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Abstract. Cables and flexible pipes are found in many applications of civil, aerospace, and mechanical
engineering. Many offshore engineering problems involve slender rods or cables (pipelines, risers and
mooring lines) and also are commonly used in robotics to bring energy to the actuators of a robotic arm.
Risers are used, for example, to convey fluids from the bottom of the sea up to the surface. Engineers
need numerical models of nonlinear thin deformable structures in order to predict their dynamics and
the internal stresses. To accurately simulate the motion of slack marine cables, it is necessary to capture
the effects of the cables bending and torsional stiffness. Hence, the need for numerical nonlinear models
is still an intense subject of research. In this work, a finite element simulation of cables is used to get
a reduced order model by means of the Proper Orthogonal Decompositions (POD). The finite element
cable model adopted makes use of a twisted cubic spline element with a lumped mass approximation; it
provides a representation of both the bending and torsional effects. Cables are modeled as slender flexible
rods that can support environmental, gravitational, and buoyancy forces. The nonlinear equations of
motion for the continuous cable are developed in terms of an inertial frame of reference using the Frenet
equations. The model permits large deflections and finite rotations and accounts for tension variation
along its length as well as nonlinearities arising from applied loads or constraints. The proper orthogonal
modes, in conjunction with the Galerkin approach, permit the construction of a lower-dimensional model
that is very efficient with respect to the ones constructed with the typical finite elements basis. Different
proper orthogonal modes computed from time-series at different excitation frequencies are used and
different approximations are compared.

Mecánica Computacional Vol XXX, págs. 1143-1158 (artículo completo)
Oscar Möller, Javier W. Signorelli, Mario A. Storti (Eds.)

Rosario, Argentina, 1-4 Noviembre 2011

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1 INTRODUCTION

In many fields of science and engineering, like fluid or structural mechanics and electric
circuit design, large-scale dynamical systems need to be simulated, optimized or controlled.
They are often given by discretizations of systems of nonlinear partial differential equations
yielding high-dimensional discrete phase spaces. For this reason, during the last decades, re-
search was mainly focused on the development of sophisticated analytical and numerical tools
to understand the overall system behavior. Not surprisingly, the number of degrees of freedom
for simulations kept pace with the increasing computing power. But, when it comes to opti-
mal design or control the problems, such numerical models are too large to be tackled with
standard techniques. Hence, there is a strong need for model reduction techniques to reduce
the computational costs and storage requirements. Low-dimensional approximations for the
full high-dimensional dynamical system, which reproduce the characteristic dynamics of the
system, are desirable.

In this work, a finite element simulation of cables is adopted to obtain a reduced order model
by means of the projection method using Proper Orthogonal Decompositions (POD). A twisted
cubic spline element form and a lumped mass approximation are stated to provide a representa-
tion of both the bending and torsional effects.

Cables and other flexible pipes are found in many applications of civil, aerospace, and me-
chanical engineering. They are also commonly used in robotics, to bring energy to the actuators
of a robotic arm. In ocean engineering, risers are used, for example, to convey fluids from the
bottom of the sea up to the surface. In these applications, engineers need numerical models of
nonlinear thin deformable structures in order to predict their motions and the internal stress for
a given application. Hence, the need for numerical nonlinear beam models is still an intense
subject of research. Among the most advanced finite element methods proposed for nonlinear
beams, the geometrically exact approach initiated by Simo (Simo, 1985; Simo and Vu-Quoc,
1986, 1988) is probably one of the most efficient. This approach is based on the Cosserat
assumption of rigid cross sections (Cosserat and Cosserat, 1909) and on Timoshenko internal
kinematics (Timoshenko, 1921). However, when the "length/thickness" ratio of the beam be-
comes very high (i.e. when the structure is more of a rope or a cable than a beam, that is the
rigidity to flexion is very low), the alternative internal kinematics of Kirchhoff and Clebsch
(Love, 1944), are more appropiate as is done in ocean enginnering for the simulation of very
long undersea cables (Burgess, 1993; Sun and Leonard, 1998) and in hydrodynamic or robotic
problems (Boyer et al., 2011).

