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Abstract. This paper presents the predictions of different failure modes when concretes of arbitrary

strength are subjected to different load scenarios. The discontinuous bifurcation analysis is performed in

the Performance Dependent Model for concretes recently proposed by two of the authors, a constitutive

formulation valid for both normal and high strength concretes. Based on the incremental flow theory

of plasticity, it depends on the three stress invariants, its maximum strength surface is defined by the

Performance Dependent Failure Criterion, including a non uniform hardening law, an isotropic fracture

energy based softening law and following a volumetric non associative flow rule.

Analytical and geometrical localization analysis is applied particularly for the case of uniaxial compres-

sion, based on the properties of the acoustic tensor. The results demonstrate the incidence of the relative

brittleness of high strength concretes into the failure behavior in comparison with normal strength con-

cretes.
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1 INTRODUCTION

Recent advances in the field of concrete technology have led to the development of high

strength concretes (HSC) which present a mechanical behavior that substantially differs from

that of normal strength concretes (NSC). (See e.g. van Mier (1997), Xie et al. (1995), etc.). Ex-

perimental evidence demonstrates that among other differences, behavior both in pre and post

peak regimes is considerably more brittle in the case of HSC under different loading paths.

Regarding this, the aim of this work is to analyze the incidence of concrete quality in the failure

mode. Although several authors have studied localization characteristics based on concrete con-

stitutive models, none of these works was focused on concrete quality. (See a.o. Etse (1992a),

Kang and Willam (1999), Vrech (2007)).

The localization analysis presented in this paper is based on the Performance Dependent Model

(PDM) recently developed, formulated in terms of concrete quality by the dependence on the

performance parameter βP , an index that together with the uniaxial compressive strength f
′

c

define concrete quality. (See Folino et al. (2009) and Folino and Etse (2011)).

The PDM, valid for plain concretes in the range of f
′
c from 20 to 120 MPa, is based on the flow

theory of plasticity, it depends on the three stress invariants, and its maximum strength surface

is defined by the Performance Dependent Failure Criterion (PDFC). It considers a non uniform

hardening law and an isotropic softening rule defined in terms of the concrete quality and of the

first invariant of stresses in order to consider the influence of confinement on the ductility in the

pre and post peak responses. Softening law is based on fracture energy concepts. It considers a

volumetric non associative flow rule.

The localization analyses are performed based on both the analytical solution of the discontinu-

ous bifurcation condition and on the geometrical method. The results demonstrate the capabili-

ties of the PDM to capture the different failure characteristics of NSC and HSC.

2 LOCALIZATION CONDITION

Localized failure (or weak discontinuity) is characterized by a jump in the strains field ε̇,

being still continuous the displacement field u̇. It is associated with the loss of ellipticity of the

governing equilibrium equations and has a clear preferred failure plane orientation, and may

occur prior or after the peak stress.

Localized failure: [[u̇]] = 0 ;
[[
ε̇
]] �= 0

The localization condition may be derived based on the works by Rudnicki and Rice (1975) and

and Rice (1976), which in turn are based on previous developed theories by Hadamard (1903)

and Hill (1962). The point of departure of these works is the analogy observed between the

propagation of acoustic plane waves in solids and the propagation of a displacement field rate,

when a discontinuity is found. In this case, the wave speed becomes null. (See a.o. Ortiz (1987)

and Willam (2002)).

The jump condition in the strains field can be expressed applying the Maxwell’s compatibility

condition (Truesdell and Toupin (1960)), representing the velocity gradient as a rank one tensor

[[∇ u̇]] = γ̇ M N (1)

In the above equation, the strains rate jump is represented by the product of two unit vectors:

M representing the motion direction of the points, and N defined as the direction of the normal

of the failure plane. The scalar magnitude γ̇ is the amplitude of the jump.
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In the case of infinitesimal strains, Eq. 1 implies that the strains rate jump derives in[[
ε̇
]]
=

[[∇s u̇
]]
= γ̇ (M N)sym =

1

2
γ̇ (M N + N M) (2)

The constitutive model for concretes considered in this paper is based on the elastoplastic in-

cremental nonassociative flow theory and the smeared crack approach. Post peak behavior of

concrete is modeled by a fracture energy based softening law.

