Mecanica Computacional Vol. XXIII, pp. 1969-1994
G.Buscaglia, E.Dari, O.Zamonsky (Eds.)
Bariloche, Argentina, November 2004

SIMULATION OF WANDERING PHENOMENA IN BUBBLE PLUMES
VIA A K- ¢ MODEL AND A LARGE-EDDY-SIMULATION (LES)
APPROACH

Fabian A. Bombardelli*, Gustavo C. Buscaglia, Marcelo H. Garciaf, and Enzo A. Darif

*Dept. of Civil and Environmental Engineering, University of California at Davis
Engineering Ill, One Shields Ave., Davis, CA 95616, USA
e-mail: fabombardelli@ucdavis.edu, web page: http://cee.engr.ucdavis.edu

TCentro Abmico Bariloche and Instituto Balseiro
Av. Bustillo Km. 9500, San Carlos de Bariloche, 840 Rlegro, Argentina
e-mail: (gustavo)(darie)@cab.cnea.gov.ar, web page: http://www.cab.cnea.gov.ar

tVen Te Chow Hydrosystems Laboratory, Dept. of Civil and Environmental Engineering
University of lllinois at Urbana-Champaign
205 North Mathews Ave., Urbana, IL 61801, USA
e-mail: mhgarcia@uiuc.edu, web page: http://www.vtchl.uiuc.edu

Key Words: bubble plumes, plume wanderingcknodel, Large-Eddy-Simulation approach
parallel computing.

Abstract. In this paper, we focus on numerical simulations of the wandering phenomeno
bubble plumes, obtained with a new comprehensive model. The theoretical model has
developed from the theory of multi-component fluids. We have implemented that mode
finite-element, parallel platform.

After a brief discussion about the theoretical/numerical model, we describe and analyz
simulations of the wandering motion using the ktodel. We show that this solution replicate:
wandering only for a relatively short period of time. The reasons for this fact are analyz
Then, we present results obtained with the use of a Large-Eddy-Simulation (LES) apprt
These results notably mimic observations of bubble plume wandering without any restricti

Finally, we employ the unsteady results of the LES approach to perform a detailed ana
of turbulence in bubble plumes.
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1 INTRODUCTION

Multi-phase flows appear in numerous forms in Nature. They can be found in sediment-I
flows in rivers, in underflows associated with volcanic eruptions, in turbidity currents, in
bubbly wake of ships and in liquid-vapor mixtures in nuclear reactors, among many ott
This article addresses basic aspects of the flow in a bubble plume, which is a simple pare
of multiphase flow that appears in a many situations: They can be used as breakwate
destratification devices, and as containment for oil spills; they are also encountered in oil
blowouts and in nuclear devices.

Although multiphase flows have been very well-known for long time, the theory to expl
them is still under development. Mass, momentum, and energy equations for each of the
are nowadays available. These equations are much more complex than their single-phase
terparts and they pose new challenges to their analytical and numerical treatment.

Several numerical solutions of the two-phase flow equations have been presented in tr
decade. Still, the prediction capability of the models is not fully satisfactory, with the excep
of afew cases. The advancement of computational power has not provided means to comp
the inherent theoretical difficulties of multi-phase flows.

The modeling of bubble plumes has received attention in the engineering community
special emphasis in the analysis of the flow in reactors and in ladles. The results typically :
an acceptable prediction of time-averaged variables, but the analysis of turbulence is far
being well established. Very often, the description of turbulence in bubble plumes detern
the difference between having a physically correct result, exceeding the issue of accuracy
solution.

In this paper, we devote our efforts to the simulation and analysis of the phenomenc
wandering in bubble plumes. We focus on the numerical strategies for the replication o
wandering motion as well as the understanding of the interplay between eddies and bu
during the quasi-period. The analysis include simulations in two and three dimensions.

2 THE WANDERING PHENOMENON. MODELING AND MEASUREMENTS

Plume wandering has received scientific attention for about fifty years now. It has been obs
not only in bubble plumes but also in single-phase, thermal plumksds believed to be a
buoyancy-driven instability enhanced by the presence of walls. It is worth pointing out tha
phenomenon has nothing to do either with a sort of “Magnus effeati; with “instabilities
produced by excessive waves”.

