Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXX, págs. 1159-1180 (artículo completo) Oscar Möller, Javier W. Signorelli, Mario A. Storti (Eds.) Rosario, Argentina, 1-4 Noviembre 2011

VIBRACIONES TRANSVERSALES Y FORMAS MODALES DE VIGAS TIMOSHENKO ROTANTES CON SECCIÓN VARIABLE

Daniel H. Felix^a, Diana V. Bambill^{a, b} y Raúl E. Rossi^a

^aDepartamento de Ingeniería, Instituto de Mecánica Aplicada (IMA), Universidad Nacional del Sur (UNS), Avda. Alem 1253, 8000 Bahía Blanca, Argentina, <u>http://www.uns.edu.ar</u>

^bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, http://www.conicet.gov.ar

dhfelix@uns.edu.ar, dbambill@criba.edu.ar, rerossi@uns.edu.ar

Palabras clave. Vibraciones, Cuadratura Diferencial, Viga Rotante, Viga Timoshenko.

Resumen. En este trabajo se determinan frecuencias naturales y formas modales en vigas Timoshenko rotantes, mediante la utilización del método de Cuadratura Diferencial, que resulta eficiente para el análisis dinámico de elementos estructurales con variación continua y discontinua de la sección transversal. Con pocos términos es posible obtener una buena predicción de las frecuencias naturales y las formas modales correspondientes, y el costo computacional, así como la carga de datos, se logra con un mínimo esfuerzo. El planteo se basa en la teoría de vigas Timoshenko y permite resolver vigas de esbeltez reducida, en las cuales las deformaciones por corte y la inercia rotatoria deben ser consideradas. Se analiza la posibilidad de tener la viga elásticamente vinculada al eje de rotación así como la existencia de variaciones bruscas de sección entre tramos contiguos, utilizándose la técnica de descomposición de dominio para permitir esta opción. Los resultados de algunos casos presentados se comparan con valores obtenidos mediante la utilización de un algoritmo desarrollado por los autores, basado en el método de elementos finitos.

1 INTRODUCCIÓN

El modelo de viga Timoshenko rotante encuentra variadas aplicaciones, especialmente en el campo de la ingeniería mecánica en aspas de molinos eólicos, álabes de turbinas, y en la ingeniería aeronáutica, para el cálculo de hélices y aspas de helicópteros.

Este modelo es muy adecuado para analizar el comportamiento dinámico de piezas rotantes de esbeltez reducida. Los resultados que se obtienen son más precisos que los correspondientes al modelo de viga Bernoulli-Euler, ya que considera los efectos de la deformación por corte y de la inercia rotatoria, (Rossi et al. 1991); (Lin et al. 2001); (Karami et al. 2003).

Un modelo similar, inicialmente para el caso de viga prismática, fue presentado por Banerjee, quien utilizó para su resolución el método de matriz de rigidez dinámica, (Banerjee, 2000); (Banerjee, 2001). Posteriormente el mismo autor presentó el caso de viga rotante escalonada, (Banerjee et al. 2006).

El costo de una mayor precisión en los resultados es la mayor complejidad del sistema de ecuaciones gobernante del sistema en estudio, ya que tendremos en este caso dos funciones incógnitas independientes, el giro y el desplazamiento transversal de cada punto perteneciente al eje de la viga. Como es sabido, de no ser posible o ser muy dificultosa la solución analítica exacta, se requiere de un método numérico que permita obtener una solución aproximada suficientemente precisa.

Se utilizaron dos metodologías con algoritmos desarrollados por los autores en ambos casos, el Método de Elementos Finitos (MEF) y el Método de Cuadratura Diferencial (MCD).

Al codificar el algoritmo computacional mediante el MEF fue utilizado el procedimiento clásico (Przenienieck, 1968); (Petyt, 1990); (Rossit et al. 2007).

El MCD fue utilizado por primera vez por Bellman y sus colaboradores, (Bellman et al. 1971). El presente desarrollo en MCD puede considerarse una extensión de trabajos previamente presentados por los autores (Felix et al. 2009a,b); (Bambill et al. 2010), que permite contemplar en el modelo variaciones tanto continuas como discontinuas de la sección transversal, considerar vinculación elástica de la viga al eje de rotación y obtener tanto las frecuencias como las formas modales de vibración transversal de la viga rotante.

Mediante la aplicación del MCD el sistema de ecuaciones diferenciales gobernante es transformado en un sistema de ecuaciones finitas equivalente, denominado ecuaciones análogas de cuadratura diferencial, luego la resolución de dicho sistema conduce a los coeficientes de frecuencia naturales y a las formas modales buscadas.

Los algoritmos mencionados se implementaron en modelos numéricos constituidos por uno y dos tramos y se obtuvieron con ellos los primeros coeficientes de frecuencia natural de vibración transversal y las correspondientes formas modales.

2 SISTEMA DE ECUACIONES GOBERNANTE

Si bien, como se mencionó en la sección anterior, el presente trabajo es una continuación de otro presentado anteriormente (Felix et al. 2010), se transcribe la forma adimensional del sistema de ecuaciones gobernantes y las correspondientes ecuaciones análogas de cuadratura diferencial con el propósito de presentar un desarrollo auto-contenido. No obstante se recomienda la lectura del trabajo mencionado arriba, si se desea contar con mayor detalle del desarrollo.

La Figura 1 muestra esquemáticamente la geometría de la viga rotante de longitud L de sección transversal variable en forma continua en cada tramo y discontinua por tramos.

Figura 1: Viga rotante con variación parabólica de altura y vinculación elástica al eje de rotación.

Se analizan las vibraciones en el plano definido por el eje de la viga y el eje de rotación. La rotación, de velocidad $\bar{\eta}$, origina en la viga esfuerzos internos axiles generados por la fuerza centrífuga, que producen un efecto de rigidización y modifican el comportamiento dinámico.

La forma adimensional del esfuerzo axil que se origina por la fuerza centrifuga resulta:

$$N_{k}(x) = \eta^{2} \frac{l_{k}^{2}}{s_{1}^{2}} R_{k} v_{k}(1) + \phi_{k}(1) - R_{k} v_{k}(x) - \phi_{k}(x) + F_{k+1}$$
(1)

Los parámetros adimensionales utilizados en la Ec. (1) son los siguientes: η define la velocidad de rotación; R_k determina la sección inicial del tramo *k-esimo*, v_k y ϕ_k son funciones de forma definidas por la geometría de cada tramo; F_{k+1} es la fuerza centrífuga que actúa en el extremo del tramo *k*; la coordenada local *x* define la posición relativa de una sección transversal particular dentro del tramo; l_k define la longitud del tramo y s_1 es el parámetro de esbeltez.

El esfuerzo axil originado por la rigidización interviene a su vez en el esfuerzo de corte, debido a que se consideran efectos de segundo orden. Las expresiones adimensionales de los esfuerzos de corte y momento flector, en término de los desplazamientos son las siguientes:

$$Q_k(x) = \left(N_k(x) + \frac{\kappa}{2(1+\nu)}a_k(x)\right)\frac{dW_k(x)}{dx} - \frac{\kappa}{2(1+\nu)}a_k(x)\Psi_k(x)$$
(2)

$$M_{k}(x) = b_{k}(x) \frac{d\Psi_{k}(x)}{dx}$$
(3)

Donde $a_k(x)$ y $b_k(x)$ definen para el tramo k-ésimo, la ley de variación del área y del momento de inercia de la sección transversal respectivamente. Los desplazamientos que sufre la viga durante el movimiento vibratorio están dados por la amplitud del desplazamiento transversal $W_k(x)$ y la amplitud de giro $\Psi_k(x)$. En la forma adimensional de los esfuerzos obtenidos en base a la la teoría de vigas Timoshenko intervienen además el coeficiente de Poisson del material ν y el factor de la deformación por corte κ .

