

and accuracy than a Lagrangian one. At least in this paper we try to put into question this 

asseveration. 

 One of the main drawbacks of the explicit integration using an Eulerian formulation is 

the restricted stability of the solution with the time steps and the spatial discretization 

(Zienkiewicz, et al. 2006; Donea, J. and Huerta, A. 2003). For the incompressible Navier-Stokes 

equations, it is well known that the time step to be used in the solution of the momentum 

equations is stable only for time steps smaller than two critical values: the Courant-Friedrichs-

Lewy (CFL) number and the Fourier number.  The first one concerns the convective terms and 

the second one the diffusive ones. Both numbers must be less than one to have stable 

algorithms. For convection dominant problems like high Reynolds number flows, the 

condition CFL<1 becomes crucial and limits the use of explicit methods or makes the solution 

scheme far from being efficient.  

 The possibility to perform parallel processing and the recent upcoming of new 

processors like GPGPU (Ehrenstein, G.2008) increase the possibilities of the explicit 

integration in time due to the facility to parallelize explicit methods having results with speed-

up closed to one.  

 Although the incompressible condition cannot be solved explicitly, except by 

introducing a small compressibility in the flow, the momentum conservation equations with 

an explicit integration together with a parallel processing may reduce drastically the 

computing time to solve the whole problem provided that a large time step may be preserved 

independently to the discretization in space. This paper is concerned with this objective: to 

perform explicit integration of the momentum equations without the CFL<1 restriction.  

 Over the last 30 years, computer simulation of incompressible flows has been mainly 

based on the Eulerian formulation of the fluid mechanics equations on continuous domains 

(Hughes, T.J.R. et al 1986). However, with this formulation, it is still difficult to analyze large 

3D problems in which the shape of the free-surfaces or internal interfaces changes 

continuously (Tezduyar, T.E. et al 1992a) or in fluid–structure interactions where complex 

contact problems are involved. In all these problems the computing time is sometimes so high 

that makes the method unpractical. 

 Standard formulations to solve the incompressible Navier-Stokes equations may be 

split in two classes. In a first class there are those methods in which all the equations 

(momentum and mass conservation) are solved together. An implicit integration in time is 

performed in both the momentum equations and the mass balance equation. They are called 

Monolithic Methods. In a second-class we find those methods called Fractional-Step Methods, 

or Pressure-Segregation Methods (Chorin, A.J. ,1967) because they solve the problem in two 

steps: one explicit step for the momentum equations and a second implicit step for the mass 

balance equation. The advantage of monolithic methods is the possibility to have stable 
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solutions with large time steps. Their main disadvantage is the need to solve very large non-

linear system of ill-conditioned coupled equations. On the other hand, the big advantage of 

explicit integration is the simplicity and the scalability in parallel processors. Until now, the 

big disadvantage was to be conditionally stable for relative small time steps and also to have 

stability with spatial discretization dependency. 

 In this paper we will present a pressure-segregation method with an explicit time 

integrator without the CFL restriction. This allows large time steps independent of the spatial 

discretization having equal or better precision that an implicit integration.  

 The idea is to use the information we have at time t = tn
 in the velocity streamlines as 

well as in the acceleration streamlines to update the particle position as well as the velocity in 

a Lagrangian frame. The method may be used with moving or fixed meshes.  

1 EXPLICIT INTEGRATION FOLLOWING THE VELOCITY AND THE 

ACCELERATION STREAMLINES. 

 Let be the vector defining the position of a particle in a 3D space, function of the 

time t  that we will write for simplicity .  At time t = tn
 we will write , at time 

1 nn tttt  we will write and in general, in any time between t = tn and t = tn+1
 we 

will write . 

 Let ( )n t n t

p

 
V x  and  vectors defining the velocity and the acceleration 

respectively of a particle  at any time tn+t
 

 

                               
)2.1(

)1.1(

  
 

 where 
Dt

D
represents the material (Lagrangian) derivative in time of any function f . The 

material derivative is connected with the spatial derivative by the convective terms: 

   

  In all initial value problems like the transient Navier-Stokes equations, the time solution 

of a problem consists in: knowing all the variables at time t = tn
, find the same variables at 

time t = tn+1
.  In other words, to integrate in time equations (1.1) and (1.2): 

 

       
)4.1(

)3.1(

 
  The accuracy of the results will depend to a great extent in the accuracy of the 
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discretization of the velocity and acceleration in the space, but also in the approximation 

introduced in the integration of (1.3) and (1.4).  In this paper we will be concern with the time 

integration only, being possible to use any space discretization to achieve analogous results.  

 

1.1 Time integration of the velocity: 

 Equation (1.3) may be approximated in different ways.  The simplest one is the constant 

velocity explicit integration in which the velocity is considered constant in the whole time 

interval with the value of the velocity at the initial position: 

             (1.5) 
 Another possibility is the linear velocity implicit integration in which the velocity is 

considered with a linear variation between tnand tn+1
: 

        (1.6) 
with   being a parameter varying between 0 (explicit) and 1 (fully implicit). 

 The difficulty of (1.6) is the fact that velocity is unknown. This means that is part 

of the variables to be solved. For this reason implicit methods introduce a non-linear system 

of equations. 

 The question is: are there other explicit formulations better than the constant velocity 

approximation used in (1.5)? Of course there are. We can use previous time steps, like 1nt , 
2nt , etc. to approximate high order time curves. We propose here a different way to improve 

the explicit integration. The idea is to use the velocity streamlines obtained at time step tn
to 

approximate the final position of a particle . 