Typically, the bubbles swarm from side to side in the three dimensional space in a rar
manner. The motion has a quasi-period that depends on the airflow rate of the plume, ar
aspect ratio of the container. Deln@if al# found experimentally that the frequency of the
wandering motion increases with the aspect rati&) for a constant airflow rate up to a value
of AR ~ 4, after which a constant value for the frequency is attained. Larger airflow re
producdarger frequency values, i.esmallerperiods. These trends were confirmed by Rens
and Roig®
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One set of measurements that has motivated much work during the last ten years i
performed by Beckeet al.® Fig. 1 shows pictures of a bubble plume undergoing wanderi
in a box of 0.5 m of width, 1.5 m of water depth, and 0.08 m of thickness perpendicula
the paper. Beckest al. obtained velocity signals with Laser Doppler Aenemometry (LDA), ar
presented time-averaged velocity fields.

Figure 1. Wandering motion in a bubble plume. Experiments by Beekal. (1994). Source: Sokolichin and
Eigenberger (1999).

Other measurements associated with wandering, in containers of different size and <
were presented by Mudd al.,” Mudde and Van Den AkkétBorcherset al.° Beckeret al.,'°
Lefebvre and Guy! Pflegeret al,*? Rensen and RoigBrennet al,*2 and Buwa and Ranadé.

From the numerical point of view, the wandering phenomenon was the subject of se'
works, all of them employing finite differences. The state-of-the-art of the modeling of mt
phase flows is such that there is no ample consensus on basic issues. For instance, \
choose to perform an Eulerian description of the disperse phase, or a Lagrangean one
could also adopt a full two-phase flow model or variants of it. In what follows, we review so
of the previous works on the subject.

Tomiyama and Shimadastated that only a multi-group modeling of bubble columns (i.e
including processes of break-up and coalescence) guarantees the replication of wanc
whereas Sokolichin and Eigenberg®n the contrary, obtained wandering with a monodis
perse model. Several researchers have also employed complex models to reproduce wan
all of them based on the two-fluid model (TFM). This means that there is still a debate on
to model wandering and that, following Loththe issue is still “what to model” rather than
“how to model”.

It is intuitive to think that the numerical scheme is crucial in allowing for the replication
wandering. Very diffusive schemes could preclude the motion altogether. Sokadichir®
showed that solutions obtained with a very simple model (and without any turbulence clos
using both an “upwind” scheme and a second-order TVD scheme were able to simulate we
ing. However, eddies in the upwind solution did not show the level of detail in the length sc
of the TVD solution. Sokolichiret al. also concluded that Lagrangean and Eulerian approacl|
offer similar results, provided that a large number of particles is used (they suggested more
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100,000 particles). Later on, Sokolichin and Eigenbéfgeproduced wandering again with &
simple model and the kturbulence closure. In turn, Deehal!® could not obtain wandering
with the k< closure, but they could with a LES approach. Mudde and Simonin, on the oi
hand?° stated that the addition of the lift force is mandatory to replicate wandering with the
TFM, a force that was not included in most of the previous (successful!) simulations.

This survey indicates that there are different alternatives to model two-phase flows in ge
and bubble plumes or columns in particular. No agreement or consensus has been attaine

Since the models developed in this work were implemented in a stabilized finite eler
platform, there is a clear question as to whether or not a stabilized-finite-element code
replicate wandering. We employ a quite simple two-fluid model with both RANS and L
turbulent closure, so as to address the effect of this closure on wandering prediction.

3 THEORETICAL AND NUMERICAL MODELS

In this section, we briefly review the theoretical and numerical models we developed in
work. We have presented more details in MECOM 2002 (see Buscemgih 2002%); in
Buscagliaet al,;>> Bombardelli, 20032 Bombardelliet al., 20032* Bombardelli, 2004? and
Bombardelliet al., 20042°

3.1 Theoretical formulation

The equations of the TFM are obtained through ensemble averaging of the exact conser
equations for each phase in a multi-phase flow. According to Drew and PasSsua, model
reads:

QL) 4 div (o o) (1)) = T @
QPR | iy (o (o) (i) @ k) = v [on () + T3)] +
+ g (pr) b + My + v ™ T (2)

for the conservation equations of mass and momentum of the phases, respectively. (Notic
these are in fact four equations in an air-water mixture: two for each phase.) In (1) and
the subscript stands forg in the case of the gaseous phase, and forthe liquid counterpart.
The symbol( - ) is employed to denote the ensemble average operator, whikethe volume
fraction of phase; p, anduy; are the density, and the velocity vector of phasdt is worth
pointing out that the stress tensor indicated with the supersgrp$ the result of the process
of ensemble averaging. The sum of both stress tensors is denoteéd by (T}) + T{*. T

—

indicates the interfaciahass transfesource § _, I';, = 0), andvg,;™ I, expresses the interfacial
momentunexchange due tmasgransfer.b, denotes the body forcé/, is the interfacial-force
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and® refers to the tensor product. It can be shown that

3 (v;;im Ty + Mk> — STF 3)
k

whereST F represents the force coming from surface tension.

Our model definesixtureequations in terms of the velocity and density of the liquid ar
the gas’? In addition, certain non-linear terms are eliminated under the umbrella of the *
lute plume” hypothesis. These two steps allow for the recovery of a Navier-Stokes-equa
structure for the mass and momentum conservation expressions (the forces in the mom
equations cancel out). Besides the ensemble average embedded in the TFMjredhar-
eragingor filtering is formally necessary to account for turbulence. Time averaging is usui
associated to RANS-type approaches; filtering is associated with Large-Eddy-Simulation (|
approaches. Applying now the Reynolds’ decomposition or the filtering, and denoting witk
subscriptn the mixture variables, the final equations read:

3/)m . —
W + div (pm um) = 0 (4)
p@tu +div (pm Ui @ Up,) + VP = div (o), — pmgk (5)

where,( - ) indicates either Reynolds-averaging or filtering. The tef@q), = —pn, u,, @ u,,
corresponds to Reynolds stresses in RANS and to residual stresses i A#spting a New-
tonian model defining the mixture density

Pm = pPe Q¢ + Pg Q4 (6)
we obtain
. — 1 (0p* —
divu, = —— |45 +un-Vp" 7
\YED p*(@t +u Vp) (7)
a :n = - ~ . = =
p*% 4 0" (U - V) Uiy + VP = diV [pr (Vi + V)] = pmgk (8)

wherep* may be taken ag, (Boussinesq approximation) or as; ur is the dynamic viscosity.

For the gaseous phase, our code includes several treatments of the mass and mon
equationg* The mass conservation equations result, with both ensemble and turbulent av
ing:??

%@ + div (<co> <u_;>) = S, +div (@_:;TS% v@) (9)
%m + div (m <u_:,>) — Sy + div (ﬁgcg v@) (10)
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with Cp andCy denoting the concentrations of gaseous oxygen and nitrogen, respediyely
andSy indicating the mass transfer rates, &gl referring to the Schmidt number.
In this paper we adopt an algebraic equation of the gas velocity:

Uy = up + wyk (11)

wherew, indicates the bubble-slip velocity. The model has been extended in the refere
given above so as to include a full momentum equation for the gas and the simulation of b
up and coalescence of bubbles.

3.2 Numerical treatment

The above equations were implemented in a parallel code based upon the finite element m
This code is a long-term development of Centrémitco Bariloche, Argentina. Reports on suc
cessive stages of the code can be found in Busc&tjliaw,>° Buscagliaet al. ! and Canterd?
Subroutines corresponding to the two-phase flow were coded at the Ven Te Chow Hydrosy:
Laboratory, University of lllinois at Urbana-Champaign, in the context of the Ph.D. researc
the first author. Details about the code can be found in Buscagt&? and Bombardellf®

In what follows, we will summarize some of the main features of the final implementati
The model employs an equal order formulation stabilized by pressure gradient projection,
posed by Codina and Blaste® Several methods provide stability for the convective tern
SUPG, SGS and GLS. In addition, diverse interpolation schemes are implemented.

In this paper, we have used bilinear quadrilateral elements in the 2D simulations, anc
ear tetrahedral elements in the 3D counterparts. The submodels associated with the turb
treatment, the gaseous phases, and the liquid chemistry variables are advanced in time ¢
posing the time step into several substeps. The 3D cases were run in the IA-64 Linux Clus
the National Center for Supercomputing Applications (NCSA) at Urbana-Champaign.