La forma adimensional de las ecuaciones de movimiento en cada tramo *k*-ésimo de la viga resulta (Felix et al. 2009b):

$$\eta^{2}a_{k}(x) R_{k} + x \frac{dW_{k}(x)}{dx} - \frac{s_{1}^{2}}{l_{k}^{2}}N_{k}(x)\frac{d^{2}W_{k}(x)}{dx^{2}} - \frac{\kappa}{dx}\frac{s_{1}^{2}}{l_{k}^{2}}a_{k}(x)\left(\frac{d^{2}W_{k}(x)}{dx^{2}} - \frac{d\Psi_{k}(x)}{dx}\right) - \frac{\kappa}{2(1+\nu)}\frac{s_{1}^{2}}{l_{k}^{2}}a_{k}'(x)\left(\frac{dW_{k}(x)}{dx} - \Psi_{k}(x)\right) = \Omega^{2}a_{k}(x)W_{k}(x) - \frac{\kappa}{2(1+\nu)}s_{1}^{2}s_{k}^{2}a_{k}(x)\left(\frac{dW_{k}(x)}{dx} - \Psi_{k}(x)\right) - \frac{s_{1}^{2}}{l_{k}^{2}}b_{k}(x)\frac{d^{2}\Psi_{k}(x)}{dx^{2}} - \frac{s_{1}^{2}}{l_{k}^{2}}b_{k}'(x)\frac{d\Psi_{k}(x)}{dx} - \eta^{2}b_{k}(x)\Psi_{k}(x) = \Omega^{2}b_{k}(x)\Psi_{k}(x)$$
(5)

donde $a'_k(x) = da_k(x)/dx$ y $b'_k(x) = db_k(x)/dx$, son las derivadas de las funciones que establecen la variación del área y del momento de inercia de la sección transversal correspondiente al tramo *k*-ésimo.

La expresión adimensional de las ecuaciones diferenciales permite definir los coeficientes de frecuencia natural en la forma:

$$\Omega_i = \sqrt{\frac{\rho A_1(0)}{E I_1(0)}} L^2 \omega_i \tag{6}$$

siendo ρ la densidad y *E* el módulo de Young del material de la viga. También intervienen en la definición de los coeficientes de frecuencia la longitud de la viga *L* el área $A_1(0)$ y el momento de inercia $I_1(0)$ de la sección transversal inicial, que se corresponde con la unión de la viga al eje de rotación.

Las Ecuaciones (4) y (5) se plantean para cada tramo k-ésimo de la viga. Los tramos adyacentes deben cumplir además con las ecuaciones de compatibilidad de esfuerzos y corrimientos. Las ecuaciones adimensionales correspondientes a los corrimientos resultan:

$$-l_{(k-1)}W_{(k-1)}(1) + l_k W_k(0) = 0$$
⁽⁷⁾

$$-\Psi_{(k-1)}(1) + \Psi_{k}(0) = 0 \tag{8}$$

. .

La Ec. (7) corresponde a la compatibilidad de desplazamientos transversales y la Ec. (8) a la compatibilidad de giros. Las ecuaciones de compatibilidad de esfuerzos internos, expresadas en función de los desplazamientos son

$$-\alpha_{(k-1)} \left[\left(N_{(k-1)}(x) + \frac{\kappa}{2(1+\nu)} a_{(k-1)}(x) \right) \frac{dW_{(k-1)}(x)}{dx} - \frac{\kappa}{2(1+\nu)} a_{(k-1)}(x) \Psi_{(k-1)}(x) \right]_{x=1} + \alpha_k \left[\left(N_k(x) + \frac{\kappa}{2(1+\nu)} a_k(x) \right) \frac{dW_k(x)}{dx} - \frac{\kappa}{2(1+\nu)} a_k(x) \Psi_k(x) \right]_{x=0} = 0$$
(9)

$$-\frac{\alpha_{(k-1)}}{l_{(k-1)}}b_{(k-1)}(x)\frac{d\Psi_{(k-1)}(x)}{dx}\bigg|_{x=1} + \frac{\alpha_{k}}{l_{k}}b_{k}(x)\frac{d\Psi_{k}(x)}{dx}\bigg|_{x=0} = 0$$
(10)

Los coeficientes α_k y $\alpha_{(k-1)}$ son las áreas adimensionales de las secciones transversales de tramos adyacentes de la viga, (Felix et al., 2008).

El sistema de ecuaciones gobernante se completa con las condiciones de borde. Dado que el algoritmo contempla vinculación elástica de la viga al eje de rotación, las condiciones de borde correspondientes resultan:

$$l_1 K_W W_1(0) - l_k Q_1(0) = 0 \tag{11}$$

$$l_1 K_{\Psi} \Psi_1(0) - M_1(0) = 0 \tag{12}$$

La Ec. (11) corresponde a la restricción elástica al desplazamiento transversal, siendo K_w el parámetro adimensional que define la rigidez elástica del vínculo. La Ec. (12) corresponde a la restricción elástica al giro de la sección transversal en correspondencia con el eje de rotación, siendo K_{Ψ} el parámetro adimensional que define la rigidez elástica de dicha restricción.

En el extremo libre de la viga se establecen las condiciones de borde naturales, que son corte y momento flector nulos. La forma adimensional que establece la condición de corte nulo resulta:

$$\left[\left(N_d(x) + \frac{\kappa}{2(1+\nu)}a_d(x)\right)\frac{dW_d(x)}{dx} - \frac{\kappa}{2(1+\nu)}a_d(x)\Psi_d(x)\right]_{x=1} = 0$$
(13)

y la que establece momento flector nulo es:

$$b_d(x)\frac{d\Psi_d}{dx}\bigg|_{x=1} = 0$$
(14)

3 ECUACIONES ANÁLOGAS DE CUADRATURA DIFERENCIAL

Se obtiene una solución aproximada del sistema planteado mediante la discretización del dominio definido por la coordenada espacial x, definiéndose un conjunto finito de puntos o nodos en los que se plantean las denominadas ecuaciones análogas de cuadratura diferencial, (Bambill et al. 2010).

Un desarrollo detallado del MCD fue elaborado previamente por distintos autores (Bert and Malik, 1996) y se encuentra fuera del alcance del presente artículo.

A continuación se presentan las ecuaciones análogas de cuadratura aplicables al dominio discreto, que se obtienen a partir de las ecuaciones adimensionales vistas, correspondientes al dominio continuo. Obsérvese que la coordenada espacial adimensional x es continua en las ecuaciones anteriores y pasa a ser discreta en las ecuaciones análogas de cuadratura.

Cabe notar que la ecuación (1) que da el esfuerzo axil en la viga, es directamente aplicable en el método de cuadratura ya que no incluye a los desplazamientos $W y \Psi$.