 Let then  

         (1.7) 

 Equation (1.7) is explicit because we are using only information at time step tn
. In this 

case we are not using a constant else a linear, approximation of the velocity field. We are 

using the same high order approximation the velocity field has at time t
n
. The only difference 

with the exact integration (1.3) is that here we are performing the integral (inside each time 

step) following a pseudo trajectory of the particles calculated with the velocity streamline, 

instead of following the true trajectory (Fig. 1.1). It must be noted that in the stationary case, 

the particle position evaluated with the velocity streamlines and the trajectory are coincident. 

This time integration will be named Explicit Integration following the Velocity Streamlines 

(X-IVS).  
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Fig. 1.1 Integration following the Velocity Streamlines 
 

 

 

1.2 Time integration acceleration: 

 In classical explicit integration, equation (1.4) is replaced by: 

    (1.8) 

The value of may be evaluated with any of the possibility described before: 

a) the fully explicit case, that is using (1.5), reduce to: 

     (1.9)

 

b) the X-IVS case, that is using (1.7), remains: 

      (1.10) 
In implicit (linear) integration equation (1.4) is replaced by 

    (1.11) 
which also may be used with any of the previous time integrations for the particle position. 

 However, we will propose something new for evaluating the velocity: the idea 

proposed in (1.7) may be also used for the acceleration. That is, for improving the time 

integration of the acceleration while remaining explicit in time. This means to approximate 

equation (1.4) by: 

         (1.12) 
 Equation (1.12) represents an integration following the acceleration streamlines (See 

Fig. 1.2) obtained at time nt . This may be solved using any of the particle position 

integrations described before. For consistence, we will use the X-IVS method described in 

(1.7): 
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(1.13)  
 

 

 

 

 

 

 

 

 

 

      

 

 

 

Fig. 1.2 Integration following the Acceleration Streamlines 

We must note that equations (1.13) are still explicit because they are using the velocity and 

acceleration at time t
n
 (Fig.1.2). Nevertheless, any constant or linear variation in time neither 

the velocity nor the acceleration are not assumed, as it is the standard assumption in classical 

explicit or implicit integration scheme. This approach will be named Explicit Integration 

following the Velocity and Acceleration Streamlines (X-IVAS). 
 

  

Another possibility to perform the integration is via the so-called Characteristic Methods (Jos 

Stam 1999; O. Pironneau and M. Tabata. 2010). We can summarize the method using 1  in 

(2.11): 

      (1.14) 

and then evaluating the term  by backward integration over the streamlines of 

equation (1.3): 

      (1.15) 

 Finally the value of  is obtained by interpolating the velocity at the 

position . 

 It must be noted that in spite of the similarity of idea between the Characteristic 

Methods and the X-IVAS method presented here, the concept and the results are totally 

different. The Characteristic Method is a X-IVS integration with an implicit integration of the 

acceleration for 1 . Therefore, the velocity is not integrated following the acceleration 

streamline and, furthermore, the need of an interpolation over the velocity field to evaluate 

introduces important errors as shown in the examples. 

An
 

An
 

V2
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2 TOWARDS AN ANALYTICAL STREAMLINE BASED TIME INTEGRATION. 

 This section deals with the goal of getting algorithms as closed as possible to follow 

particles minimizing the integration error and also reducing to a minimum the number of 

substeps to complete the enlarged time step proposed in the PFEM-2 method. The ideal 

situation should be to go on jumping between elements with a minimum amount of 

computation inside them during each time step. In this way we proposed to find the time and 

the location of the particle when it is just crossing between two elements, the element in 

which it was at the beginning of the time step and its neighbor found during its path. Inside 

each element the analytical expression for the particle trajectory is used reducing the error to a 

minimum induced by the time integration and by the space approximation of the variables. 

The former is due to the time at which the fields are assessed, normally the old one for explicit 

schemes, and the later for the linear interpolation normally used in massively computation. 

Briefly, the algorithm presented in this section should be able to solve for each particle the 

following ODE : 

 
V

x


dt

d p

       (2.1) 
over a background mesh where the velocity field is defined )(xV with initial conditions like

 )0( tpx .The following figure shows a typical problem where the mesh and the velocity field 

over it is observed, with dot lines following the trajectory of a given particle. 

 

Fig. 2.1: Analytical computation of the particle trajectory assuming a linear velocity field 

interpolation inside each element in the mesh 
 

Inside each triangle the velocity field is interpolated linearly so it is possible to get a closed 

analytical expression taking this assumption. The main idea of our strategy consists in 

detecting the event for which the particle initially placed at P at time t
n
 crosses the boundary 

of the triangle e entering to the element e’. This event is marked as Q in the following figure 

and it is computed using the analytic expression of the particle trajectory that moves with the 

linear velocity field given by: 
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As it was mentioned the strategy is based on the first occurrence of crossings of particle paths 

through element boundaries. 

 
 

Fig. 2.2: Detecting the crossing event in the trajectory of a particle  
 

Several situations have been taken into account.  One of them is plotted in the following 

figure. 

The particle seems to go out of the current element e through the edge b-c but before reaching 

this boundary and very close to it, the particle changes its direction exiting through the edge c-

a. To look for these events a bisection non-linear root finding algorithm was used. The 

following subsection enters in some details about the mathematics involved in the quasi-

analytical time integration of particle path. 
 