4 NUMERICAL RESULTS

Simulations in 2D and 3D, using diverse models, are reported. The simulations were carrie
using ak — ¢ model and a LES approach, with the same airflow rate as in the experiment
Beckeret al.® corresponding to a superficial velocity of 1.6 mm/s. Whereas the first techni
has been used in several papers, the application oftbES8s type of flovhas been scaréé.

4.1 Simulations in two dimensions

Several papet$162° have shown that 2D simulations of the dynamic behavior of bubk
columns lead to an overestimation of the eddy viscosity with a factor of about 5 to 10, as
posed to 3D simulations. Therefore, the transient character of the phenomenon is damped
simulation, and the run is incapable of reproducing the wandering phenomenon. A steady
Is reached after some seconds. In 3D, overdiffusive numerical schemes could also overes
the eddy diffusivity and thus dampen the 3D simulations as well.
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1.5m

0.5m

Figure 2: Fine mesh employed in the 2D computation of flow in a bubble column.

A quite extensive set of numerical tests, including variations in mesh, time step, stabilize
techniques and closure models was undertaken to assess our model and numerical formt

Two 2D meshes were employed. The relatively “coarse” mesh contains 7,500 elements
densification at the boundaries (50 x 150 in horizontal and vertical directions, respectively’
the fine mesh (Fig. 2) contains 30,000 elements (100 x 300). The “coarse” mesh corresj
to the finest grid employed by Sokolichin and Eigenberger in their 2D simulations.

The time step was varied between 0.1 and 0.0001 seconds. For the stabilization techn
the SUPG and SGS were alternatively used. In most of the rurddhdardk — ¢ model was
employed, as done by Sokolichin and Eigenbet§dtflegeret al.*? and Buwa Ranad¥. A
constant value for the bubble-slip velocity equal to 0.2 m/s was initially used, but the alget
model of Wiestet al. was also employed. The mass transfer has been suppresed in the
Table 1 summarizes all the runs, which cover a different turbulent models, time and sg
steps, stabilization techniques and bubble-slip models.

Despite the wide range of numerical and physical parameters varied during the tests
cluding the simulation of processes of break-up and coalescence, wandering could not k
produced in the 2D simulations, i.e., a final steady-state condition was attaires result is
in agreement with most of the previous tests found in the literature. As an illustration, Fi
3 shows the time series of a surrogate of the mean kinetic energy of the flow field, obte
as: [, 1/2 pm u® d§2, where(Q refers to the whole domain. It can be seen that a steady st
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Tests \ D1 \ D2 \ D3 \ D4 D5
Mesh Coarse Coarse Fine Fine Fine
Model Alg. Alg. Alg. Alg. Alg..
Time step (sec.) 0.1 0.01 0.1 0.01 0.1
Stabil. technique SUPG SUPG SUPG SUPG SGS
Rel. velocity | Ct=0.2 m/s| Ct=0.2 m/s| Ct=0.2 m/s| Ct=0.2 m/s| Ct=0.2 m/s
Size groups NO NO NO NO NO
Tests \ D6 D7 \ D8 \ D9 \
Mesh Fine Fine Fine Fine
Model Alg. Mom.-gas eqn| Mom.-gas egn| Mom.-gas eqn
Time step (sec.) 0.0001 0.01 0.01 0.01
Stabil. techniqgue SUPG SUPG SUPG SUPG
Rel. velocity | Ct=0.2 m/s Full Full Full
Size groups NO YES YES NO

Table 1: Summary of 2D tests for the study of wandering effects in bubble columns.

Plots of the vertical velocity and turbulent kinetic energy fields for the steady-state situe
(see Fig. 4) show qualitative agreement with the measurenfeMslocities are smaller than
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is attained after the kinetic energy reaches a peak. Similar evolutions were obtained in &
cases tested.

Figure 3: Time evolution of a surrogate of the kinetic energy of the flow in the 2D simulation of a bubble plurr
a box.
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Figure 4: Vertical velocity (left) and turbulent kinetic energy (right) obtained in the 2D simulation of a bub
plume in a box. Values in m/s and?fe?, respectively.

the measured ones due to excessive eddy viscosity (see Bombardeff)2004tice that the
maximum value of the turbulent kinetic energy is smaller than 0.8°mFig. 5 depicts the
eddy viscosity obtained from these two-dimensional simulations. The average value of
variable is 3 x 10% m?/s.