Se tiene así para la amplitud de los esfuerzos internos:

$$Q_k(x_i) = \left(N_k(x_i) + \frac{\kappa}{2(1+\nu)}a_k(x_i)\right) \sum_{j=1}^n A_{ij}^{(1)} W_{kj} - \frac{\kappa}{2(1+\nu)}a_k(x_i) \sum_{j=1}^n A_{ij}^{(0)} \Psi_{kj}$$
(15)

$$M_{k}(x_{i}) = b_{k}(x_{i}) \sum_{j=1}^{n} A_{ij}^{(1)} \Psi_{kj}$$
(16)

donde los $A_{ij}^{(1)}$ son coeficientes propios del método de cuadratura diferencial (Bert and Malik, 1996) que se obtienen a partir de la malla de nodos del modelo, El valor de *n* da el número de nodos en cada tramo del modelo discreto de cuadratura diferencial. Las ecuaciones de movimiento resultan:

$$\begin{pmatrix} \eta^{2}a_{k}(x_{i}) & R_{k} + x_{ki} & -\frac{\kappa}{2(1+\nu)} \frac{s_{1}^{2}}{l_{k}^{2}} al_{k}(x_{i}) \end{pmatrix} \sum_{j=1}^{n} A_{ij}^{(1)} & W_{kj} - \\ \begin{pmatrix} \frac{s_{1}^{2}}{l_{k}^{2}} N_{k}(x_{i}) + \frac{\kappa}{2(1+\nu)} \frac{s_{1}^{2}}{l_{k}^{2}} a_{k}(x_{i}) \end{pmatrix} \sum_{j=1}^{n} A_{ij}^{(2)} & W_{kj} - \\ + \frac{\kappa}{2(1+\nu)} \frac{s_{1}^{2}}{l_{k}^{2}} a_{k}(x_{i}) \sum_{j=1}^{n} A_{ij}^{(1)} \Psi_{kj} + \frac{\kappa}{2(1+\nu)} \frac{s_{1}^{2}}{l_{k}^{2}} al_{k}(x_{i}) \sum_{j=1}^{n} A_{ij}^{(0)} \Psi_{kj} = \Omega^{2}a_{k}(x_{i}) W_{ki} \\ - \frac{\kappa}{2(1+\nu)} s_{1}^{2} s_{k}^{2} a_{k}(x_{i}) \sum_{j=1}^{n} A_{ij}^{(1)} W_{kj} - \frac{s_{1}^{2}}{l_{k}^{2}} b_{k}(x_{i}) \sum_{j=1}^{n} A_{ij}^{(2)} \Psi_{kj} + \\ \begin{pmatrix} \frac{\kappa}{2(1+\nu)} s_{1}^{2} s_{k}^{2} a_{k}(x_{i}) - \eta^{2}b_{k}(x_{i}) \end{pmatrix} \sum_{j=1}^{n} A_{ij}^{(0)} \Psi_{kj} - \frac{s_{1}^{2}}{l_{k}^{2}} bl_{k}(x_{i}) \sum_{j=1}^{n} A_{ij}^{(1)} \Psi_{kj} = \Omega^{2}b_{k}(x_{i}) \Psi_{ki}$$

$$(18)$$

Las ecuaciones análogas de cuadratura que rigen la compatibilidad de desplazamientos son:

$$-l_{(k-1)}\sum_{j=1}^{n}A_{nj}^{(0)}W_{(k-1)j} + l_k\sum_{j=1}^{n}A_{1j}^{(0)}W_{kj} = 0$$
(19)

$$-\sum_{j=1}^{n} A_{nj}^{(0)} \Psi_{(k-1)j} + \sum_{j=1}^{n} A_{1j}^{(0)} \Psi_{kj} = 0$$
(20)

y las correspondientes a la compatibilidad de esfuerzos internos se expresan en la forma:

$$-\alpha_{(k-1)}\left(\left(N_{(k-1)}(1) + \frac{\kappa}{2(1+\nu)}a_{(k-1)}(1)\right)\sum_{j=1}^{n}A_{nj}^{(1)}W_{(k-1)j} - \frac{\kappa}{2(1+\nu)}a_{(k-1)}(1)\sum_{j=1}^{n}A_{nj}^{(0)}\Psi_{(k-1)j}\right) + \alpha_{k}\left(\left(N_{k}(0) + \frac{\kappa}{2(1+\nu)}a_{k}(0)\right)\sum_{j=1}^{n}A_{1j}^{(1)}W_{kj} - \frac{\kappa}{2(1+\nu)}a_{k}(0)\sum_{j=1}^{n}A_{1j}^{(0)}\Psi_{kj}\right) = 0 - \frac{\alpha_{(k-1)}}{l_{(k-1)}}b_{(k-1)}(1)\sum_{j=1}^{n}A_{nj}^{(1)}\Psi_{(k-1)j} + \frac{\alpha_{k}}{l_{k}}b_{k}(0)\sum_{j=1}^{n}A_{1j}^{(1)}\Psi_{kj} = 0$$

$$(22)$$

Las ecuaciones análogas de cuadratura correspondientes a las restricciones elásticas que impone el eje de rotación quedan en la forma:

$$l_{1} K_{W} \sum_{j=1}^{n} A_{1j}^{(0)} W_{1j} - l_{1} \left(\left(N_{1}(0) + \frac{\kappa}{2(1+\nu)} a_{1}(0) \right) \sum_{j=1}^{n} A_{1j}^{(1)} W_{1j} - \frac{\kappa}{2(1+\nu)} a_{1}(0) \sum_{j=1}^{n} A_{1j}^{(0)} \Psi_{1j} \right) = 0 \quad (23)$$

$$l_1 K_{\Psi} \sum_{j=1}^n A_{1j}^{(0)} \Psi_{1j} - b_1(0) \sum_{j=1}^n A_{ij}^{(1)} \Psi_{1j} = 0$$
(24)

y en el extremo libre de la viga, ubicado en el tramo con subíndice d, se tienen las ecuaciones correspondientes a las condiciones de borde naturales:

$$\left(N_{d}(1) + \frac{\kappa}{2(1+\nu)}a_{d}(1)\right)\sum_{j=1}^{n}A_{nj}^{(1)}W_{dj} - \frac{\kappa}{2(1+\nu)}a_{d}(1)\sum_{j=1}^{n}A_{nj}^{(0)}\Psi_{dj} = 0$$
(25)

$$b_d(1)\sum_{j=1}^n A_{nj}^{(1)} \Psi_{dj} = 0$$
(26)

4 ANÁLISIS CON EL MÉTODO DE ELEMENTOS FINITOS

Con el método de elementos finitos el análisis de las vibraciones libres de una viga rotante puede ser considerado como el caso de la viga no rotante sujeta a una fuerza distribuida variable que actúa a lo largo de la viga.

El elemento viga implementado por los autores para este trabajo, es una barra recta con sección transversal uniforme y propiedades mecánicas constantes. Posee un nodo en cada extremo, con tres grados de libertad en cada nodo, que se reducen a dos cuando no se incluye la deformación axial. El efecto deformante del esfuerzo de corte y la inercia rotatoria de las secciones transversales han sido incluidos en la formulación (teoría de Timoshenko).

Se adoptaron polinomios completos, de segundo grado para las rotaciones de las secciones transversales y de tercer grado para los desplazamientos transversales. Obviamente, también fue tenido en cuenta el efecto de segundo orden del esfuerzo axial, que introduce una rigidez adicional cuando el elemento es traccionado, y que en este trabajo se implementó con una matriz de rigidez geométrica que a su vez, incluye el efecto de la deformación por corte.

Al codificar el algoritmo computacional, las matrices de rigidez y de masa fueron calculadas utilizando el clásico procedimiento del MEF (Przemieniecki, 1968); (Petyt, 1990).