Only infinitesimal strains are admitted. Elastic-plastic coupling is neglected, accepting the ad-

ditive Prandtl-Reuss decomposition of the infinitesimal strain rate tensor into its elastic and

plastic parts. The constitutive model is the represented by the following equation

σ̇ = EEP : ε̇ (3)

whereby the material elastoplastic operator is

EEP = E −
E : m n : E

n : E : m + H : m
(4)

In the above equations, σ̇ is the Cauchy stress rate tensor, E is the fourth order elasticity tensor, n
is the gradient to the yield surface denoted as f , limiting the actual elastic range, which size and

shape depend on a set of state variables q, and m is the gradient of the plastic potential surface

g which does not coincide with f . Inelastic material response is governed, by the following non

associated flow rule

ε̇P = m λ̇ (5)

The scalar magnitude resulting from the double contraction of the tensors H (hardening tensor)

and m is known as hardening modulus hp

hp = H : m (6)

In order to satisfy equilibrium condition, the jump in the traction vector must be null. After

applying Cauchy′s theorem, the equilibrium condition turns to

[[
ṫ
]]
= 0 ⇒ N · [[σ̇]] = N ·

[[
EEP : ε̇

]]
= 0 (7)

Assuming that the elastoplastic operator is the same at both sides of the failure plane, and

applying the symmetry of the strain tensor, the last equation leads to

N · EEP :
[[
ε̇
]]
= N · EEP : γ̇ (N M) = γ̇ (N · EEP · N) · M = 0 (8)

Defining the acoustic or localization elastoplastic tensor as

QEP = N · EEP · N (9)

It may be observed that the localization equation (Eq. 8) takes an eigenvalue problem form, and

consequently, the localization condition is

det
[
QEP

]
.
= 0 ⇒ λmin

(
QEP

)
= 0 (10)
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During the loading process and before the hardening begins, the behavior is supposed to be

elastic, and the corresponding elastic acoustic tensor takes the form

QE = N · E · N (11)

With this definition and considering the elastoplastic material tensor according to Eq. 4, then

the elastoplastic acoustic tensor may be expressed as the degradation of the elastic acoustic

tensor as follows

QEP = QE −
(N · E : m) (n : E · N)

n : E : m + H : m
(12)

The above equation may be expressed as

(QE)−1 : QEP = 1− (QE)−1 :
(N · E : m) (n : E · N)

n : E : m + H : m
(13)

Turning the localization condition to

det
[
(QE)−1 : QEP

]
.
= 0 ⇒ det

[
QEP

]
/ det

[
QE

]
.
= 0 (14)

The loss of strong ellipticity, defined by

det
[
QEPsym

]
/ det

[
QE

]
.
= 0 (15)

may occur prior to the loss of ellipticity. This may be demonstrated by applying Bromwich

eigenvalue bounds of non-symmetric matrices, which conduces to

λmin

(
QEPsym

)
≤ λ

(
QEP

)
≤ λmax

(
QEPsym

)
(16)

The smallest eigenvalue of QEPsym with respect to the metric defined by
(
QE

)−1

λmin = 1−
an ·

(
QE

)−1

· am

n : E : m+H : m
= 0 (17)

with

am = N ·E : m , an = n : E ·N (18)

leads to the localization condition

H : m+ n : E : m− an ·
(
QE

)−1

· am = 0 (19)

This equation serves as a basis for analytical, numerical and geometrical evaluations of the

critical parameters corresponding to discontinuous biburcation and their associated localization

directions N .