Similar results were obtained in the simulations performed with other combinations of
above variables. All the runs attained a final steady-state condition.

The conclusion of this section is thabneof the investigated models and schemes (whic
cover some alternatives not considered in the literature) reproduces in 2D the spontaneous
periodic behavior identified in the experiments.

4.2 Simulations in three dimensions

The runs in three dimensiions were performed first with khe ¢ model and, then, with the
LES treatment. Table 2 summarizes those runs undertaken with three-dimensional setups
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Figure 5: Eddy viscosity obtained in the 2D simulation of a bubble plume in a box. Valuegsn m

| Tests | D10 | D11 | D12 | D13 | D14 |
Mesh Coarse Coarse Fine Fine Fine
Model Alg. Alg. Alg. Alg. Alg.
Time step (sec.) 0.1 0.01 0.1 0.01 0.1
Stabil. technique SUPG SUPG SUPG SUPG SGS
Rel. velocity | Ct=0.2 m/s| Ct=0.2 m/s| Ct=0.2 m/s| Ct=0.2 m/s| Ct=0.2 m/s
Turb. model k-e k-e k-e k-e LES

Table 2: Summary of 3D tests for the study of wandering effects in bubble columns.

4.2.1 Runs with thek — e model

A uniform mesh size of 0.01 m (50 x 150 x 8) was adopted, with a time step equal to 0.1
This choice is supported by published rest{tShis is the mesh termed as “coarse” in Table :
The initial conditions were set at rest. Regarding the boundary conditions, wall functions \
used in five faces of the box, whereas a symmetry condition was employed for the free su
The runs took about 12 hours to simulate 60 seconds in 5 processors of the Linux Clus
NCSA, and were extended for about 1000 s.

Fig. 6 depicts the time evolution of a surrogate of the kinetic energy of the mean flow, for
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Figure 6: Time evolution of a surrogate of the kinetic energy of the flow in the 3D simulation of a bubble plumr
a box.k — e model. Three segments of the time evolution are displayed.

D10. Three segments of the time evolution are shown. A quasi-periodic motion develops ¢
beginning of the simulation (approximately, first 500 s) but thewandering motion disap-
pears The first part is consistent with Sokolichin and Eigenberger’s results, but the suppres
of motion is consistent with the findings of other authtr. becomes obvious that performing
the simulation for short times may have hidden in some works the steady-state that settle:
on. Fig. 7 shows snapshots of gaseous oxygen concentration (which is a good surroge
bubble density) on the mid-thickness plane for different times obtained in run D10, showing
unsteady behavior in the first part of the simulation. Larger values are displayed in yellow
red, whereas smaller values are presented in blue. Notice that the resemblance with Fig.

Fig. 8 shows contours ofelocity magnitudef the mixture. Again, largest values are pre
sented in yellow. Each of the "rings” is a vortex that interplays with other vortices and w
the walls. As anticipated by Sokolichin and Eigenberger it is possible to notice that the “init
single vortex bifurcates into two, and then into three smaller vortices, as a result of the moti
the plume. Later, two vortices appear again via the combination of two and, finally, one vc
dominates the box again. This number of vortices naturally depends upon the width/water (
ratio, as demonstrated by Delneijal? and Borchergt al® This description of the flow agrees
completely with Sokolichin and Eigenberger’s counterpart. From the values of dissipation
Kolmogorov length scales have been obtained in all the domain, ranging from 0.1 mmto 1
than 3 mm. Most of the Kolmogorov length scales ranged from 0.1 to 1 mm.
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II
II

Figure 7: Snapshots of oxygen concentration in the 3D simulation of a bubble plume in/a-bexmnodel.

4.2.2 Results corresponding to the run with the LES approach

In the LES computations, 2,870,400 elements were employed, corresponding to a uniform
size of 5 mm and to a mesh of 300 x 100 x 16. This mesh size is two times smaller than |
et al’s.!? Itis also about 5 to 10 times the Kolmogorov length scale computed from-theun.
The time step was fixed at 0.1 s, which is consistent with the Courant number of 1 sugg
by Piomelli3® The effect of a smaller time step of 0.01 s was also investigated once the qt
periodic behavior had been attained (run D11, see below).