Las formas modales y frecuencias naturales se determinaron con el método de iteración inversa (Burden and Faires, 2001). Las matrices utilizadas en el algoritmo se expresan del siguiente modo:

Matriz de rigidez elástica:

$$[k_{e}] = \frac{EI_{z}}{2a^{3}(1+\phi)} \begin{bmatrix} 3 & 3a & -3 & 3a \\ 3a & (4+\phi)a^{2} & -3a & (2-\phi)a^{2} \\ -3 & -3a & 3 & -3a \\ 3a & (2-\phi)a^{2} & -3a & (4+\phi)a^{2} \end{bmatrix}$$
(27)

Matriz de rigidez geométrica:

$$[k_{g}] = \frac{N}{30a(1+\phi)^{2}} \begin{bmatrix} 15\phi^{2} + 30\phi + 18 & 3a & -(15\phi^{2} + 30\phi + 18) & 3a \\ 3a & (5\phi^{2} + 10\phi + 8)a^{2} & -3a & -(5\phi^{2} + 10\phi + 2)a^{2} \\ -3 & -3a & 15\phi^{2} + 30\phi + 18 & -3a \\ 3a & -(5\phi^{2} + 10\phi + 2)a^{2} & -3a & (5\phi^{2} + 10\phi + 8)a^{2} \end{bmatrix}$$
(28)

Matriz de inercia:

donde:

a : semi-longitud del elemento.

A : área de la sección transversal.

 κ : factor de corte de la sección transversal.

 I_z : momento de inercia con respecto al eje neutro de flexión.

 ρ : densidad del material.

E :módulo de elasticidad longitudinal.

v: coeficiente de Poisson.

N: esfuerzo normal (axial) constante en el elemento.

 $r_z = \sqrt{I_z / A}$: radio de giro de la sección transversal.

Con $I_z = 0$ en la matriz de inercia [m] y $\phi = 0$ en las tres matrices $[k_e]$, $[k_g]$ y [m], el elemento finito se aplica para la viga Bernoulli-Euler.

4.1 Análisis de convergencia con el Método de Elementos Finitos

En la Tabla 1 se muestra los resultados, de un análisis de la convergencia del MEF en la determinación del coeficiente de frecuencia fundamental de una viga Timoshenko, con velocidad de rotación nula (Felix et al. 2010). La sección transversal es rectangular con ancho constante y altura variable en forma parabólica. Al no tener en cuenta la deformación axial, no se obtienen frecuencias de las formas modales axiales.

El parámetro de esbeltez utilizado es: $A_0 L^2 / I_0 = 300$; donde $A_0 = b_0 h_0$; $I_0 = b_0 h_0^3 / 12$ en el empotramiento de la barra con el eje y *L* es la longitud total de la barra. El factor de corte se

calcula con $\kappa = 10(1+\nu)/(12+11\nu)$ adoptándose $\nu = 0.3$. La sección transversal en el extremo

ara la viga son: $L = 1$; $h_0 = 0.2$; $h_1 = 0.05$; $b_0 = b_1 = 0.025$ (ancho constante).										
N° de elementos	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5					
10	3.38628165	11.7689336	26.5951854	46.6658427	71.0448001					
100	3.37398143	11.7248502	26.4438604	46.1408176	69.5136708					
1000	3.37385398	11.7243988	26.4423706	46.1357196	69.4986357					
2000	3.37385302	11.7243954	26.4423593	46.1356810	69.4985219					

libre se define con el ancho b_1 y la altura h_1 . Los valores que definen la geometría adoptada

nara la viga son: L=1: h=0.2: h=0.05: h=h=0.025 (ancho constante)

Tabla 1: Convergencia de los valores de $\Omega_i = \sqrt{\rho A_0 / EI_0} L^2 \omega_i$ en función del número de elementos. $\eta = 0$.

En la Tabla 2 se dan los valores correspondientes a la misma viga, cuando rota con velocidad angular constante definida con el parámetro adimensional $\eta = 10$, donde $\eta = \sqrt{\rho A_0 / EI_0} L^2 \bar{\eta}$. siendo $\bar{\eta}$ la velocidad de rotación de la viga.

N° de elementos	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
10	11.6074237	25.8805102	44.0407905	66.3753084	92.6859627
100	11.6098042	25.7094320	43.5638284	65.4674874	90.8491237
1000	11.6098077	25.7074626	43.5585908	65.4579769	90.8301746
2000	11.6098078	25.7074476	43.5585511	65.4579049	90.8300310

Tabla 2: Convergencia de los valores de $\Omega_i = \sqrt{\rho A_0 / EI_0} L^2 \omega_i$ en función del número de elementos. $\eta = 10$

Ambas tablas muestran que con 2000 elementos, en el rango de frecuencias calculado, se asegura la convergencia a resultados con precisión de cinco dígitos significativos.

En consecuencia, en este trabajo, los resultados obtenidos con el MEF, utilizados para comparar con los hallados con el MCD, se obtuvieron con modelos de 2000 elementos.

5 RESULTADOS NUMÉRICOS

5.1 Perfil longitudinal de la viga

Se consideraron dos formas de sección transversal, rectangular y elíptica, manteniéndose en ambas el ancho de la viga constante mientras que la ley de variación de la altura de cada tramo de la viga está dada por la siguiente expresión adimensional:

$$h_k(x) = c_{0k} + c_{1k} x + c_{2k} x^2$$
(30)

En función de los valores de los coeficientes c_{0k} , c_{1k} y c_{2k} , cada tramo *k*-ésimo resultará con altura constante, con altura de variación lineal o con altura de variación parabólica.

En primer lugar se analiza el modelo, cuyo esquema puede verse en la Figura 2. El mismo consiste de una viga de un tramo con variación parabólica de altura, que se halla elásticamente vinculada al eje de rotación. La rigidez de las restricciones elásticas de la vinculación de la viga al eje de rotación está dada por los parámetros adimensionales K_{ψ} y K_w , cuyas expresiones son:

$$K_{\psi} = \frac{L}{E I_1(0)} \bar{K}_{\psi} \tag{31}$$

$$K_{W} = \frac{L}{E A_{I}(0)} \bar{K}_{W}$$
(32)

siendo \overline{K}_{ψ} la rigidez elástica a rotación y \overline{K}_{W} la rigidez elástica al desplazamiento transversal.

Figura 2: Esquema de una viga Timoshenko rotante de un tramo con variación parabólica de altura y vinculación elástica (Tablas 3 a 7), en la que se observa la malla generada por el MCD (21 nodos).

La geometría del perfil queda definida por 3 parámetros: \overline{h}_A define la altura de la sección transversal en la posición en que la viga se vincula al eje de rotación, \overline{h}_B da la altura de la viga en el extremo libre, y \overline{h}'_B es la pendiente de las fibras extremas del perfil longitudinal en el extremo libre. Con estos parámetros es posible determinar las constantes de la Ec. (30). Al igual que en el MEF, la velocidad de rotación está dada por el parámetro adimensional η , cuya expresión es:

$$\eta = \sqrt{\frac{\rho A_{\rm o}}{E I_{\rm o}}} L^2 \bar{\eta} \tag{33}$$

La Figura 2 muestra además la correspondiente malla de nodos generada mediante la aplicación del MCD. La viga fue discretizada utilizando una distribución irregular de nodos del tipo Chebyshev–Gauss–Lobato (Shu and Chen, 1999).

$$x_{i} = \frac{1 - \cos((i-1)\pi/(n-1))}{2}; \ con \quad i = 1, 2, \dots n$$
(34)

en donde *n* es el número de nodos de la malla. La forma adimensional de la geometría del modelo de la Figura 2 se definió mediante las siguientes relaciones geométricas: $h_B / h_A = 1/2$ y $h'_B = 0$. Los parámetros restantes que definen el modelo son: el coeficiente de Poisson v = 0.3 y la esbeltez $s_1 = \sqrt{300}$. Cabe mencionar que se trata de una esbeltez reducida que justifica la utilización del modelo de viga-Timoshenko.