In fact, the dynamic modelling of marine cables has been studied extensively since the early
1960’s for the analysis of mooring line tensions (Walton and Polacheck, 1960), and the posi-
tioning of towed vehicles (Chapman, 1984). However, the topic of low-tension cable dynamics
is of more recent interest. Grosenbaugh et al. (Grosenbaugh et al., 1993) simulated the low
tension tether motion of an underwater remotely operated vehicle (ROV) in two dimension us-
ing a finite difference approximation to the cable equations of motion and a representation of
the tether bending stiffness. An alternative to the finite difference approach is the lumped mass
strategy. In (Buckham and Nahon, 2001) the authors present and validate through experimenta-
tion, a lumped mass formulation for low tension cables that appends a bending stiffness model
to a previously developed standard lumped mass formulation (Buckham et al., 2003; Driscoll
et al., 2000). An advantage of the lumped mass method is the ease in coupling the formulation
to the other numerical models, specifically to nonlinear vehicle models (Lambert et al., 2003).

There are two drawbacks to the existing low-tension lumped mass formulation: it needs small
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linear elements to capture curvature variation, and there is currently no means for capturing the
effects of a non-zero torsional stiffness. While existing model formulations (Burgess, 1992),
make provision for the torsional stiffness in the continuous equation of motion, there has been
no formulation where non-zero torsional effects have been considered in discrete analyses. Thus
the role of torsional stiffness in the lumped mass approach remains without a mathematical
proof. To address both shortcomings, a cubic element type is introduced by (Buckham et al.,
2004) and equations of motion for the continuous cable are discretized using this higher order
element.

The latter work develops a finite element cable model based on a third-order element with a
reduced-order state vector. Following the developments of Garret (Garret, 1982) and Nordgren
(Nordgren, 1974, 1982), the nonlinear equations of motion for the continuous tether in terms
of an inertial frame of refererence using the Frenet equations, are developed. Finally, it will be
shown that our particular choice of the finite element allows the assembled system of equations
to be reduced into a system that has the same dimension as the simpler linear lumped parameter
model, but yet mantains an accurate and complex representation of the higher order bending
and torsional effects.

In general, finite element (FE) analysis of dynamic nonlinear deformations of solids and
structures can be rather expensive, especially in situations when one requires many repeated
trials, as often happens in design and control applications and uncertanty quantification. Model
order reduction (MOR) seeks to reduce the computational complexity and computational time
of large-scale dynamical systems by approximations of much lower dimension that can produce
nearly the same input/output response characteristics. It is a very powerful technique that is
used to deal with the increasing complexity of dynamic systems.

Originally, MOR was developed in the area of systems and control theory, which studies
properties of dynamical systems in application for reducing their complexity, while preserving
their input-output behavior as much as possible. The fundamental methods in the area of MOR
were published in the eighties and nineties of the last century. In more recent years a lot of
research has been done in the area of the MOR, and nowadays it is a flourishing field of research,
both in systems and control theory and in numerical analysis. Consequently a large variety of
methods is available.

Although there are different ways of approximating input-output systems, there is a unifying
feature of the approximation methods: projection in an appropiate finite dimension subspace.
Methods based on this concept truncate the solution of the original system in an appropriate
basis, by projecting the original system onto a low-dimensional subspace.