One important question is whether there is a need for a modification of the Smagorin
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Figure 8: Snapshots of velocity magnitude in the 3D simulation of a bubble plume in abex model. The
images are not separated the same amount of seconds.

model when a disperse phase is present. In our runs we adopt the standard Smagorinsky’s
to address this issue.

Based on the experience with the- ¢ model in the previous runs, it was decided to test
couple ofdifferent initial conditionsand to run those tests for a very long time. It was conclud:
that after 80 s (about two periods of the wandering motion), the run was practically indeper
of the initial conditions. Fig. 9 shows the time evolution of a surrogate of the kinetic energ
the mean flow. It is possible to see that, in fact, a quasi period of basically 50 s characte
the motion after 75 s. However, larger quasi periods are also found. For instance, consic
the curve close to 260 s, the quasi period therein is about 80 s.

Regarding the boundary conditions, the airflow rate was imposed in a volume located
0.15 to 0.19 m from the left wall. The velocity vectors at different planes not so close to
diffuser were found insensitive to this exact location. The gas flow rate was kept constant d
all the computations, not including any random component. The velocity boundary condit
at the walls were set enforcing the law of the wall. This approach is called LES-R¥i/b1, a
LES with near-wall modeling. The runs required 7 hours for every 9 seconds of simulatiol
20 processors of the Linux Cluster at NCSA.

Fig. 10 depicts snapshots of the contours of gaseous oxygen concentration for the ci
the simulation with LES, separated by 0.5 s. Some small length scales can be observed
plume, giving information about details of its behavior in diverse parts of the box. In turn, |
11 presents snapshots of gaseous oxygen concentration separated by 5.5 s, comprising
period of the dynamic motion. The numerically-predicted quasi period was slightly larger t
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Figure 9: Time evolution of a surrogate of the kinetic energy of the flow in the 3D simulation of a bubble plurr
a box. LES approach.

the measured value of 41 secondiscan be noticed that the simulation satisfactorily mimic
the measurements

Fig. 12 presents the velocity fields of the mixture corresponding exactly to the above ox
concentrations. Notice that, as expected, the large coherent structures that were appa
the k — ¢ model solution appear in the LES counterpart, but embedded in a large spectru
smaller scales. These smaller scales are characterized in the following sections.

Compared to the simulations undertaken with khe ¢ model, the LES results give a vivid
picture of the features of the instability associated to wandering. It is possible to see from
10 to 12 that the bubble plume, laden towards the left wall, follows regions of relatively h
velocity of the carrier, with exception of the upper part of the box. In that region, the plu
oscillates back and forth with respect to the wall in the first stages of the quasi period.
oscillation is produced by the Coanda effécThe motion is the source of a vortex on the top
left corner, at the beginning of the quasi period (see Fig. 13, section (a)). This eddy kee|
size for later times, interacting with the large vortex located in the rest of the box. At the s
time, it is convected downwards by the mean flow. This eddy diminishes the size of the «
occupying the remaining of the box, leading to the condition of two vortices (section (b)).
eddy coming from the upper-left corner continues in its way down until an eddy forms in
top-right corner of the box (section (c)). This leads to the three-vortex situation. This condi
lasts until the two lower eddies “merge,” restoring a two-vortex condition (section (d)). Fine
a single vortex is left in lieu of the two vortices (section (e)).
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Figure 10: Evolution in time of the oxygen concentration in the 3D simulation of a bubble plume in a box.
images are separated by 0.5 seconds. LES approach.

5 ANALYSIS OF TURBULENCE FROM 3D SIMULATIONS

The availability of “instantaneous” velocity fields from the LES computations allowed for 1
determination of turbulence statistics. The 3D outputs from the numerical solution were |
processed in order to obtain statistical moments up to fourth order, turbulent kinetic en
turbulent shear stresses and the structure of the flow. This also allowed for the characteri:
of the coherent structures induced by the wandering motion.

1983



F. Bombardelli, G. Buscaglia, M. Garcia, E. Dari

Figure 11: Evolution in time of the oxygen concentration in a quasi period of in the 3D simulation of a bul
plume in a box. The images are separated by 5.5 seconds. LES approach.