Analytical explicit solutions for classical plasticity were developed by Ottosen and Runesson

(1991) and by Perić (1990), for tridimensional stress states and plane states, respectively. For

the special case of quasi-brittle materials analytical solutions were developed by Etse (1992a)

and Etse (1992b).
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3 GEOMETRICAL METHOD

Geometrical methods for localization analysis follows the original proposal by Benallal

(1992), Pijaudier-Cabot and Benallal (1993) and Benallal and Comi (1996). The localization

condition in Eq. (19) defines an ellipse

(σ − σ0)
2

X2
− τ 2

Y 2
= 1 (20)

in the σ − τ Mohr’s coordinates

σ = N · σ ·N , s = N · S ·N (21)

τ = (N · S) · (N · S)− (N · S ·N )2 (22)

being S the deviatoric stress tensor and N the normal to the plane where the Mohr components

are evaluated.

The maximum hardening/softening parameter H̄c = H : m and the critical directions θc for

localization are obtained when the Mohr circle of stresses

(σ − σc)
2 + τ 2 = R2 (23)

contacts the elliptical localization envelope, being center and radius of the Mohr circle in Eq.

(23)

σc =
σ1 + σ3

2
and R =

σ1 − σ3

2
(24)

According to Liebe (1998) three different failure modes may be distinguished depending on the

contact points location: mode I, mode II and mixed mode. The interrelationship between the

radius R of the Mohr’s Circle and the curvature of the localization ellipse ρe

ρemin ≤ ρe ≤ ρemax, being ρemin =
Y 2

X
, ρemax = Y (25)

give the three different failure modes

- Failure Mode I: R ≤ ρemin, θc = 0◦

- Failure Mode II: R ≤ ρemax, θc = 45◦

- Mixed Failure Mode: R > ρemin, 2θc �= 90◦

4 PERFORMANCE DEPENDENT MODEL FOR CONCRETES (PDM)

In this section a brief description of the PDM is presented. For further details see Folino and

Etse (2010).

4.1 Maximum strength criterion for concretes of arbitrary strength

The performance dependent failure criterion (PDFC), valid both for normal and high strength

concretes, is adopted as maximum strength surface. Defined in the Haigh Westergaard stress

space in terms of the normalized stress coordinates (with respect to f
′

c ) ξ, ρ and θ, depends on
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the three stress invariants I1, J2 and J3.
The compressive and tensile meridians are defined by two parabolic equations

θ =
π

3
⇒ A ρ∗c

2
+Bc ρ∗c + C ξ − 1 = 0 (26)

θ = 0 ⇒ A ρ∗t
2
+Bt ρ∗t + C ξ − 1 = 0 (27)

In the previous equations, the upper asterisk denotes failure, the subscripts "c" and "t" indicate

compressive and tensile meridians respectively.

In the deviatoric plane, the elliptic interpolation between the compressive and the tensile merid-

ians by Willam and Warnke (1974) is followed.

∀ 00 � θ � 600 ⇒ ρ∗ =
ρ∗c
r

(28)

The ellipticity factor r is defined as

r =
4(1− e2) cos2 θ + (2e− 1)2

2(1− e2) cos θ + (2e− 1)
√
4(1− e2) cos2 θ + 5e2 − 4e

(29)

where e is the eccentricity ρ∗t/ρ∗c .
The above equations lead to the general unified quadratic expression representing the failure

surface

Fmax = A r2 ρ∗2 +Bc r ρ∗ + C ξ − 1 = 0 (30)

Coefficients A, Bc, Bt, and C defining the main meridians, are functions of four material prop-

erties, leading to different failure surfaces that depend on the concrete quality. The involved

material parameters are: the uniaxial compressive strength f
′

c , the uniaxial tensile strength ra-

tio αt = f
′

t /f
′

c , the biaxial compressive strength ratio αb = f
′

b /f
′

c (being f
′

b the biaxial

compressive strength), and a parameter m representing the friction defined as the tangent to

the compressive meridian on the peak stress’s shear component corresponding to the uniaxial

compression test. Considering that three of the involved material properties are obtained from

non standard and complex experimental tests, and that those properties depends on the concrete

composition, internal functions were proposed to determine these properties in terms of two

fundamental parameters: f
′

c and the performance parameter βP . The latter is an index that

together with f
′

c define concrete quality. It is defined as

βP =
1

1000

f ′
c

(w/b)
f ′
c in [MPa] (31)

where w/b is the water-binder ratio, being W the water content and B the binder content, both

in [kg/m3]. The binder is constituted by the sum of the cement and the mineral admixtures

contents.