In this work, we use a method known as Proper Orthogonal Decomposition (POD), which
has been widely discussed in the literature during the last decades. The original concept goes
back to Pearson (Pearson, 1901). The method is also known as Karhunen-Loève decomposition
(Karhunen, 1946; Loève, 1946) or principal component analysis (Hoetelling, 1935). Further
names are factor analysis or total least-squares estimation depending on the applications and
certain conditions. It provides an optimally ordered, orthonormal basis in the least-squares
sense for a given set of theoretical, experimental or computational data (Algazi and Sakrison,
1969). Reduced order models or surrogate models are then obtained by truncating this optimal
basis. Clearly, the choice of the data set plays a crucial role and relies either on guesswork,
intuition or simulations. Most prominent is the method of snapshots introduced by Sirovich
(Sirovich, 1987). Here, the data set is chosen as time snapshots containing the spatial distribu-
tion of a numerical simulation at certain time instances reflecting the system dynamics. As an a
posteriori data dependent method, it does not need a priori knowledge of the system behaviour
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and can also be used to analyze patterns in data. In combination with Galerkin projection, it
provides a powerful tool to derive surrogate models for high-dimensional or even infinite di-
mensional dynamical systems, since the subspace is composed of basis functions inheriting
already special characteristics of the overall solution. This is in contrast to standard finite el-
ement discretizations where the choice of the basis functions is in general unrelated with the
system dynamics.

The main advantage of POD lies in the fact that it requires only standard matrix computa-
tions, despite of its application to nonlinear problems. Although projecting only onto linear or
affine subspaces, the overall nonlinear dynamics is preserved, since the surrogate model will
still be nonlinear. Nevertheless, it is computationally more convenient than to project the dy-
namics onto a curved manifold (Rathinam and Petzold, 2003).

Figure 1: Schematic representation of the coordinate systems, the Frenet and body-fixed frames (Buckham et al.,
2004).

2 MODEL STATEMENT AND EQUATIONS OF MOTION

In order to create a numerical model that includes the desired bending and torsional effects,
it is necessary to derive the dynamic equations for a continuous cable considering the tortuous
space curve, or profile, that the strained cable centerline attains in three-dimensional space.
The formulation of the three-dimensional dynamics equations for a continuous cable has been
discussed extensively in the existing literature. In general, the cable is modelled as a slender
flexible rod under environmental, gravitational and buoyancy forces. Of particular relevance to
this work was Nordgren’s presentations (Nordgren, 1974) of the vector equations of motion for
a continuos cable (Figs. 1 and 2) which are

F′ + q =

(
1

4
πd2ρcI

)
r̈ (1)

M′ + r′ × F + m = 0 (2)

where ρc is the density of the cable, d is the diameter of the cable, r(s, t) is a position vector
describing the space curve formed by the center line of the cable, q is the vector of applied
forces per unit length, m represents the applied moment per unit length, F is the vector of
internal forces, M is the vector of internal moments, I is a 3 × 3 identity matrix, ( ′ ) denotes
differentiation with respecto to s, the unstretched curvilinear coordinate along the cable, and (˙)
denotes differentiation with respect to time t. We express r(s, t) in terms of an inertial frame
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of reference (X, Y, Z), where X and Y point in perpendicular horizontal directions, and Z is
aligned with the gravity direction. The rotational inertia of the cable is considered to be much
smaller than the other terms of Eq. (1) and is thus neglected (Burgess, 1993). The dynamic
equations are formulated using two local frames of reference, the Frenet frame and a frame of
reference oriented with the principal axes of the cable, see Figure 1.

Figure 2: View of a differential segment of the cable(Buckham et al., 2004).

The Frenet frame (̂t, n̂, b̂) is oriented with the space curve formed by r(s, t). As the curve
r(s, t) is traced, the changing orientation of the Frenet frame is quantified by two parameters:
the curvature κ, and the torsion γ. Assuming the strain ε � 1, the basis unit vectors are
defined as: t̂ = r′, n̂ = r′′/κ, and b̂ = (r′ × r′′)κ and their gradients are defined as t̂′ = κn̂,
n̂′ = −γb̂ − κt̂, and b̂′ = γn̂. The curvature, κ, denotes the bend of the cable within an
osculating plane that is formed by t̂ and n̂ at the considered point. Both κ and γ are defined in
terms of the spatial derivatives of the space curve:

κ = (r′′ · r′′)1/2

γ =
r′ · (r′′ × r′′′)

κ2

The torsion of the curve γ is the spatial rate of change of the osculating plane orientation
about the tangent vector, and consequently the orientation of the bend, about the tangent vector,
t̂. As such, the torsion represents the twist experienced within the cable due to the shape of the
cable profile. However, when the twist of the cable is considered, one recognizes that torsional
couples applied at the boundaries of a cable section create an additional angular displacement,
α (the torsion deformation). Thus, we introduce the body fixed reference frame (x, y, z) which
remains aligned with the principal axes of the cross section, as shown in Figures 1 and 2, and is
separated from the Frenet frame by an angle α about the tangent direction.