5.1 Turbulence statistics

For the different statistical moments, the usual definitions were applied at each node c
mesh3®

1 NF 1 NF
— 7. = . 2 _ — 12
Ui = U; = ﬁ JZI ui,j 3 Ui = m ; [ui,j — uz] 3

1 NF 1 NF

j=1
whereu represents any of the velocity component®fers to the node in the meshindicates
time, ands is the standard deviation. The overbar means time average, whEi€as the
number of files (values) that were used in the computations. The above equations corresp
the time average, variance, skewness and kurtosis, respectively. From the variances for th
velocity components, the turbulent kinetic energy was obtained at each point. The estir
of the variance above is a non-biased estim#tokdditionally, the nondimensional turbulent
stress was computed from:

/ 4 1 . Uz—ﬂz /U/Z_HZ
(gz l[?;) - NF 2371 [ s T, uilz][ & l] no summation implied (13)



F. Bombardelli, G. Buscaglia, M. Garcia, E. Dari

Figure 12: Evolution in time of the velocity magnitude in a quasi period of in the 3D simulation of a bubble plt
in a box. The images are separated by 5.5 seconds. LES approach. Notice the correspondence with some

of Figure 8.
Pl
|
1
Plume Plume

Eddy

Eddy Eddy

Eddy Eddy

@ (b) (© (d) ©

Figure 13: Sketch of the evolution of the number of eddies and their interrelation with the bubble plume.

wherei andj are as above andand! indicate the velocity components.
Computations were undertaken using different numbers of files, to address the issue ¢
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tionarity of the statistics. The smallest number of files was 487, which covered 225 sec
of simulation, 5.5 quasi periods of plume wandering. It was confirmed that the statistics \
indeed stationary when 250 s were processed, with the exception of the third moment.
processing took about 2 hours of computer time.

Fig. 14 brings a comparison between the present numerical results and the measure
provided by Sokolichin and Eigenberd&iTime-averaged vertical velocities, at different heigh
above the diffuser, for the plane located at mid-thickness, are compared. The agreement i
satisfactory, considering both the short period of time-averaging of the measurements (be
30 and 60 s), and the nature of the model. There are some discrepancies close to the diffus
could be attributed to the inexact boundary condition. Fig. 15 in turn shows projected vectc
the time-averaged velocity field obtained with the LES approach. Planes are parallel to the
wall and are located at 2, 4, 5.5 and 7 cm from the front wall. The color of vectors indicate
value of the vertical velocity. Notice that the patterns are quite similar in all the planes, wil
confirms the essentially-2D nature of the flow.

Fig. 16 presents the TKE at mid-thickness computed from the LES results. Compare
Figure 4(b), it is seen that the computed values with LES present a peak on the left whi
more than two times larger than the 2D results. This result can be explained clearly as fol
TKE can be interpreted roughly as a surrogate of the velocity fluctuations. The 3D simulat
include wandering and, thus, a portion of the fluctuations is associated with the motio
the plume, andhot with “true” turbulence. Consequently, the wandering kinetic energy, r
necessariljturbulentkinetic energy, is accounted for in the plot. In order to obtain the tri
TKE, a high-pass filter is needed, as employed by Mustds.’

Fig. 17 investigates the distribution of variance of the velocity components in the vert
direction, for planes located at 4, 5.5, and 7 cm from the front face of the box. It is cle
seen that the variance increases with distance from the diffuser up to a certain elevatior
then it saturates, as reported by Rensen and Rfuigboth velocity components. This was at:
tributed by Rensen and Roig to the effect of the walls. However, whereas the horizontal vel
component seems to show a saturation in the upper 60% of the box, the vertical compon
the velocity vector shows a decreasing value in the upper 50 cm, close to the left wall.
difference could be the result of the fact of having a hon-symmetric plume. Closer to the |
wall, the pattern is similar to that corresponding to the horizontal velocity component. Tt
results are subjected to the same issues corresponding to the TKE, in terms of the superp
of wandering motion and true turbulence.