 
 

Fig 2.3: Bypassing pathologies in the crossing event detection. 
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2.1 Exact computation of particle path 

 

We describe here how we computed the path followed by a massless particle starting at a 

point in an element, moved by a piecewise linear velocity. More precisely, we consider a 

triangle T, described by the coordinates of its vertices X (each column representing one 

vertex), a linear velocity V (each column representing the velocity at each vertex), and an 

initial point 0  (column vector) in baricentric coordinates. 

That is, the real world coordinates of the initial point are obtained multiplying X by 0 , 

i.e., Xx
00  . 

The goal is to compute the exact path of the particle starting at 0
x  given by the velocity field 

V. If v(x) denotes the velocity at the point x, then the particle path is the solution to the 

following system of ODEs:
 

 Xxxvx
00                   )),(()(  tt           

(2.3)

 
 

It is more convenient to work with the baricentric coordinates. Since Xx )()( tt   and 

Vxv )())(( tt   the system reads 

 
0)0(          )),(()(   ttt VX 
              (2.4)

 
 

 

Since 1)()()( 321  ttt   we replace )()(1)( 213 ttt    and obtain the following 

system for 









2

1




  :  

 
0

3 )0(         ; )()(   VMM VX tt
          

 

(2.5)

 
 

where  3231 XXXXMX   and  3231 VVVVMV   with Xi , Vi denoting the i-th 

column of X,V respectively. If the element is not degenerate XM is invertible and the problem 

is equivalent to: 

 

0

3

11
)0(         ; )()(  






b

X

A

VX VMMM tt     (2.6)

 
or 

 
0)0(         ; )()(   bA tt
        (2.7)

 
The exact solution of (2.7) is given by 

   01  )(  AA
bA

tt eIet  
          (2.8)

 
with 
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The formula   1 A

A Iet
 does not make sense when A is not invertible, but it should be 

interpreted in the following sense: 
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The question now arises on how to compute these two series in a fast way. The answer is not 

so complicated and we resort to the eigenvalues )(A  of A. There are three cases: 

 The matrix A has two real eigenvalues of multiplicity 1 









 

2

11

0

0
              




DPDPA

 
 The matrix A has only one real eigenvalue with multiplicity 2 









 





0

1
              1

DPDPA

 
 The matrix A has two complex conjugate eigenvalues. In this case the (real) Jordan 

decomposition looks like 











 




DPDPA               1

 
Next, the root finding algorithm applied to the three baricentric coordinates lambda is applied 

with some implementation details not included here for brevity reasons. 

2.2 A measure of accuracy and efficiency of this analytical particle path computation. 

In this subsection we focus on the accuracy and the efficiency of this novel methodology. 

Even though a lot of work should be done in order to confirm the usefulness of this 

methodology here an academic example is presented with the target put on the comparison 

against other standard integration techniques. Here we compare this integration technique with 

a standard 4th order Runge-Kutta and the current time integrator used in PFEM2 that is a sub-

cycled Forward Euler. 

The example chosen is the Archimedes spiral, a mathematical function defined as: 

 
ttrdtrtrr

ttdtt

r

ryrx

T

T

320

1
)0()0(
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80

1
       ;     

4
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)sin(     ;     )cos(
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













             (2.11) 

The following figure shows the error for the three methods compared using different time 

steps. It is evident for this example the advantages of using the strategy proposed in this 

section. As an additional remark the current time integrator used in PFEM-2 is far enough in 

accuracy respect to this quasi-analytical method, therefore, the future incorporation of this 

technique seems to be very promising. 
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Fig 2.4: Sensitivity of the error integration with time step. Comparison among the analytical 

technique presented here against 4
th

 order Runge-Kutta and current PFEM2 integrator. 
 

The following figure shows a comparison between the analytic technique presented in this 

section and the current PFEM2 time integrator when the latter is refined with an increasing 

number of sub-cycles. 

It should be noted the constant error for the analytic path computation with the choice of the 

time step. This behavior is an evidence of the feature of this time integration scheme, it may 

be defined as a Discrete Event System Specification (DEVS). Therefore the error does not 

depend on the time step selection else in the accuracy of the crossing event detection.  
 

 

Fig 2.5: Sensitivity of the PFEM2 time integration error with time step. Comparison with the 

analytic technique presented here. 
 

In the above figure it may be noted that even though the number of sub-cycles increases up to 

5 times its normal value the accuracy is far from that of the analytical technique introduced in 
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this section. Another statement to be addressed is the relation of the time step with the 

Courant number. According to the original goal of PFEM2 of increasing the Courant number 

as much as possible behind the normal stability criterion of Explicit Eulerian formulation it 

should be mentioned that the time step of 4 second correspond to Courant number of 

approximately 10. Therefore the advantage of switching the time integration scheme for that 

presented here is very important.  
 

The following figure shows the comparison in terms of the CPU time among the above 

mentioned techniques.  

 
 

Fig 2.6: CPU time comparison among against 4th order Runge-Kutta, the current PFEM2 

integrator and the analytic version. 
 

It may be concluded that even though the analytic time integration seems to be more 

expensive mainly for large time steps the ratio among the three techniques is not so high and 

probably with further work in improving the efficiency of this promising technique it may be 

possible to reduce its computational costs below that of the current PFEM2 version. 
 