Las Tablas 3 a 7 muestran los primeros coeficientes de frecuencia de vibración transversal correspondientes al modelo de la Figura 2. En la Tabla 3 se consideran diferentes valores de velocidad de rotación dados por el parámetro adimensional η , incluyéndose también a modo de referencia, los valores de frecuencia correspondientes a la viga sin rotación. Para el modelo

1168

calculado	se adoptó	una	vinculación	elástica	entre	la	viga	y el	eje	de	rotación	definida	con	los

parámetros ac	dimensiona	les $K_{\psi} = 10$	$\mathbf{y} \ \mathbf{K}_{W} = 10 .$				
sección	η		Ω_1	Ω_2	Ω_{3}	$\Omega_{_4}$	Ω_5
	0	MCD	3.10092	13.3192	31.8916	55.9406	83.3145
	U	MEF	3.10092	13.3192	31.8916	55.9406	83.3145
	1	MCD	3.28839	13.5136	32.0893	56.1532	83.5458
raatangular	1	MEF	3.28930	13.5147	32.0902	56.1539	83.5464
rectangular	5	MCD	6.15782	17.5369	36.48.01	60.9867	88.8609
	5	MEF	6.16882	17.5584	36.5000	61.0034	88.8747
	10	MCD	10.7228	26.2510	47.3623	73.65.16	103.196
		MEF	10.7460	26.3078	47.4264	73.7096	103.247
	0	MCD	3.10269	13.3484	32.0214	56.2700	83.9348
	0	MEF	3.10269	13.3484	32.0214	56.2700	83.9348
	1	MCD	3.29015	13.5424	32.2181	56.4807	84.1631
alíptica	1	MEF	3.29106	13.5435	32.2190	56.4815	84.1637
enpuca	5	MCD	6.16012	17.5600	36.5889	61.2744	89.4148
		MEF	6.17115	17.5817	36.6090	61.2913	89.4288
	10	MCD	10.7263	26.2685	47.4378	73.8602	103.612
	10	MEF	10.7495	26.3257	47.5025	73.9189	103.664

Tabla 3: Primeros coeficientes de frecuencia $\Omega_i = \sqrt{\rho A_1(0) / EI_1(0)} L^2 \omega_i$ de una viga Timoshenko rotante de un tramo con variación parabólica de altura y vinculación elástica. $\nu = 0.3$, $s_1 = 17,32$, $h_B / h_A = 1/2$, $h'_B = 0$, $K_{\psi} = 10$, $K_W = 10$.

Puede observarse que los valores correspondientes a la sección elíptica y a la sección rectangular son similares, mostrando que la influencia de la forma de la sección sobre los valores de los coeficientes de frecuencia no es significativa. Se aprecia también que el efecto de rigidización, dado por la rotación, influye muy significativamente en todos los valores de frecuencia calculados.

En las Tablas 4 y 5 se analiza la influencia de la rigidez de la vinculación elástica a rotación consideraron diferentes valores de la rigidez a rotación del vínculo elástico definida por el parámetro K_{ψ} . Los valores van de 0 que corresponde a una articulación a ∞ , que corresponde a un vínculo rígido a rotación. La Tabla 4 corresponde a la viga sin rotación, siendo $\eta = 0$ y la Tabla 5 corresponde a la viga rotante con $\eta = 5$.

sección	K_{arphi}		Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
	0	MCD	-	9.94737	28.7908	54.1737	83.2428
	0	MEF	-	9.94737	28.7908	54.1737	83.2428
	1	MCD	1.93580	10.9012	29.5305	54.7059	83.6299
	5	MCD	2.86810	12.6262	31.2540	56.0574	84.6261
	10	MCD	3.10265	13.3784	32.2311	56.9146	85.2734
rectangular	10	MEF	3.10265	13.3784	32.2311	56.9146	85.2734
	50	MCD	3.33410	14.3410	33.7613	58.4296	86.4611
	100	MCD	3.36645	14.4972	34.0445	58.7368	86.7102
	500	MCD	3.39295	14.6296	34.2929	59.0138	86.9376
	~	MCD	3.39967	14.6639	34.3587	59.0893	87.0016
	w is a second se	MEF	3.39966	14.6638	34.3583	59.0880	86.9990
	0	MCD	-	9.95598	28.8730	54.4472	83.8333
		MEF	-	9.95598	28.8730	54.4472	83.8333
	1	MCD	1.93625	10.9137	29.6207	54.9899	84.2319
	5	MCD	2.86952	12.6495	31.3694	56.3767	85.2663
	10	MCD	3.10443	13.4079	32.3647	57.2620	85.9451
elíptica	10	MEF	3.10443	13.4079	32.3647	57.2620	85.9451
	50	MCD	3.33626	14.3793	33.9278	58.8358	87.2028
	100	MCD	3.36867	14.5371	34.2175	59.1561	87.4685
	500	MCD	3.39522	14.6708	34.4717	59.4452	87.7114
	~	MCD	3.40194	14.7054	34.5391	59.5241	87.7798
	ω	MEF	3.40194	14.7053	34.5387	59.5227	87.7771

Tabla 4: Primeros coeficientes de frecuencia $\Omega_i = \sqrt{\rho A_1(0) / EI_1(0)} L^2 \omega_i$ de una viga Timoshenko rotante de un tramo, con variación parabólica de altura y vinculación elástica. $\nu = 0.3$, $s_1 = 17,32$, $h_B / h_A = 1/2$, $h'_B = 0$, $K_W = 10.000$, $\eta = 0$.

sección	K_{ψ}		Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
	0	MCD	4.96887	15.0980	33.9385	59.6261	89.2077
	0	MEF	4.98447	15.1254	33.9638	59.6460	89.2233
	1	MCD	5.37446	15.7475	34.5761	60.1231	89.5814
	5	MCD	5.95783	17.0308	36.0754	61.3798	90.5339
	10	MCD	6.17291	17.6479	36.9417	62.1752	91.1465
rectangular	10	MEF	6.18400	17.6697	36.9622	62.1924	91.1606
	50	MCD	6.42460	18.4989	38.3330	63.5844	92.2601
	100	MCD	6.46345	18.6441	38.5959	63.8713	92.4923
	500	MCD	6.49600	18.7688	38.8280	64.1305	92.7038
	~	MCD	6.50437	18.8014	38.8900	64.2016	92.7639
	w.	MEF	6.51532	18.8221	38.9080	64.2157	92.7742
	0	MCD	4.96887	15.1029	34.0030	59.8608	89.7345
		MEF	4.98447	15.1304	34.0285	59.8811	89.7504
	1	MCD	5.37471	15.7555	34.6478	60.3680	90.1194
	5	MCD	5.95938	17.0483	36.1707	61.6585	91.1093
	10	MCD	6.17522	17.6714	37.0545	62.4812	91.7528
elíptica	10	MEF	6.18634	17.6934	37.0752	62.4986	91.7672
	50	MCD	6.42795	18.5321	38.4787	63.9480	92.9350
	100	MCD	6.46697	18.6791	38.7484	64.2480	93.1833
	500	MCD	6.49967	18.8054	38.9866	64.5193	93.4102
	~	MCD	6.50808	18.8384	39.0502	64.5937	93.4745
	ω	MEF	6.51907	18.8592	39.0684	64.6080	93.4850

Tabla 5: Primeros coeficientes de frecuencia $\Omega_i = \sqrt{\rho A_1(0) / E I_1(0)} L^2 \omega_i$ de una viga Timoshenko rotante de un tramo, con variación parabólica de altura y vinculación elástica. v = 0.3, $s_1 = 17,32$, $h_B / h_A = 1/2$, $h'_B = 0$, $K_w = 10.000$, $\eta = 5$.