Fig. 18 shows the kurtosis of the velocity components in the vertical direction, at ple
located at 4, 5.5, and 7 cm from the front wall. Kurtosis is a measure of the “non-gaussial
of the distribution. For a Gaussian distribution the value of the kurtosis is 3. Notice from
figure that the vertical velocity presents values greater than 3. The horizontal componer
values close to 3. Similar issues associated with the superposition of wandering motion an
turbulence appear in these figures. Overall, the LES results are consistent with the physic
with the measurements.
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Figure 14: Comparison of modeled and measured vertical velocities at different planes above the diffuse
the 3D simulation of a bubble plume in a box. LES approach. Numerically-obtained values are represent
dots, showing the fine resolution; measurements are represented by solid lines. Planes correspond to (fror
bottom): 1.44, 1.25, 1.06, 0.86, 0.67, and 0.48 m above the bottom of the tank.
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Figure 15: Velocity fields for different planes parallel to the front wall. Planes are located at 2, 4, 5.5, and ’
from the front wall. Colors of the vectors indicate the value of the vertical velocity.
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Figure 16: Distribution of turbulent kinetic energy in a plane located at mid-thickness. Values are express
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Figure 17: Distribution of the variance of the velocity component in the vertical direction. Planes located at 4

and 7 cm from the fron face of the box.

12 25 47 80 62 74 87 B8 112124 12 26 37 50 62 74 &7 99 112124 12 25 37 50 62 T4 47 99 112124

150

& s

0'3.0 01 _02 03 04 05 ugﬂ 01 _02 03 04 05
'X axis (m) axis (m)

0'8.0 0.1 02 03 04 05
X axis (m)

Figure 18: Distribution of the kurtosis of the velocity component in the vertical direction. Planes located at 4,
and 7 cm from the fron face of the box.
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5.2 Characterization of coherent structures of the flow produced by the wandering mo-
tion

Although turbulent flows are intrinsically random, some of them show certain scales that
be characterized according to their persistent structure. These scales are called “coheren
tures”3® In the phenomenon of wandering, and with the configuration of a box, there ap|
eddies which interact with each other, with the walls, and with the bubbles. The eddies
sist for some time, then dissapear and appear again in the next quasi-period. These edd
the coherent structures associated with the wandering motion. In order to characterize
structures, several analyses have been developed.

15 L 18 Y T .
14 Vel Mag 14 -rl N i
13 0.37542 13 '\-:J 34010
12 0. 30034 12 b \ \ . 0406
11 11 -
1 0,22525 1 }\ “ 8802
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X axis (m) X axis (m) X axis (m)

Figure 19: Two-dimensional velocity, vorticity and velocity gradients in a plane located at 4 cm (mid-thickn
from the front wall of the box. The values of vorticity and velocity gradients are multiplied by 10

Fig. 19 shows the contours of:

¢ the two-dimensional instantaneous velocity (in m/s),
¢ the instantaneous “y”-vorticity component (in 1/s, multiplied by)1@nd

e the instantaneous horizontal gradient of vertical veloeity (O, in 1/s, also multiplied
by 10°),

corresponding to a two-vortex condition in the box, for a plane located at mid-thicknes
cm). The horizontal gradient of/.” completely dominates the vorticity component field. Th
plane located at 4 cm presents a wide range of scales, that are not present closer to the
Additionally, it is possible to see that bubbles do not tend to be trapped by the eddies.
et al*° determined in a mixing layer that 50% of the bubbles are trappegiif = AU /vierm,
the “trapping parameter”, is about 3. This parameter measures the tendency for a bub
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be trapped througi\U, the velocity difference across the vortex. In this case, this ratio
about 1, which means that bubbles are not trapped. Finally, the interplay among eddie
bubbles resembles Wang and Maxé&¥’'sketch of the preferential sweeping mechanism f
heavy particles interacting with vortical structures.

6 CONCLUSIONS

Intensive computations regarding bubble plume wandering have been presented. They
shown that it is possible to reproduce wandering effects with our finite element mode
3D. This could be achieved with a LES approach with a very simple bubble-slip model
Smagorinsky’s subgrid closure.

With the £ — ¢ model, on the other hand, short simulation times do show wandering, bt
longer times the flow settles to a steady state.

The quasi-period (the motion is not strictly periodic) of the wandering predicted by the <
ulation was found to agree reasonably well with the measured one. The agreement betwe
modeled and observed position of the plume was very satisfactory. The coherent structure
take place in the interplay between eddies and bubbles have been characterized using vt
fields. It has been shown that bubbles are not trapped by the eddies.
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