2.3 Some preliminary conclusions of this particle path computation technique. 

 

The design of an analytic time integration scheme of particle path and its extension to the 

computation of analytic velocity field based on a linear interpolation of the acceleration field, 

not presented here, not only show to be possible also gives some nice features. One of them is 

the characteristic of being a DEVS technique that put this computation in competitive terms 

towards real time applications. Another item to be highlighted is the large improvement in 

terms of accuracy with a little extra computational cost. Finally the extension to 3D problems 

is possible and specially promising is the incorporation of much more equations to the flow 

model, like in multi-physics applications. 
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3 THE EXPLICIT INTEGRATION FOLLOWING THE VELOCITY AND 

ACCELERATION STREAMLINES FOR THE CONVECTION-DIFFUSION 

EQUATION 

 
 In order to test the validity of the X-IVAS method, we will start with the scalar 

convection-diffusion equation: 

In Eulerian frame 

       (((((((( 

 

In Lagrangian frame 
                                                                         

      (3.2) 

  

 

For a finite time step both equations become: 

 

  (3.3) 

 

 

 

in the Eulerian version and   
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     (3.4) 

in the Lagrangian frame.  

 The explicit integration of the convection-diffusion equation in the Eulerian version is: 

 

  tQTTTT nnnTnn  )()]([)()()(1
xxxVxx 

 (3.5) 
and the implicit  version reads: 

 

  tQTTTT nnnTnn   )()]([)()()(1
xxxVxx

 

    (3.6) 
 In the convection-diffusion equation, the acceleration vector is not present, at least in its 

standard definition A =
DV

Dt
, but the term h =

DT

Dt
 has the form of an acceleration. Using the 

previous ideas of the X-IVAS method the following explicit integration is proposed for the 

convection-diffusion equations using a Lagrangian frame: 
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        (3.7) 

 Note that both equations are totally explicit.  

(3.1)                                                   )( QTT
t

T T 



V

(3.2)                                                               )( QT
Dt

DT
 

  (3.3)                        ])()]([)()()(

1

1 dtQTTTT

n

n

tttTnn




  xxxVxx 
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4 THE EXPLICIT INTEGRATION FOLLOWING THE VELOCITY AND 

ACCELERATION STREAMLINES FOR THE INCOMPRESSIBLE NAVIER-

STOKES EQUATIONS 

 In the Navier-Stokes equation, the acceleration is obtained from the momentum 

conservation equation: 

 

        (4.1) 
 

with the stress tensor 

 

       (4.2) 
 

and the deviatoric tensor 

 

      (4.3) 
where  is the density,   the viscosity, p the pressure,   a volumetric force and I  the 

identity matrix.  
 

 The mass conservation reads 

         (4.4) 
 

For an incompressible flow: 

     (4.5) 
 

and then (4.4) has the single form: 

       (4.6) 
  

Using the X-IVAS method presented before, the Navier-Stokes equations between two times 

tnand tn+1reads: 
 

      (4.7) 
 

 Equation (4.7) is explicit not only for the velocity terms but also for the pressure. As 

explained before, for incompressible flows the pressure must remain implicit in order that the 
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time integration scheme remains unconditionally stable. For this reason, we will slightly 

modify (4.7) in order to allow the pressure to remain implicit. In fact the method will not be 

anymore a fully explicit integration, but will be a semi-explicit (or semi-implicit) method. 

However, we will continue calling the method X-IVAS in order to emphasize the explicit 

feature of the momentum equation and the integration over the streamlines for both the 

velocity and the acceleration. 

 The new semi-explicit integration scheme is: 
 

 
     (4.8) 

 

in the second equation of (4.8) we remark the implicit term for the pressure, i.e.: 

           (4.9) 
 This term will be split in the following way: 

         (4.10) 
with 

 

)()()( 1 t

p

nt

p

nt

p ppp xxx  

     (4.11)  
The term

 
 in (4.10) is the implicit term introduced to stabilize the 

pressure integration in time.  

 In order to solve separately the pressure field from the velocity field, we will use a 

Pressure Segregation Method as the Fractional Step Method (FSM). Then the second equation 

of (4.8) will be split in the following two ones: 
 

            (4.12) 
 

 The integral in the second equation, that is the term used for the stabilization of the 

pressure integration in time, will be approximated by a fully implicit backward integration 

scheme: 

     (4.13)                                       
 

 Applying the divergence operator to both sides of (4.13) and taking into account (4.6) 

gives: 
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        (4.14) 
Then the three steps FSM using the X-IVAS technique remains: 
 

Step I) Evaluate explicitly the fractional velocity and the new particle position 

: 

            (4.15) 

Step II) Solve implicitly the Laplace equation to obtain the pressure increment : 

 
          

(4.16) 

Step III) Evaluate the new incompressible velocity and pressure
pn+1(xp

n+1)
: 

        (4.17) 

 

)()()( 1111   n

p

n

p

nn

p

n ppp xxx 

    (4.18) 5 SPATIAL DISCRETIZATION OF THE CONVECTION-DIFFUSION EQUATION 

USING THE X-IVAS METHOD. 

 Lagrangian formulations are more naturally solved using moving meshes, this is the 

case of Particle Methods like SPH (Monaghan, J.J. 1988) or PFEM (Idelsohn, S.R.; Oñate, E. and 

Del Pin, F. 2004), but may be also solved using fixed meshes as in the case of MPM (D. Sulsky 

and A. Kaul, 2004), or PFEM-2 as it will be explained in the second part of this section. 
 

5.1 Discretization with moving meshes 

 At each time step a new mesh is generated with the position of the particles. Let 

Meshn
be the coordinates and the connectivity of a mesh at time t = tn

. The temperature at the 

nodes of the mesh is known from previous time steps. 