As discussed by Love, the internal moment, M, generated at any point within the cable is
proportional to the curvature and the twist observed at the point (Love, 1944):

M = EIκb̂ +GJτ t̂ (3)

where E and G are the elastic and shear modulus, I is the area moment of inertia and J is the
polar moment of inertia. The overall twist τ , of the cable at the point is given by

τ = γ + α′ (4)
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Following (Garret, 1982) and (Nordgren, 1974), and assuming that there are no external
moments applied between the cable boundaries (m = 0), Eq. (3) is substituted into Eq. (2) to
produce a definition for the vector of internal forces at any location along the cable

F = T t̂− EIκ′n̂− EIκγb̂ +GJτκb̂. (5)

where T is defined in Eq (8), and the spatial derivative κ′ is a nonlinear function of the spatial
coordinate s, which complicates the finite element procedure that will be used. The second term
on the right-hand side of Eq.(5) can be expressed as

EIκ′n̂ = (EIκn̂)′ − EIκγb̂ + EIκ2t̂ (6)

which allow the elimination of κ′ in Eq. (5). Thus, subsituting Eq. (6) into Eq. (5) yields

F = −(EIκn̂)′ + (T − EIκ2)̂t +GJτκb̂ (7)

where the term −EIκ2 is included to cancel the spurious component of the internal force in-
duced when considering the tangential component due to changing of n̂. The internal force, T ,
is defined using the constitutive relationship (a visco-elastic material)

T = EAε+ CID ε̇, ε = [(r′ · r′)1/2 − 1] (8)

where ε is the strain and CID is an internal viscous damping coefficient. This simple viscous
damping model is used to represent the dissipation of energy within the cable via friction be-
tween the layers of conductors, armor, and polymer coatings of a typical cable. Equation (7)
defines the internal force as an explicit function of the cable’s elastic deformation as defined by
the axial strain, curvature, and twist. Substituiting Eq. (7) into Eq. (1) reduces the two origi-
nal vector equations of motion to a single vector equation that defines the translational motion
in terms of these three elastic deformations, and a scalar constraint equation that defines the
variation of the twist along the cable:

−(EIr′′)′′ + [(T − EIκ2)r′]′ + [GJτ(r′ × r′′)]′ + q =

(
1

4
πd2ρcI

)
r̈ (9)

(GJτ)′ = 0. (10)

In this work, the applied force vector q consists of the distributed weight and buoyancy, but
can easily include hydrodynamic force, which can be defined using the well-known Morison’s
approximation. Since the Keulegan-Carpenter number of ocean cables is always very large,
Morison’s approximation is appropiate.

3 FINITE ELEMENT DISCRETIZATION

In the discretization process it is necessary to find a suitable approximations to both r(s, t)
and α(s, t). Applying a finite element approach, the cable is considered as a contiguous set
of N cubic segments, or elements, which have the same physical properties as the continuous
cable. The trial solution ri and αi, defines the state of the ith cable element extending between
the nodes i − 1 and i of the discrete cable. The shape of the element, ri, is defined in terms of
the position and curvature vectors observed at the i− 1 and ith node points:

r(s, t) : s ∈ [s(i−1), s(i)] ≈ ri,

ri = r(i−1)φi,1(s) + r′′(i−1)φi,2(s) + r(i)φi,3(s) + r′′(i)φi,4(s) (11)
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As is discussed in detail in (Buckham et al., 2004), the element is a twisted cubic spline.
The element shows a C2(s), or second order, continuity across the node points to reflect the
continuity expected in the curvature. The element is a superposition of a linear combination of
the node points and a cubic refinement that interpolates the node curvature vectors.The shape
functions are given by:

φi,1 =
si − s
Le

, φi,2 =
1

6

(
φ3
i,1 − φi,1

)
L2
e

φi,3 =
s− si−1
Le

, φi,4 =
1

6

(
φ3
i,3 − φi,3

)
L2
e

(12)

where Le is the length of the discrete cable elements. The specification of the C2(s) continuity
produces a system of tridiagonal linear equations that allow the curvature to be calculated from
the node positions at any instant in the simulation. The element type thus minimizes the state
variables required to define the cable shape at any time - the six position variables of the element
node points. The trial solution is completed by modelling the torsional deformation within the
element, αi, as a linearly varying quantity between the node points:

αi = αi−1φi,1(s) + αiφi,3(s) (13)

The optimum coefficients of the two polynomials are obtained through the application of
Galerkin’s criterion over the domain of the general element ith element. The evaluation of the
Galerkin residuals is described in (Buckham et al., 2004), including the various representations
for the variation of the enviromental and internal effects over the element. The results of this
procedure are the element equations given by:

([KB]i + [KA]i + [Kτ ]i) Xi + Wi + Hi + Bi = [Me]iẌi (14)

and,
GJ

Le

[
1 −1
−1 1

]{
αi−1
αi

}
= GJ

{
γi−1/2
−γi−1/2

}
+

{
−GJτ i−1i

GJτ ii

}
(15)

where the boundary terms GJτ i−1i and GJτ ii represent the internal restoring torque at the
boundaries of the element.

The 12× 12 system matrices [KB]i, [KA]i and [Kτ ]i embody generalized bending, axial and
torsional forces, respectively, that are applied at the element nodes and result from the curvature,
axial strain and twist experienced throughout the cable element. The generalized load vectors
Wi, Hi and Bi define de gravitational, hydrodynamic, and applied forces respectively, and the
12× 1 vector, Xi =

{
rTi−1, r

′′T
i−1, r

T
i , r

′′T
i

}T , defines the element trial solution, given in Eq.(11).
The symmetric element mass matrix, [Me]i is reduced to a lumped mass matrix. This reduc-

tion effectively redistributes the cable mass such that it is concentrated at the node locations. A
consequence of this reduction is the elimination of the time derivatives of the curvature vectors
from the right hand side of Eq.(14) which reflects the fact that changes in the cubic element
shape of the element, caused by changing curvature at the element end nodes, do not accelerate
any cable mass. Through the lumped mass approximation, Eq.(14) is reduced to a system of 6
equations (rather than 12) by premultiplying both sides by

P =

[
1 1

Le
1 0 0

0 0 1 1
Le

1

]
(16)
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where 1 is a 3 × 3 identity matrix. The pre-multiplication by P transforms the 12 × 12 system
matrices and 12× 1 load vectors into 6× 12 system matrices and 6× 1 quantities, respectively,
that given the temporal change of the element’s 6 state variables, the node positions. It is these
reduced matrices and vectors that are the basis for the model assembly.

Applying the element Eqs. (14) and (15) for each node in the concatenation of elements,
0 ≤ i ≤ N , a global system of equations of motion and twist constraints are produced. The
form of the assembled equations is

R̈ = F(t,R, Ṙ) (17)

where R =
{
r(0)T , r(1)T , . . . , r(N)T

}T .
Equation (17) is a series of 3(N + 1) second order differential equations. Given a set of

initial conditions R0 = R(t = 0) and Ṙ0 = Ṙ(t = 0) the model can evolve in time by the
specification of boundary conditions and the provision of a suitable integration routine.