En las Tablas 6 y 7 se adoptó un valor de rigidez a rotación K_{ψ} muy elevado y se hizo variar la rigidez al desplazamiento transversal del vínculo elástico K_w , correspondiendo $\eta = 0$ a la Tabla 6 y $\eta = 5$ a la Tabla 7.

Cabe mencionar que las pequeñas diferencias entre valores obtenidos con el MCD y con el MEF son debidas principalmente a diferencias mínimas en la consideración de efectos de segundo orden de las correspondientes formulaciones en que se basan ambos algoritmos, más que a los aspectos propios de las respectivas metodologías numéricas. Este hecho se comprobó en un trabajo anteriormente publicado por los autores (Felix et al. 2008).

sección	$K_{\scriptscriptstyle W}$		Ω_1	Ω_2	Ω_{3}	$\Omega_{_4}$	Ω_5
	0	MCD	-	4.67221	18.8615	41.2414	68.5917
	0	MEF	-	4.67221	18.8615	41.2414	68.5917
	1	MCD	3.37814	13.8567	29.3571	47.8258	72.5015
	5	MCD	3.39510	14.5067	33.3866	56.1868	81.5378
	10	MCD	3.39722	14.5849	33.8815	57.6700	84.2249
rectangular	10	MEF	3.39722	14.5849	34.8815	57.6700	84.2249
C	50	MCD	3.39891	14.6468	34.2626	58.8118	86.4582
	100	MCD	3.39912	14.6545	34.3091	58.9494	86.7299
	500	MCD	3.39929	14.6606	34.3462	59.0584	86.9451
	~	MCD	3.39967	14.6639	34.3587	59.0893	87.0016
	w (MEF	3.39933	14.6622	34.3554	59.0856	86.9985
	0	MCD	-	4.67434	18.9001	41.4127	69.0207
		MEF	-	4.67434	18.9001	41.4127	69.0207
	1	MCD	3.38039	13.8930	29.4586	48.0013	72.9014
	5	MCD	3.39738	14.5472	33.5539	56.5483	82.1150
	10	MCD	3.39949	14.6259	34.0558	58.0713	84.9032
elíptica	10	MEF	3.39949	14.6259	34.0558	58.0713	84.9032
	50	MCD	3.40118	14.6882	34.4418	59.2404	87.2182
	100	MCD	3.40139	14.6959	34.4889	59.3810	87.4991
	500	MCD	3.40156	14.7021	34.5264	59.4924	87.7213
	~	MCD	3.40194	14.7054	34.5391	59.5241	87.7798
	ŵ	MEF	3.40161	14.7036	34.5358	59.5201	87.7765

Tabla 6: Primeros coeficientes de frecuencia $\Omega_i = \sqrt{\rho A_1(0) / E I_1(0)} L^2 \omega_i$ de una viga Timoshenko rotante de un tramo, con variación parabólica de altura y vinculación elástica. $\nu = 0.3$, $s_1 = 17,32$, $h_B / h_A = 1/2$, $h'_B = 0$, $K_{\psi} = 10.000$, $\eta = 0$.

En las Tablas 6 y 7 se observa además que $K_w = 0$ representa un caso singular en el que se tiene un modo de vibración de cuerpo rígido, con inestabilidad para la primera frecuencia y valores significativamente más reducidos para las frecuencias superiores, que los correspondientes valores de frecuencia obtenidos para $K_w \neq 0$.

sección	K_{W}		Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
	0	MCD	-	9.23218	23.8221	46.4581	74.2689
	0	MEF	-	9.24956	23.8465	46.4792	74.2858
	1	MCD	6.33882	17.3807	32.7401	52.1826	77.8153
	5	MCD	6.47107	18.5236	37.6131	60.7840	86.6639
	10	MCD	6.48752	18.6626	38.2630	62.5174	89.6128
rectangular	10	MEF	6.49840	18.6831	38.2810	62.5328	89.6263
	50	MCD	6.50066	18.7725	38.7647	63.8723	92.1438
	100	MCD	6.50231	18.7861	38.8260	64.0360	92.4541
	500	MCD	6.50362	18.7970	38.8748	64.1658	92.6999
	~	MCD	6.50437	18.8014	38.8900	64.2016	92.7639
	~	MEF	6.51492	18.8206	38.9055	64.2138	92.7744
	0	MCD	-	9.23328	23.8504	46.6014	74.6467
		MEF	-	9.25069	23.8750	46.6228	74.6640
	1	MCD	6.34246	17.4109	32.8168	52.3283	78.1693
	5	MCD	6.47477	18.5595	37.7589	61.0983	87.1695
	10	MCD	6.49123	18.6991	38.4166	62.8740	90.2193
elíptica	10	MEF	6.50215	18.7197	38.4348	62.8895	90.2330
	50	MCD	6.50437	18.8094	38.9236	64.2581	92.8356
	100	MCD	6.50602	18.8230	38.9855	64.4249	93.1554
	500	MCD	6.50733	18.8340	39.0348	64.5571	93.4085
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MCD	6.50808	18.8384	39.0502	64.5937	93.4745
	w	MEF	6.51867	18.8577	39.0658	64.6060	93.4850

Tabla 7: Primeros coeficientes de frecuencia  $\Omega_i = \sqrt{\rho A_1(0) / E I_1(0)} L^2 \omega_i$  de una viga Timoshenko rotante de un tramo, con variación parabólica de altura y vinculación elástica. v = 0.3,  $s_1 = 17,32$ ,  $h_B / h_A = 1/2$ ,  $h'_B = 0$ ,  $K_{\psi} = 10.000$ ,  $\eta = 5$ .

Las Tablas 4 a 7 muestran que la influencia de la rigidez de los vínculos elásticos es significativa en todas las frecuencias calculadas, siendo dicha influencia marcadamente superior en el caso de la rigidez a rotación.

La Figura 3 muestra las primeras formas modales de la viga rotante de un tramo con  $\eta = 5$ . Se consideraron dos casos, a) con rigidez a rotación infinita y b) con rigidez a rotación nula.

En este último caso se aprecia gráficamente que la primer forma modal corresponde a un modo de vibración de cuerpo rígido, como era de esperarse.

Para la determinación de las formas modales se generó una malla de 65 nodos ya que no se utilizó interpolación nodal. Se destaca que la elevada cantidad de nodos no generó ningún inconveniente al correr el algoritmo codificado y los tiempos de ejecución siguieron siendo extremadamente breves.



Figura 3: Primeros modos de vibración transversal de la viga Timoshenko rotante de un tramo esquematizada en la Figura 2, obtenidos con una malla MCD de 65 nodos.  $\eta = 5$ ,  $K_w \rightarrow \infty$ .

En el esquema de la Figura 4 se muestra una viga de 2 tramos con variación continua y discontinua de la sección transversal, siendo  $l_1 = l_2 = 1/2$ ,  $\nu = 0.3$  y  $s_1 = \sqrt{300}$ . Ambos tramos de la viga tienen variación parabólica de altura. La geometría del primer tramo se define mediante las siguientes relaciones:  $h_{B1}/h_{A1} = 1/2$ ,  $h'_{B1} = 0$  y la del segundo por  $h_{A2}/h_{B1} = 1/2$ ,  $h'_{B2} = 1/2$  y  $h'_{A2} = 0$ , donde el subíndice A se refiere a la primer sección del tramo en consideración y el subíndice B hace referencia a la última sección de dicho tramo. Los resultados correspondientes al modelo de la Figura 4 se dan en las Tablas 8 a 10.