Parameter βP varies approximately between 0 and 1. A greater value of βP means a more

homogeneous concrete with less porosity. (See Folino et al. (2009) and Folino and Etse (2011)

for further details).
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(a) (b)

Figure 1: Compressive and tensile meridian views of the loading surfaces in hardening for (a) NSC and (b) HSC

4.2 Pre peak regime

4.2.1 Loading surfaces in pre peak regime

In the PDM the successive loading surfaces are of the type so-called "cone and cap" or "cap

plasticity". (See Fig. 1). Consequently, each loading surface is composed by two different

surfaces with a common deviatoric plane. The first one, representing the cone, is the failure

surface defined by Eq. 30. The second one, is a compressive cap defined by elliptical meridians

centered over the hydrostatic axis. The common deviatoric plane is defined by the hydrostatic

coordinate of a point denoted as "P1" at which a continuity of type C1 is observed. During the

hardening process, "P1" will continuously change, leading to a non uniform hardening.

Since point "P1" lies on the maximum strength surface, its coordinates on the compressive

meridian (ξ1; ρc1) are related by ξ1 = (1− A (ρc1)
2 − Bc ρc1) /C. Each loading surface is

associated to a hardening level parameter k defined in terms of the ρc1 coordinate of point "P1"

as

k =
ρc1√
2/3

(32)

This parameter has a minimum initial value ko corresponding to the first loading surface where

the inelastic behavior starts, and depending on the concrete quality. Nevertheless, it has no

upper limit, indicating that ideally the loading surfaces can evolve indefinitely. The successive

surfaces are mathematically defined as

fh =

⎧⎪⎪⎨⎪⎪⎩
f cone
h = Fmax = A r2 ρ∗2 +Bc r ρ∗+ C ξ − 1 = 0 if ξ � ξ1(k)

f cap
h(k) =

(
ξ − ξcen(k)

)2
a2(k)

+
r2 ρ2

b2(k)
− 1 = 0 if ξ > ξ1(k)

(33)

The dimensions and location of the elliptical cap are defined by the coefficients a (ellipse semi-

axis on the hydrostatic axis), b (ellipse semi-axis on the deviatoric axis) and ξcen (coordinate of

the center of the ellipse on the hydrostatic axis), all of them depending on k. These coefficients

are defined departing from the corresponding to the initial loading surface. The ratio between

the two ellipse semi axes remains constant (Rab = a2/b2). (See Folino and Etse (2008)).
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The final expressions of the ellipses parameters are the following

ξcen(k) =
1

C

[
1− A

2

3
k2 − Bc

√
2

3
k −

√
2

3

C2Rab

2Ak
√

2/3 + Bc

k

]
(34)

a2(k) =

[
1

C

(
1− 2

3
Ak2 −

√
2

3
Bck

)
− ξcen(k)

]2

+
2

3
Rabk

2 (35)

b2(k) = a2(k)/Rab (36)

4.2.2 Hardening law

The evolution of the hardening parameter is defined as

k = ko + (kmax − ko)
√
κh (2− κh) (37)

where kmax is derived from the definition of k, considering the hardening parameter associated

with the largest ellipse possible for a given value of confinement ξ̄, and κh is a normalized work

hardening measure defined as the ratio between the actual developed work hardening ω̇P
a , and

the total work hardening capacity W P
t for the actual confinement level ξ̄

κ̇h =
ω̇P
a

W P
t

=
σ : m λ̇

W P
t

(38)

While variable ω̇P
a is continuously updated during the calculation process, W P

t is an unknown

since the maximum plastic strain εPmax for the actual confinement is still unknown during the

inelastic process. In the PDM this variable is evaluated by the following expression

W P
t

⎧⎨⎩= Ewpt

(βP ,f ′
c)

(
ξ − ξP1o

) [
f1 + f2

(
ξ − ξP1o

)6]
if ξ � ξlim

= f3 ξ
2
+ f4 ξ + f5 if ξ < ξlim

(39)

Where fi, ξlim and Ewpto are in turns functions depending on the material quality.