4 MODEL ORDER REDUCTION

The main idea of model reduction is to find a spatial repesentation of the primary variable
R, which would ensure the response of the full and reduced models to be close in certain sense,
and which would be at the same time much faster than the full FE model. In other words, we
would like to find a representation minimizing the number of degrees of freedom needed in the
computation to reach a certain error level (measured with respect to the full FE model). Most
reduction methods for nonlinear dynamic finite element analysis are based on projection onto a
finite dimension subspace. The original motion given by the position vector R is projected onto
a subspace where the projection is described by

R(t) = Q q(t) (18)

where q(t) ∈ Rk ⊂ Rn is the motion in the subspace. The columns of the transformation matrix
Q ∈ Rn×k are the basis vectors, which span the subspace. Inserting Eq. (18 ) into the dynamic
equilibrium (Eq. 17) and pre-multiplying by QT (that is, projecting in the subspace spanned
by) yields the reduced system

QTQq̈(t) = QTF(t,Q q(t),Q q̇(t)) (19)

The choice of the reduced basis clearly affects the quality of approximation. The techniques
for constructing the reduced basis use a common observation that, for a particular system, the
solution space is often attracted to a low-dimensional manifold. Among the various techniques
for obtaining a reduced basis, Proper Orthogonal Decomposition constructs a set of global basis
functions from a singular value decomposition (SVD) of snapshots, which are discrete samples
of trajectories associated with a particular set of boundary conditions and inputs. This basis is
optimal in the sense that a certain approximation error concerning the snapshots is minimized.
Thus, the space spanned by the basis from POD often gives an excellent low-dimensional ap-
proximation. Once the reduced model has been constructed from this reduced basis, it may be
used to obtain approximate solutions for a variety of initial conditions and parameter settings,
provided the set of samples is rich enough. This empirically derived basis is clearly dependent
on the sampling procedure.

M. ESCALANTE, R. SAMPAIO, M. ROSALES, T. RITTO1150

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



5 PROPER ORTHOGONAL DECOMPOSITION (POD)

POD is a method for constructing a low-dimensional approximation representation of a sub-
space in a Hilbert space. It is essentially the same as the SVD in a finite-dimensional space or
in Euclidean space. It efficiently extracts the basis elements that contain characteristics of the
space of expected solutions of the PDE. Sometimes, like in our case of study is best to find an
affine subspace as opposed to linear subspace. This requires us first to find the mean value of
the data points. The POD basis in Euclidean space may be specified formally as follows.

Let {y1, . . . ,ym} ⊂ Rn be a set of centered (with respect to the mean) snapshots (recall that
snapshots are samples of trajectories):

yi = Ri −R (20)

where yi is the i-th centered snapshot, Ri is the i-th snapshot obtained using the Finite Element
model and R is the mean trajectory. Let Y = span {y1, . . . ,ym} ⊂ Rn and r is the rank of Y .
A POD basis of dimension k < r is a set of orthonormal vectors {φ}ki=1 ⊂ Rn whose linear
span best approximates the space Y . The basis set {φ}ki=1 solves the minimization problem

min
{φ}ki=1

m∑
j=1

∣∣∣∣∣
∣∣∣∣∣yj −

k∑
i=1

(yTj φi)φi

∣∣∣∣∣
∣∣∣∣∣
2

2

(21)

with

φTi φj = δij =

{
1 if i = 1 ,
0 if i 6= j,

i, j = 1, . . . , k.

It is well known that the solution to Eq. (21) is provided by the set of the left singular vectors
of the snapshots matrix Y = [y1, . . . ,ym] ∈ Rn×m. In particular, suppose that the SVD of Y
is

Y = VΣWT , (22)

where V = [v1, . . . ,vn] ∈ Rn×n and W = [w1, . . . ,wm] ∈ Rm×m are orthogonal and Σ ∈
Rn×m contains the singular values on its diagonal (σ1, . . . , σr) with σ1 ≥ σ2 ≥ . . . ≥ σr > 0.
The rank of Y is r ≤ min(n,m). Then the POD basis or the optimal solution of Eq.(21) is
{vi}ki=1. The minimum 2-norm error from approximating the snapshots using the POD basis is
then given by

m∑
j=1

∣∣∣∣∣
∣∣∣∣∣yj −

k∑
i=1

(yTj φi)φi

∣∣∣∣∣
∣∣∣∣∣
2

2

=
r∑

i=k+1

σ2
i . (23)

We refer the reader to (Kunisch and Volkwein, 2008) for more details on the POD basis in
general Hilbert space.