 Inside each element, the spatial approximation of the temperature is: 

 Tn(x) = NnT (x)Tn

       (5.1) 

where   NnT (x)represent the vector containing the standard continuous FEM shape functions 

and  Tn the vector with the local values of the temperature at time t = tn
. 

 The term )]([ t

p

nT x   in (3.4), will be discretized continuously through the 

domain with the same shape functions used for the temperature: 

     (5.2) 

(5.2)                                )()()]([ nnTnn gT gxNxx


 
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where gnrepresent the vector containing the local value of the )]([ t

p

nT x   function. 

To evaluate gnwe will use the same approximation used in standard FEM, that is: 

     (5.3) 

  

 

Integrating by part the first term: 
 

     (5.4) 

 

 

where qn is the known normal flux to the boundary  : 

         (5.5) 
 Finally the value of gnremains: 

         (5.6) 

and 

         (5.7) 

 

where the matrix M n
, K n and qn

 are the standard mass matrix, stiffness matrix and imposed 

flux vector defined in FEM built with Meshn
.  

 
;   ;    

      
(5.8) 

 

 

The mass matrix may be lumped, as it is usual in explicit methods. 

The X-IVAS method for one time step may be summarized as: 
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xVxx

qTKMg







     
(5.9)

    

 

It must be noted that the time integrals in (5.9) may be evaluated for different methods, 

for instance, dividing the time step t  in small sub-steps t . This is not an expensive 

operation taking into account that computations are explicit and then each particle may be 

evaluated separately from each other using a parallel computer. 

6 SPATIAL DISCRETIZATION OF THE INCOMPRESSIBLE NAVIER-STOKES 

EQUATIONS USING THE X-IVAS METHOD. 

As in the previous section we can divide the algorithms into moving mesh and fixed 

mesh ones. However, for simplicity we will describe only the moving mesh algorithm and the 

other may be easily obtained with the same ideas previously described, that means: many 

particles at each element and projection on a fixed mesh at the end of each time step. 

We have a mesh Meshnat time t = tn and in this mesh we define the approximation for 

each component of the velocity field and the pressure using the FEM shape functions:  

  (5.3)                            0)()]([)( 


dT
n

nnTnn gxNxxN




  (5.4)                       0 


nTnnnnnnTn ddqd
n

gNNNTNN




(5.5)                                                n
nn Tq  

(5.6)                                         )()( 1 nnnnn
qTKMg


 

(5.7)                                     )())(()( 1 nnnnnTng qTKMxNx


 

    (5.8)                        ;  


ddd nnnTnnnTn
n

nn

qNqNNKNNM



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         (6.1) 
or in the three component of velocity 

           (6.2) 

Starting with first step of the FSM, the terms  and  in (5.15) will be 

also approximated in a continuous field and will be called gn(x)  and 
nn )(x  respectively, 

such that: 
 

        

 

n
nTn  )()( xNx


  (6.3) 

where gnrepresent the vector containing the local values of the  function at the 

nodes and the local values of  . 

 To evaluate gnand 
n we will use the same approximation used in the standard FEM, 

that is: 
 

    (6.4) 
 

  (6.5) 

  

 

 

Integrating by parts the first term in both equations (6.4 and 6.5): 
 

  (6.6)       

 

and 

  (6.7)   

 

we obtain: 

  (6.8)   

 

with 

  (6.9) 

 

 

  (6.10) 
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  (6.11)              
  

and 

  (6.12) 
It must be noted that  is the boundary line where the surface stresses are known. Only in the 

case of free-surface flows we have 0 . However, on a free-surface typically is 0n . 

This means that the last integral in (6.12) in general is always equal to zero. Nevertheless it is 

interesting to note the integration by parts of the pressure gradients in (6.7). This integration is 

performed in order to have 0n  as a natural boundary condition, which is the standard 

boundary condition on a free-surface boundary. 

 Then, after discretization in space, the first step of the FSM (Eqs. 4.15) will read: 

  (6.13) 
 It is necessary at this step to evaluate (before changing the mesh), vector pn(xp

n+1) . This 

vector will be useful later. 

 After the first step, we move the nodes to the new position  and we generate a new 

mesh Meshn+1
 (or we project the  on the old mesh in the case of a fixed mesh 

method). 

The next step is to solve implicitly (Eq. 4.16). Using a classical FEM approximation 

reads: 

  (6.14) 

 The field  will be also discretized with the same FEM shape functions: 
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  (6.15) 
 Integrating by parts both terms in (7.14) gives: 
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   (6.20) 
 It must be noted the integration by parts of the first term in (6.14). This integration 

allows us have as natural boundary condition the term  which is the 

standard boundary condition in confined flows. 

 Despite the momentum equations do not need any spatial stabilization in the 

Lagrangian formulation, equation (6.17) must be stabilized in space for equal order velocity-

pressure formulations like this one. Any space stabilization method may be used given, in 

general, a term like  that must be added to (6.17): 
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 (6.21) 
  

 

After solving (6.21) the pressure at time t = tn+1
 and position xp

t = xp

n+1
may be 

evaluated as: 
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 (6.22) 
 The last step in the FSM is the evaluation of the final velocity at time t = tn+1

 and 

position xp

t = xp

n+1
. Using (4.17): 

  (6.23) 
with 
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 The Vector 
1 n


  may be calculated in the same way as for 

n


. This means 

discretizing 1 n  on the domain   by the same FEM shape functions, 
111   nTnn
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 N and imposing the equality 
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 In matrix notation: 
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and 
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  (6.27) 
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with 
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 It is interesting to note here the difference between )

1
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 and )
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
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
. They are 

different due to the integration by parts in (6.7) and not performed in (6.26). However it is 

convenient to evaluate both matrices in order to satisfy the natural boundary conditions. 