Figura 4: Esquema de una viga rotante de dos tramos con variación parabólica de altura en cada tramo y vinculación elástica (Tablas 8 a 10), en la que se observa la malla generada por el MCD (21 nodos por tramo).

sección	η		$\Omega_1$	$\Omega_2$	$\Omega_{3}$	$\Omega_{_4}$	$\Omega_5$
	0	MCD	3.04944	9.30931	20.9739	37.0491	55.1098
	0	MEF	3.04944	9.30931	20.9739	37.0491	55.1098
	1	MCD	3.32801	9.56672	21.2569	37.3058	55.4062
ractangular	1	MEF	3.32836	9.56733	21.2573	37.3063	55.4066
Tectaliguiai	5	MCD	6.71762	14.4460	27.0206	42.9803	61.9989
		MEF	6.72325	14.4554	27.0287	42.9923	62.0071
	10	MCD	11.3687	23.3896	39.2185	56.8420	78.3137
	10	MEF	11.3855	23.4109	39.2433	56.8774	78.3387
	0	MCD	3.05037	9.32048	21.0136	37.1743	55.3128
	0	MEF	3.05037	9.32048	21.0136	37.1743	55.3128
	1	MCD	3.32900	9.57783	21.2964	37.4302	55.6084
alíptica	1	MEF	3.32935	9.57843	21.2968	37.4308	55.6088
enplica	5	MCD	6.72017	14.4578	27.0591	43.0916	62.1859
	5	MEF	6.72581	14.4671	27.0672	43.1037	62.1942
	10	MCD	11.3734	23.4059	39.2570	56.9363	78.4787
	10	MEF	11.3904	23.4273	39.2820	56.9721	78.5041

Tabla 8: Primeros coeficientes de frecuencia  $\Omega_i = \sqrt{\rho A_1(0) / EI_1(0)} L^2 \omega_i$  de una viga Timoshenko rotante de dos tramos, con variación parabólica de altura y vinculación elástica. v = 0.3,  $s_1 = 17,32$ ,  $l_1 / L = 1/2$ ,  $l_2 / L = 1/2$ ,  $h_{B1} / h_{A1} = 1/2$ ,  $h'_{B1} = 0$ ,  $h_{A2} / h_{B1} = 1/2$ ,  $h'_{B2} / h_{A2} = 1/2$ ,  $h'_{A2} = 0$ ,  $K_{\psi} = 10$ ,  $K_W = 10$ .

La Tabla 8 muestra los primeros coeficientes de frecuencia considerando vinculación elástica de la viga al eje de rotación, dada por  $K_{w} = 10$  y  $K_{w} = 10$ .

Considerando que el modelo de la Figura 3 se puede obtener al quitar masa del modelo de la Figura 2, se pueden comparar los resultados de la Tabla 3 con los de la Tabla 8.

De dicha comparación surge que cuando la viga no rota el coeficiente de frecuencia fundamental disminuye en el modelo de 2 tramos, mientras que cuando la viga rota el coeficiente de frecuencia fundamental aumenta para dicho modelo, adjudicándose en consecuencia esta diferencia, al efecto de la fuerza centrífuga.

En la Tabla 9 se consideran diferentes valores de  $K_{\psi}$  y se adopta  $K_{w} = 10.000$ , mientras que en la Tabla 10 se consideran diferentes valores de  $K_{w}$  y se adopta  $K_{\psi} = 10.000$ .

Sección	$K_{\psi}$		$\Omega_1$	$\Omega_2$	$\Omega_3$	$\Omega_4$	$\Omega_5$
	0	MCD	4.96306	11.7620	24.5829	39.9078	60.5985
	0	MEF	4.98161	11.7765	24.5960	39.9241	60.6083
	1	MCD	5.75828	12.5738	25.2274	40.6671	61.0072
	5	MCD	6.52271	13.9507	26.5335	42.4758	62.0440
	10	MCD	6.72670	14.4923	27.1539	43.5046	62.6958
Rectangular	10	MEF	6.73235	14.5018	27.1621	43.5170	62.7045
	50	MCD	6.92745	15.1284	27.9773	45.0857	63.8268
	100	MCD	6.95534	15.2258	28.1128	45.3718	64.0520
	500	MCD	6.97814	15.3071	28.2279	45.6205	64.2539
	œ	MCD	6.98391	15.3280	28.2578	45.6864	64.3087
		MEF	6.98885	15.3368	28.2648	45.6962	64.3160
	0	MCD	4.96306	11.7633	24.5996	39.9637	60.7453
		MEF	4.98161	11.7779	24.6128	39.9802	60.7553
	1	MCD	5.75881	12.5767	25.2478	40.7314	61.1598
	5	MCD	6.52474	13.9594	26.5655	42.5694	62.2187
	10	MCD	6.72925	14.5041	27.1926	43.6198	62.8896
Elíptica	10	MEF	6.73491	14.5136	27.2009	43.6323	62.8985
	50	MCD	6.93053	15.1441	28.0257	45.2383	64.0614
	100	MCD	6.95849	15.2421	28.1628	45.5313	64.2958
	500	MCD	6.98135	15.3239	28.2792	45.7862	64.5060
	~	MCD	6.98715	15.3449	28.3095	45.8537	64.5631
	œ	MEF	6.99210	15.3538	28.3166	45.8636	64.5706

Tabla 9: Primeros coeficientes de frecuencia  $\Omega_i = \sqrt{\rho A_1(0) / EI_1(0)} L^2 \omega_i$  de una viga Timoshenko rotante de dos tramos, con variación parabólica de altura y vinculación elástica.  $\nu = 0.3$ ,  $s_1 = 17,32$ ,  $l_1 / L = 1/2$ ,  $l_2 / L = 1/2$ ,  $h_{B1} / h_{A1} = 1/2$ ,  $h'_{B1} = 0$ ,  $h_{A2} / h_{B1} = 1/2$ ,  $h'_{B2} / h_{A2} = 1/2$ ,  $h'_{A2} = 0$ ,  $K_W = 10.000$ ,  $\eta = 5$ .

Sección	$K_{w}$		$\Omega_1$	$\Omega_2$	$\Omega_3$	$\Omega_4$	$\Omega_5$
	0	MCD	-	8.52058	18.3078	31.5027	52.1228
	0	MEF	-	8.52570	18.3200	31.5127	52.1330
	1	MCD	6.89095	14.7612	26.3466	38.4010	56.1581
	5	MCD	6.96552	15.2201	27.9351	44.2198	62.1649
	10	MCD	6.97460	15.2739	28.1002	44.9788	63.2658
rectangular	10	MEF	6.97953	15.2827	28.1072	44.9891	63.2737
	50	MCD	6.98182	15.3164	28.2258	45.5473	64.1056
	100	MCD	6.98273	15.3217	28.2411	45.6155	64.2063
	500	MCD	6.98345	15.3259	28.2533	45.6696	64.2862
	$\infty$	MCD	6.98391	15.3280	28.2578	45.6864,	64.3087
		MEF	6.98857	15.3358	28.2635	45.6936	64.3143
	0	MCD	-	8.52171	18.3174	31.5391	52.2495
	0	MEF	-	8.52692	18.3302	31.5500	52.2615
	1	MCD	6.89422	14.7774	26.3911,	38.4712	56.2746
	5	MCD	6.96876	15.2369	27.9865	44.3743	62.3821
	10	MCD	6.97784	15.2908	28.1518	45.1409	63.5040
elíptica	10	MEF	6.98304	15.3005	28.1602	45.1541	63.5139
	50	MCD	6.98506	15.3333	28.2775	45.7137	64.3571
	100	MCD	6.98596	15.3386	28.2928	45.7823	64.4593
	500	MCD	6.98668	15.3428	28.3049	45.8368	64.5402
	~	MCD	6.98715	15.3449	28.3095	45.8537	64.5631
	$\sim$	MEF	6.99208	15.3537	28.3166	45.8639	64.5713

Por otra parte, las Tablas 9 y 10 muestran que la forma de la sección transversal, (rectangular o elíptica), no influye significativamente en los valores de frecuencia obtenidos, aún en presencia de fuertes discontinuidades de la sección.