The choice of the snapshot ensemble is a crucial factor in constructing a POD basis. This
choice can greatly affect the approximation of the original solution space, but is a separate is-
sue and will not be discussed here. POD is a popular approach because it works well in many
applications and often provides an excellent reduced basis. However, as discussed in the in-
troduction, when POD is used in conjunction with the Galerkin projection, effective dimension
reduction is usually limited to the linear terms or low-order polynomial nonlinearities. Systems
with general nonlinearities need aditional treatment (Chaturantabut and Sorensen, 2010).
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6 NUMERICAL ILLUSTRATION

The dynamical response of a cable was analyzed by means of the above proposed finite
element approach. The total length of the cable is L = 47m. The cable was supposed fixed
at the left end with its right end subjected to prescribed motions with the following cosine
functions

X(L, t) = A1 + a1 cos(ω1t),

Y (L, t) = A2 + a2 cos(ω2t), (24)
Z(L, t) = A3 + a3 cos(ω3t).

Figure 3: Initial geometric configuration of the cable.

The following mechanical and geometrical properties were adopted: ρc = 7850 kg/m3 (den-
sity), E = 2.1× 1011 N/m2 (Young Modulus), d = 2.85× 10−2 m (diameter), CD = 0 (internal
viscous damping). In all cases, the (unstretched) condition at initial instant was adopted to be
the static solution of an inextensible cable subjected to selfweight (catenary solution) with ends
coordinates (0, 0, 0) and (40, 40, 20) (see Fig. 3).

6.1 Example 1

In order to check the performance of the finite element model, a series of simulations with
different number of elements were run. The parameters that define the prescribed motions at
the end of the cable at every instant of time were adopted as: A1 = A2 = 26.16m, A3 = 18m,
a1 = a2 = 2.12m, a3 = 2m, ω1 = ω2 = 0.5 rad/s, ω3 = 0.75 rad/s. Figure (4) depicts the
motion of the chain by superposing different positions, for a total time of 10 seconds, and also
their projections onto the xy plane where it can be observed that the cable stays in the same
vertical plane at every instant, as expected for an initial configuration and a load contained in
the same plane.

Since in this example the cable is subjected to a relative low-speed motion, a comparison
with a chain under the same action is now depicted. An algorithm that deals with the dynamic
of chains modelled as concentrated point mass joined by springs, is reported in (Wilson et al.,
2003). A 32 link chain was solved using this algorithm for a qualitative comparison with results
from the present cable FEM formulation. Figure 5 shows the trajectory described by the middle
point for both models. The point describes the trajectory more than once during the considered
time which is reflected with various blue lines. In the two cases the same qualitative response
was obtained.
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Figure 4: Left: snapshots of the cable motion at first 30 seconds and trajectory described by the end of the cable
(red). FEM with 32 elements.Right: xy projection of snapshots

.

Figure 5: Trajectory described for the midle point form both models: present FEM formulation (blue) , concen-
trated mass and springs formulation (red). Total time 50s, 32 elements.

Now and in order to construct a reduced order model using POD, a FE simulation with 32
elements was run for a total time of 100 seconds from which the snapshots matrix was obtained
(one snapshot every 0.1 seconds). Then, following the procedure detailed in Section 5 the POD
basis was obtained to get the Q projection orthogonal matrix used to reduce the dimension
(degrees of freedom) of the problem .The results obtained with the reduced FE using 5 and 6
eigenvectors (Proper Orthogonal Values, POMs) corresponding to the highest 5 or 6 eigenvalues
(Proper Orthogonal Values, POVs), respectively, are depicted in Figure 6. It can be observed
that adding the sixth POM achieves an adequate approximation.

It should be noted that the total time needed for a simulation with a reduced order model
was significantly decreased compared with the full FE model. Some comments on the time
reduction are included in the next example.