 The X-IVAS method for the N-S equations with moving mesh reads: 

I) On Meshnevaluate explicitly the viscous and pressure gradients terms 
nn 

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 II) Evaluate explicitly the fractional velocity and the new particle 

position : 

 
III) Evaluate pn(xp

n+1): 

pn(xp

n+1) = NnT (xp

n+1)pn

 
IV) Generate a new Meshn+1with xp

n+1
 

V) Solve implicitly the linear system of equations to obtain the pressure 

increment : 
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VI) Evaluate explicitly the new pressure gradients terms 1 n


 : 
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 VII) Evaluate explicitly the new velocity : 

 
VIII) Evaluate the new pressure vector pn+1(xp

n+1): 
1111 )()(   nn
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n
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IX) Increase the time ttt nn 1

, and update the variables: 
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pn(xp

n )Üpn(xp

n+1)
 

go to I). 

7 NUMERICAL EXAMPLE FOR CONVECTION-DIFFUSION PROBLEMS. 

7.1 Advective transport of a Gaussian hill 

There is a simple problem that put in evidence the pathology that Eulerian approaches 

suffer solving a pure advective transport problem. This is the case of a Gaussian hill signal 

used as initial condition with no diffusion. The velocity field is a flow rotating around the 

center of a square domain. The Gaussian signal is displaced from the center of the domain at a 

certain radius and its shape makes the transported signal to have a non-zero value in a limited 

region of the domain initially. Time to time the signal should be transported following circular 

path lines preserving its original shape and also its original amplitude. Figure 7.1 shows the 

problem definition. 

                                           

Fig. 7.1 Initial temperature distribution and mesh used 

 

A 2D finite element mesh will be used with 12880 nodes and 25362 triangular elements for 

represent the fluid velocity and the temperature distributions. The time step integration will be 

chosen in order to have a CFL number bigger than 5 in all the cases tested. This means that at 

each time step, a particle may move thought 5 elements. For the Eulerian test a second order 

integration in time was performed and the convective terms were stabilized using a Streamline 

Upwind Petrov-Galerkin (SUPG) method (T. Tezduyar and T.J.R. Hughes 1986). 
 

 The following cases will be tested: 

1- Euler Implicit with a Fixed Mesh (EIFM) 

2- Lagrangian with Fixed Mesh using the Characteristic Methods (LFM-C) 

3- Lagrangian with Moving Mesh (LMM-1) and particle position evaluated by  

tnnn   11
Vxx

 

4- Lagrangian with Moving Mesh (LMM-2) and particle position evaluated by  

tt nnnn   )1(11  VVxx

 
5- Lagrangian with Moving Mesh and particle position following the streamlines (X-

IVAS method) (LMM-X) 

6- Lagrangian with Fixed Mesh and particle position following the streamlines (X-IVAS 

method) (LFM-X) 
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Figure 7.2 shows the results obtained with the Eulerian formulation (EIFM). The top 

temperature that initially was equal to one, it is equal to 0.7 after a complete turn of the flow, 

it is equal to 0.6 after 2 turns and equal to 0.5 after 3 turns.  

Due to the numerical diffusion introduced by Eulerian schemes this signal strongly decays 

during the first two or three turns dissipating almost all its content. The Eulerian solution 

improves if the grid is refined but a very fine mesh is needed to get an acceptable solution. 

Even though using Cranck-Nicolson schemes the solution does not improve significantly. 

This example shows the unacceptable numerical diffusion that the Euler formulation with 

large time steps and a relative poor mesh introduces. 

We must also note, that the solution with EIFM is implicit because the explicit solution 

does not work for a CFL>1.  This means that this solution is not only inaccurate but it is also 

expensive (need to solve a linear system of equation at each time step).  Furthermore, the 

convective terms must be stabilized.  
  

       

Fig. 7.2 Solution of the Euler Implicit with Fixed Mesh, after 1,2 and 3 flow tours (EIFM) 
 

Despite of all this drawbacks of the fixed mesh Eulerian approach, this is the method more 

used actually in the literature, not only to solve convection-diffusion problems but also in 

multi-fluid solution using a level-set method to evaluate the interface position (Sussman, M. et 

al 1994). 

Figure 7.3 shows the solution for a Characteristic Methods as that explained in Section 1 

(Eq. 1.14 and 1.15). We can see that this method is also very diffusive. The top temperature 

that initially was equal to one, it is equal to 0.6 after a complete tour of the flow, it is equal to 

0.45 after 2 tours and equal to 0.35 after 3 tours. 

Despite that Characteristic Method use the streamlines to follows the particle position, the 

results are very poor due to the need of a permanent projection of the temperature of each 

particle on a fixed mesh.  

 

   

Fig. 7.3 Solution using Fixed Mesh and a Characteristic Method after 1,2 and 3 flow tours. 

(LFM-C) 
 

We will use now the X-IVAS procedure developed in this paper, which is an explicit 
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method following the velocity and acceleration streamlines. We will use both versions: with 

moving mesh and with fixed mesh. For the algorithm with fixed mesh, we will introduce 

particles to improve the projection of the temperature on the fixed mesh at the end of each 

time step. As explained before, these particles will increase the computing time but, as all the 

evaluations on the particles are explicit, this computing time increase may not be considered 

in the case we are using a parallel processing like a GPGPU. 