4.3 Post peak regime

4.3.1 Unloading surfaces in post peak regime

An isotropic softening is adopted represented by the continuous contraction of the cone.

Each surface is associated to a softening parameter c representing the decohesion. It represents

the ratio between the actual and the maximum strength property both under mode I and II type

of softening processes. Consequently, it varies between a maximum value c=1 at peak strength,

before activating the degradation or softening process in the material, and a minimum value

c = σres/σmax, being σres the residual strength and σmax, the maximum one.

The unloading surfaces are mathematically described as (See Fig. 2 )

fs = A r2 ρ2 +Bc r ρ+ C ξ − c = 0 (40)
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(a) (b)

Figure 2: Post peak unloading surfaces (a) NSC and (b) HSC

4.3.2 Fracture energy based softening law

Fracture energy properties are incorporated in the σ-ε relation by introducing an homog-

enization strategy. Fracture energy GI
f dissipated during the crack opening process along the

surface of the crack At in a direct tensile test, is considered to be equal to the energy W dissi-

pated during plastic softening in the continuum⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dGI

f At =

∫
At

σt duf dA

dWf =

∫
Vt

σt dε̃f dV

(41)

Crack opening displacement u̇f is evaluated by the consideration of equivalent tensile fracture

strains ˜̇εf uniformly distributed in the continuum in a localization width lc which constitutes an

internal characteristic length

u̇f = lc ˙̃εf (42)

In this case (mode I), the characteristic length lc is a measure of the crack spacing in a direct

tensile test ht. If the same concept is now extended to a general mode II of failure, then the

corresponding fracture energy in mode II, GII
f must be considered, and an appropriate charac-

teristic length should be adopted.

The evolution of the softening parameter is defined as

c = exp

(−δ κs

ur

)
(43)

where ur represents the maximum crack opening displacement, δ is a parameter that defines

the shape of the decay function, and κs is a fracture energy based softening measure defined as

follows

κ̇s = lc ˙̃εf = lc ‖〈m〉‖ λ̇ (44)

where the McCauley operator extracts only the tensile components of the plastic potential sur-

face gradient m.

The characteristic length lc in the PDM is determined in terms of the actual confinement level

and of concrete quality.
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4.4 Plastic Potential

A non associative flow rule is adopted by defining a plastic potential introducing a modifica-

tion on the dependence of the loading/unloading surfaces on the hydrostatic coordinate ξ.

The plastic potential surfaces in hardening gh and in softening gs are mathematically described

as follows

gh(k) =

⎧⎪⎨⎪⎩
gconeh(k) = Ar2ρ2 +Bcrρ+ ηo(ξ̄)C

(
ξ̄ − ξ̄1(k)

)
+ Cξ̄1(k) − 1 = 0 if ξ̄ ≤ ξ̄1(k)

gcaph(k) =
[ηo(ξ̄)(ξ̄ − ξ̄1(k)) + (ξ̄1(k) − ξ̄cen(k))]

2

a2(k)
+

r2ρ̄2

b2(k)
− 1 = 0 if ξ̄ > ξ̄1(k)

(45)

gs(c) = Ar2ρ2 +Bcrρ+ ηo(ξ̄)C
(
ξ̄ − ξ̄1

)
+ Cξ̄1 − c = 0 (46)

The non associative parameter ηo is evaluated in terms of concrete quality and of the hydrostatic

normalized stress ξ̄ as follows

ηo = t1 exp
(
t2 x

t3
)
+ t4 with x =

{
ξvertex − ξ if ξ ≤ ξt

ξvertex − ξt if ξ > ξt
(47)

and ti, internal model parameters.