Tabla 10: Primeros coeficientes de frecuencia  $\Omega_i = \sqrt{\rho A_1(0) / EI_1(0)} L^2 \omega_i$  de una viga Timoshenko rotante de dos tramos, con variación parabólica de altura y vinculación elástica. v = 0.3,  $s_1 = 17,32$ ,  $l_1 / L = 1/2$ ,  $l_2 / L = 1/2$ ,  $h_{B1} / h_{A1} = 1/2$ ,  $h'_{B1} = 0$ ,  $h_{A2} / h_{B1} = 1/2$ ,  $h'_{B2} / h_{A2} = 1/2$ ,  $h'_{A2} = 0$ ,  $K_{\psi} = 10.000$ ,  $\eta = 5$ .

En la Figura 5 se presentan las primeras formas modales de la viga rotante de 2 tramos, esquematizada en la Figura 4, para los casos en que  $K_{\psi} \to \infty$  y  $K_{\psi} = 0$ .

En este caso puede apreciarse la discontinuidad en la pendiente de las formas modales en correspondencia con la discontinuidad en la sección transversal que se produce en la unión de los dos tramos de la viga. Esto podría acelerar la fatiga de la pieza.

Debido a que las formas modales obtenidas corresponden a la viga rotante con  $\eta = 5$ , se desprende que la rigidización dada por la fuerza centrífuga no evita el efecto localizado mencionado.



Figura 5: Primeros modos de vibración transversal de la viga Timoshenko rotante de 2 tramos esquematizada en la Figura 4, obtenidos con una malla MCD de 45 nodos por tramo.  $\eta = 5$ ,  $K_w = \infty$ .

#### **6** CONCLUSIONES

Se analizaron dos formas diferentes de sección transversal, rectangular y elíptica, sin que se apreciaran diferencias significativas en los correspondientes valores de los coeficientes de frecuencia determinados.

Por otra parte la posibilidad de considerar vinculación elástica de la viga al eje de rotación, permitió comprobar que la rigidez al giro de la viga en dicha unión tiene una influencia mayor sobre los coeficientes de frecuencia que la correspondiente rigidez al desplazamiento transversal, tanto para la viga sin rotación ( $\eta = 0$ ), como para el caso de la viga con rotación ( $\eta = 5$ ), y que su consideración en el modelo resulta entonces necesaria para obtener resultados de precisión aceptable.

Las formas modales determinadas muestran que en el caso de la viga con discontinuidad en la sección transversal se generan efectos de flexión localizados que pueden acelerar la fatiga de la pieza rotante, con lo cual su diseño no resulta aconsejable (Figura 5).

En cuanto a los métodos numéricos utilizados, se comprobó que ambos dan resultados muy precisos resaltando en el MEF la versatilidad de diseño y en el MCD la velocidad de cálculo y el bajo costo computacional.

### AGRADECIMIENTOS

Este trabajo se desarrolló en el Departamento de Ingeniería bajo el auspicio de la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur (UNS) y del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

### REFERENCIAS

- Banerjee, J.R., Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. *Journal of Sound and Vibration*, 233: 857-875. 2000.
- Banerjee J.R. Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beam. *Journal of Sound and Vibration*, 247:97-115. 2001.
- Banerjee, J.R., H. Su y Jackson, D.R., Free vibration of rotating tapered beams using the dynamic stiffness method. *Journal of Sound and Vibration*, 298: 1034-1054. 2006.
- Bambill, D.V., Felix, D.H. y Rossi, R.E. Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method. *Journal of Structural Engineering and Mechanics*, 34, (2) 231-245, 2010.
- Bellman R. y Casti. J. Differential quadrature and long-term integration. J. Math. Anal. App., 34, 235-238. 1971.
- Bert C.W. and Malik. M. Differential quadrature method in computational mechanics: A review. *Applied Mechanics Review* 49:1-28. 1996.
- Burden R.L. and Faires J.D., Numerical Analysis (7th Edition). Brooks/Cole, 2001.
- Dumitru I Caruntu, Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness, *Mechanics Research Comunications* 36: 391-404. 2009.
- Felix, D.H., Rossi, R.E. y Bambill, D.V., Vibraciones transversales por el método de cuadratura diferencial de una viga Timoshenko rotante, escalonada y elásticamente vinculada", *Mecánica Computacional* XXVII:1957-1973. 2008.
- Felix, D.H., Bambill, D.V. y Rossi, R.E, Análisis de vibración libre de una viga Timoshenko escalonada, centrífugamente rigidizada, mediante el método de cuadratura diferencial, *Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería* 25(2): 111-132, 2009a.

- Felix, D.H., Rossi, R.E, Bambill, D.V., Vibración transversal de vigas Timoshenko rotantes de sección transversal variable por el método de cuadratura diferencial, *Mecánica Computacional Vol* XXVIII: 467-484, 2009b.
- Felix, D.H., Bambill, D.V., Rossi, R.E, Samanta J. E. y Ratazzi A.R., Determinación de frecuencias en vigas Timoshenko rotante de sección transversal variable en forma continua por tramos. *Mecánica Computacional Vol XXIX*: 809-827, 2010.
- Karami, G. Malekzadeh P., Shahpari S.A., A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions. *Engineering Structures* 25:1169-1178. 2003.
- Lin S.C. and Hsiao K.M. Vibration analysis of a rotating Timoshenko beam. *Journal of Sound and Vibration* 240:303-322. 2001.
- Petyt M., Introduction to Finite Element Vibration Analysis. Cambridge Univ. Press, 1990.
- Przemieniecki J. S., Theory of Matrix Strucutral Analysis. McGraw-Hill, Inc., 1968.
- Rossi, R.E. Gutiérrez R.H. y Laura P.A.A. Dynamics of transversely vibrating beams using four engineering theories. *Journal of Acoustical Soc. Am.*, 89:2456-2458. 1991.
- Rossi R.E. Introducción al análisis de Vibraciones con el Método de Elementos Finitos. Editoria. EdiUNS, Universidad Nacional del Sur, Bahía Blanca, Argentina. 238 pp. IBSN 978-987-1171-71-2. 2007.
- Shu C. and Chen W., On optimal selection of interior points for applying discretized boundary conditions in DQ vibration analysis of beams and plates. *Journal of Sound and Vibration*, 222(2): 239-257, 1999.
- Wang, G. y Wereley, N.M., Free vibration analysis of rotating blades with uniform tapers. *American Institute of Aeronautics and Astronautics Journal*, 42 (12): 2429-2437. 2004.