The number of particles introduced at the initial time step was of 10 particles at each finite 

element. 

Figure 7.4 shows the results with a moving mesh and Figure 7.5 with a fixed mesh. We can 

see that in both cases there is not any numerical diffusion. The result is exactly the initial 

temperature after 1,2 and 3 turns of the flow. Furthermore, the solution was explicit with a 

CFL number bigger than 6 in all the time. A plot with the instantaneous value of the CFL 

number for the moving mesh may be see in Fig. 7.6. 

     

Fig. 7.4 Solution using Moving Mesh and the X-IVAS method after 1,2 and 3 flow tours 

(LMM-X) 

We understand that this is a very particular example with conductivity equal to zero. This 

means that the streamline integration of the acceleration (Eq.4.7) is identically zero in this 

case. However these comparisons lead us to think that the X-IVAS integration will produce 

significant improvements in the solution of all problems dominated by convection. 

 

     

Fig. 7.5 Solution using Fixed Mesh and the X-IVAS method after 1,2 and 3 flow tours. 

(LFMX) 
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Fig. 7.6 Instantaneous CFL numbers for the solution with X-IVAS method and moving mesh 

 The other two Lagrangian cases: LMM-1 and LMM-2, give exact solution for the 

temperature distribution as it is expected but they gives errors in the tracking of the particle 

position. For instance Figure 7.7 shows the results for LMM-1 view in a 2D representation of 

the same problem. We can see that the initial temperature distribution moves in a radial way 

towards the exterior boundary after each flow turn. (Note the change in the draw scale). 

LMM-2 gives similar results with fewer errors than LMM-1 in the particle position. 

 

         

Fig. 7.7 Solution using Moving Mesh with and explicit integration of the particle position 

after 1,2 and 3 flow tours. (LMM-1) 
 

A first preliminary conclusion looking the results for these simple problems is that the 

Lagrangian formulation has a strong aptitude to solve advective problems in a more natural 

way. This can be observed in the intrinsic simplicity of the code used to solve this problem. 

The only thing to care about is the solution of the particle path lines. The advection step is 

extremely simple as each particle conserves its original value. 

One explanation of the errors introduced in the Eulerian formulation may be the numerical 

stabilization needed. Other explanation might be related to the inherent interpolation operator 

representing the Eulerian approach. Comparing both formulae we note that when the 

streamlines are coincident (or nearly coincident) with the trajectory, the Lagrangian scheme 

has not errors (or has small errors) while the Eulerian formulation has an intrinsic error 

depending on the time step and the element mesh size. (See Section 3 and Fig. 3.1 for a 

detailed explanation of this source of errors).  

Even though these conclusions applies to all Lagrangian methods, the time integration of 

the new X-IVAS approach deserves attention. A rough computation of the time evolution 

makes the particles to follow wrong path lines corrupting the solution. This fact makes the 
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difference between standard approaches like LMM-1 or LMM-2 against the new proposal 

following the streamlined time integration as LMM-X or LFM-X.  

One of the main drawbacks of Lagrangian methods is the problem that particles crash in 

between or becomes to close to each other. This limitation is even stricter for moving meshes. 

This is not a drawback in case of heterogeneous fluids where particles may be sown or may be 

eliminated at each time step. For multi-fluid flows special strategies may be used in order to 

save the interface position of the two fluids.  

In both, the LMM-X and the LFM-X approaches the diffusion term in the momentum 

equation is solved explicitly. For this reason the algorithm becomes conditionally stable with 

the restriction in the time step according to the Fourier limit. As the Fourier number is 

proportional to the smaller distance between two particles, the explicit integration may 

become instable when two particles come near to each other. To implement this restriction 

some sort of update the budget of particles may be included with the following actions: 

 One particle is removed when get closer to another at a certain tolerance. 

 One particle is removed when get through the boundaries of the domain. 

 One particle is added when one element becomes bigger than a mean volume value 

computed preliminary. This particle is seed at the element centroid. 

 One particle is removed when the triangle generated by Delaunay becomes a sliver. 

With these actions the remeshing produces a grid with certain minimal quality for 

warranting acceptable time step to remain stable. 

Also the time step is adaptive according to guarantee that the Fourier limit is not exceeded. 

8 NUMERICAL EXAMPLES FOR INCOMPRESSIBLE NAVIER-STOKES 

PROBLEMS. 

8.1 Lid-driven square cavity 

The very popular lid driven square cavity (Ghia U. et al 1982) for Reynolds number of 1000 

was tested first using a moving and a fixed mesh method. Even though this example only 

serves to check it steady solution it is a good benchmark to evidence the behavior of several 

new ideas put in this work, like the following: 

 The velocity and acceleration streamline based time integrations, (Eq. 6.13). 

 The point collocation for the whole fractional-step method unless the Poisson solver, 

(Eqs. 6.13 and 6.14). 

 The use of a projection on a continuous field of the pressure gradients and also a 

double projection on a continuous field of the diffusive terms, (Eqs. 6.4 and 6.5). 

 The adaptive time-step limited only by Fourier number restriction for stability but no 

for CFL number limits. 

 The comparison of the results using a moving and a fixed mesh method. 
 

Fig. 8.1 shows  the velocity profile at a vertical and horizontal cuts passing through the 

origin of the square cavity, divided initially with 100x100 equal size triangular elements, 

compared with Ghia U. et al. 1982, established as the reference for this benchmark where 

finite differences on 129x129 nodes was used. 
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                     a)                                                                b)  

Fig. 8.1 Lid-driven square cavity. a) Middle line vertical velocity. b) Middle line horizontal 

velocity  
 

Figure 8.2 shows the evolution in time of both stability limits: CFL and Fourier numbers.  