5 FAILURE MODES AND TYPES PREDICTIONS WITH THE PDM

In this section a localization analysis performed based on the PDM previously described is

presented. For this purpose, the localization condition defined by Eq. 14 is checked.

Unit vector N defining the normal to the potential failure plane is expressed in terms of spherical

angles as

(n1, n2, n3) = (cosϕ cosϕ
′
, cosϕ sinϕ

′
, sinϕ) (48)

Angle ϕ is the one formed between the normal to the plane and the direction of the principal

stress σI in the plane defined by [σI , σIII ] (being σI > σII > σIII), and angle ϕ
′
, so-called out

of plane, the angle formed between the normal to the plane and the direction of the principal

stress σI in the plane defined by [σI , σII ]. Then, in all cases, the results are plotted in terms of

the inclination of the normal to the failure surface with respect to an horizontal plane, indicating

this angle as α. The analysis is performed for three concrete strengths: f
′
c= 30 (normal strength

concrete: NSC), 70 (medium strength concrete: MSC) and 120 MPa (high strength concrete:

HSC), and its medium βP values= 0.060, 0.230 and 0.803 respectively. Poisson′s ratio was con-

sidered 0.20, and Young’s modulus was considered 26000, 35000 and 40000 MPa respectively.

A maximum coarse aggregate size of 2cm was considered.

The results for uniaxial compression, using the analytical localization method are presented in

Fig. 3, for three load states: at 80% of the peak load, at 90% of the peak load and at the peak

load. Observing these results, the following conclusions may be extracted:

1- At 80% of the peak load, the HSC is still undamaged, while the NSC and the MSC already

show a certain level of damage.

2- At 80% of the peak load, the potential failure plane of the MSC is more vertical than the

one of the NSC.
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3- At 90% of the peak load, the HSC shows damage, with a potential failure plane more vertical

than the one of the MSC which in turn is more vertical than the one of the NSC.

4- At the peak load, the localization condition is not reached, and therefore, the failure type

is diffuse.

5- In Fig. 4 where a zoom view of the minimum value of the plot in Fig. 3c) is presented,

it may be observed that the potential localization planes at the peak are still more vertical for

HSC. Although localization is not detected, this fact allows to interpret that HSC, according

with the PDM, are less stable than NSC.

6- The direction of the potential failure planes only deviates between 0 to 30o from the di-

rection of the applied load, indicating a possible failure mode between shear and mixed failure

types. The results agree with general observations detected in experimental tests. (See a.o. van

Mier (1997), Lee (2002), etc.).

(a) (b) (c)

Figure 3: Uniaxial Compression (Lode Angle 60o) (a) 0.80 Peak; (b) 0.90 Peak; (c) Peak

Figure 4: Uniaxial Compression - Preferential failure direction for different concrete qualities

Then, in Fig. 5 the results for uniaxial compression applying the geometrical method are

plotted. It may be observed the coincidence of these results with those in Fig. 3, leading to
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analogous failure modes and to the same angles of the potential failure planes.

Figure 5: Uniaxial Compression - Preferential failure direction for different concrete qualities

6 CONCLUSIONS

In this work the failure characteristics of concretes of different qualities is presented based on

the failure modes predicted by the Performance Dependent Model for Concretes of Arbitrary

Strengths, a constitutive model recently developed in order to capture the mechanical failure

behavior both of normal and high strength concretes.

Some results corresponding to ongoing research are presented, considering three different con-

crete qualities, subjected to uniaxial compression. The discontinuous bifurcation condition is

analyzed applying the analytical and the geometrical methods.

The results demonstrate that concrete quality has an important incidence on the failure features.

Although for the case of uniaxial compression localization is not reached, the angles of the

potential failure planes indicate that high strength concretes are considerably less stable than

normal strength concretes.

Future research will extend the present analysis to other loading paths.
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