6.2 Example 2

The dynamics of the same cable is now analyzed but under a different motion and an angular
displacement α(L, t) (torsional deformation) at the top right end. The following values were
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Figure 6: Example 1. Temporal variation of the center point of the cable. Left graphs: coordinate x vs. time. Right
graphs: coordinate z vs. time. Fuchsia curve: FEM solution with 32 elements. Blue points: reduced order model
solution with POD. a) 5 POMs, b) 6 POMs.

adopted: A1 = A2 = 26.16m, A3 = 18m, a1 = a2 = 2.12m, a3 = 2m, ω1 = 0.5rad/s,
ω2 = 0.75rad/s, ω3 = 0rad/s, α(L, t) = π(1 − cos(0.15t)).Figure 7 shows the 3D trajectory of
the central point at 50 seconds, found both with the FEM results (32 elements) and the reduced
order model output (6 POMs).

The first 30 seconds snapshots are depicted in Figure 8 found with the FEM with 32 elements
(left graph, blue line). The right plot shows the xy projections of the snapshots, from which the
out-of-plane motion is apparent. Also, the prescribed motion at the right end is plotted in red
line. It should be noted that the computational time for a 6 POMS reduced model takes the 30%
of the time necessary to run the non-reduced model. This feature is desirable when, for instance,
one performes quantification of uncertainties that require of a large number of realizations to
achieve the statistical study.

The effect of the addition of POMs is clearly observed at Figure 9. The time history of
the central point x coordinate was found for 6, 7, 8 and 9 eigenvectors (POMs). The number
of POMs to approximate adequately the dynamics of the cable, appears to be 8 or 9. Finally,
Figure 10 depicts the 3D trajectories found with the FEM (50 seconds, 32 elements) (left plot)
and the same trajectory superimposed to the reduced order model one (9 POMs) at the right
plot. Again, it is seen that the dynamics is appropriately approximated with a more efficient
approach.

M. ESCALANTE, R. SAMPAIO, M. ROSALES, T. RITTO1154

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 7: Example 2. Trajectory of the center point of the cable at 50 seconds. Fuchsia curve: FEM with 32
elements. Blue: reduced order model with 6 POMs.

Figure 8: Example 2. First 30 seconds snapshots found with the FEM with 32 elements (left graph, blue line). xy
projection of the snapshots (right graph, blue line). Prescribed displacement at right end (red line).

.

7 CONCLUSIONS

In this work, a finite element simulation of cables was shown to obtain a reduced order
model by means of the projection method using Proper Orthogonal Decompositions (POD). A
twisted cubic spline element form and a lumped mass approximation was adopted to provide
a representation of both the bending and torsional effects. The nonlinear equations of motion
for the continuous cable were developed in terms of an inertial frame of reference using the
Frenet equations. The proper orthogonal modes, in conjunction with the Galerkin approach, by
projecting the original system onto a low-dimensional subspace, was used for the construction
of a lower-dimensional model that, as it was shown in the numerical examples, is very efficient
with respect to the ones constructed with the typical finite elements basis. Computing POD
requires only standard matrix computations, despite of its application to nonlinear problems.
Although projecting only onto linear or affine subspaces, the overall nonlinear dynamics is
preserved, since the surrogate model will still be nonlinear.

In the present study, the FEM models were run with larger times than the necessary ones in
the reduced model. That is, the reduced model is an interpolation of the original one. Further
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Figure 9: Time history of the x coordinate of the midle point: 6,7,8 y 9 eigenvectors.

studies are needed to obtain significant reduced models in ranges of times beyond the original
interval. Regarding the boundary conditions, the POD depends on them and, so far, a new bases
set has to be found for each case. However, the extension to other situations such as other
initial conditions and parameter settings is possible provided the set of samples is rich enough
(Chaturantabut and Sorensen, 2010).

It should be noted that in the presence of a general nonlinearity, the standard POD-Galerkin
technique reduces dimensions in the sense that far fewer variables are present, but the complex-
ity of evaluating the nonlinear term remains that of the original problem.

Figure 10: Example 2. Central point trajectory. FEM model: Simulation time of 50 seconds, 32 elements (left
graph). FEM model (blue line) and reduced model with 9 POMs (green line).
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