 

Fig. 8.2 Lid-driven square cavity. CFL and Fourier numbers evolution 

We can see that the Fourier number is keep all the time around one by modifying the time 

step. Nevertheless, the CFL number is much greater than one without any stability problem at 

all times.   

8.2 Backward facing step 

This popular test concerns with the flow inside a channel through an expansion of 1:2 of 

cross section area at Reynolds 389. This problem is well referenced in the bibliography and a 

deep comparison between results obtained by PFEM2 with other methods is included 

afterwards.  

The next figure shows a comparison between numerical PFEM2 results against 

experimental data obtained by Armaly et.al 1983 . As it may be noted a general good 

agreement is achieved with some differences mainly at the middle of the channel. 
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Fig. 8.3 Backward Facing Step benchmark. Velocity profiles against experimental results. 
 

The next figure is similar to the above including also other numerical solution obtained 

with OpenFOAM (OpenFOAM 2009) where a similar agreement between numerical and 

experiments is achieved. 

 
 

 

Fig. 8.4 Backward Facing Step benchmark. Velocity profiles against OpenFOAM and 

experimental results. 
 

Figure 8.5 shows a typical snapshot with the velocity magnitude 

 

Fig. 8.5 Backward Facing Step benchmark. Velocity magnitude 
 

Next, Fig. 8.6 shows the pressure field where it is possible to visualize that the pressure get 

developed after 20 length units downwards of the step 

 

 

Fig. 8.6 Backward Facing Step benchmark. Pressure 
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8.3 Vortex shedding behind a cylinder 

This example involves the flow past a cylinder, a popular benchmark problem in 

computational fluid mechanics. A circular cylinder is immersed in a viscous fluid. The 

Reynolds number is based on the cylinder diameter D and the prescribed uniform inflow 

velocity U. The geometry and boundary conditions are shown in Fig. 8.7 We set U=1 and 

D=1. 

                    

Fig. 8.7. Vortex shedding. Geometry. 
 

For Reynolds approximately less than 40, two symmetrical eddies develop behind the 

cylinder. These eddies become unstable at higher Reynolds numbers and periodic vortex 

shedding occurs, leading to the so-called Von Karman vortex street. 

The problem was solved with the moving mesh method, starting with 3.500 particles and 

then increased the number of particle to an average of 5.000 particles with an adaptive particle 

refinement near the cylinder. 

Figure 8.8 shows the velocity profile once the instability occur for the case of 

Reynolds=1000.  

 

 
 

 

 
 

Fig. 8.8: Vortex shedding. Velocity magnitude profile at some time steps. 
 

The time step was regulated in order to keep the Fourier number less than one.   The 

instantaneous Courant number at each time step is shown in Figure 8.9. We can see that the 
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Courant number is much larger than one for all times.       
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Fig. 8.9. Vortex shedding. CFL number at different time steps. 

 

The vertical forces on the cylinder (Lift) and the horizontal forces (Drag) are represented in 

Fig. 8.10 and 8.11 respectively. The period of oscillation of these forces is an interesting value 

to test the accuracy of the method, normally written in a dimensionless form through the 

Strouhal number. The frequency of the numerical solution is 0.1775 which is in good 

agreement with the empirical solution that is 0.19 for this Reynolds number. 
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Fig. 8.10. Vortex shedding. Lift and Strouhal number 
 

In Fig. 8.10 we can see that the lift forces have variable amplitude. The experimental 

amplitude is marked in the figure with a value of 1.35. In Figure 8.11 the time variation of the 

drag and the amplitude of the drag oscillations are compared to the experimental results. We 

can see that the experimental amplitude is 0.21 which is in good agreement with the average 

amplitude obtained with our method. In the same way, the average of the drag forces is in 

good agreement with the mean experimental value of 1.4754. 
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 Drag coefficient vs time for Von Karman street at Re=1000 with PFEM−2 Mobile Mesh 
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Fig. 8.11. Vortex shedding. Drag Coefficient 

9 CONCLUSIONS 

 Explicit time integration has the big advantage of the easy and efficient scalability. The 

big disadvantage is the restricted time step for stability. Normally very small time steps are 

necessary in problems dominated by convection (high Courant number) or in problems where 

a boundary layer with very small elements is needed to obtain acceptable results (high Fourier 

number). In this paper we have presented a methodology to keep the time integration explicit 

independently of the Courant number. The time step is regulated by accuracy needs, but the 

method remains explicit and stable independently of the mesh size providing that the Fourier 

number stability limit is not exceeded.  

 The method is based on moving the particle in a Lagrangian frame following the 

velocity and acceleration streamlines. The method may be used indistinctly either with a 

moving mesh or with a fixed mesh. For heterogeneous fluids (multi-fluids) or free-surface 

flows, certainly, a moving mesh will be more efficient and accurate. 

 The pressure field is solved implicitly to have the possibility to deal with fully 

incompressible flows. Nevertheless, a low speed of sound may be introduced, allowing 

therefore an explicit solution for both the momentum and the mass conservation equations. 

 We point out once more that the big advantage of the formulation proposed here is the 

possibility to use large time steps (as in the implicit solutions) while preserving the explicit 

solution, at least for the momentum equations. This simplifies the implementation of the 

formulation in parallel computers, improving considerably the CPU time in complex CFD 

problems. 
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