Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXX, págs. 1413-1422 (artículo completo) Oscar Möller, Javier W. Signorelli, Mario A. Storti (Eds.) Rosario, Argentina, 1-4 Noviembre 2011

SIMULAÇÃO NUMÉRICA DE UM CORPO ROMBUDO EM ESCOAMENTOS COMPRESSÍVEIS

Gustavo Bono^a, Giuliana F.F. Bono^a e Armando M. Awruch^b

^a Núcleo de Tecnologia, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco (UFPE), Rod. BR-104 Km 59, 55002-970 Caruaru, PE, Brasil, bonogustavo@gmail.com, giuliana.franca@gmail.com http://www.ufpe.br/caa

^b Centro de Mecânica Aplicada e Computacional, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Osvaldo Aranha 99, 90035-190 Porto Alegre, RS, Brasil, amawruch@ufrgs.br, http://www.ufrgs.br

Palavras Chave: Dinâmica dos Fluidos Computacional, Escoamento Compressível, Interação viscosas e não viscosas.

Resumo. O objetivo do presente trabalho é descrever através da simulação numérica os principais fenômenos físicos que acontecem sobre um corpo rombudo tridimensional em escoamentos compressíveis. O escoamento viscoso é modelado para diferentes números de Mach (M = 2.95 e 4.04) e ângulos de ataque (10° e 20°). As equações de Navier-Stokes são resolvidas empregando o Método dos Elementos Finitos, usando malhas de elementos hexáedricos. Os resultados obtidos, embora preliminares, permitem capturar eficientemente a complexa topologia do escoamento.

1 INTRODUÇÃO

Devido a suas características os corpos rombudos são amplamente empregados no desenho e desenvolvimento de veículos espaciais, veículos lançadores, mísseis e projéteis, entre outros. A existência de ondas de choque em escoamentos supersônicos e hipersônicos tem conseqüências importantes nos principais coeficientes aerodinâmicos do corpo. Estudar e predizer os principais fenômenos aerodinâmicos que acontecem sobre corpos rombudos em escoamentos compressíveis é muito importante, já que nestas configurações, as interações entre as ondas de choque e onda de choque-camada limite têm uma forte influência nos seguintes itens: os níveis de aquecimento, as cargas de pressão, a separação da camada limite, o tamanho da região de recirculação, a perda de eficiência das superfícies de controle, etc.

Existem vários fenômenos importantes que acontecem nos regimes supersônico e hipersônico, sendo os principais:

1 - a interação onda de choque/onda de choque (CC) que acontece em escoamentos supersônicos e hipersônicos e ocorre quando duas ondas de choque se interceptam. Este tipo de interação influencia a aerodinâmica do veiculo e pode incrementar a taxa de transferência de calor e pressão na superfície do veiculo, mas especificamente perto da região onde acontece a interação. Edney (1968) descreveu seis tipos de interação CC que podem acontecer, e estes são definidos em função da posição e intensidade da onda de choque incidente (*impinging shock*) e da forma do corpo;

2 - a interação onda de choque-camada limite (CCL) que pode estar presente em escoamentos transônicos, supersônicos e hipersônicos e se da quando uma onda de choque intercepta a camada limite. Os fenômenos físicos presentes no problema são muitos complexos, sendo os principais: a separação da camada limite induzida pela interação onda de choque/camada limite e os fortes gradientes gerados na região de recompressão.

Alguns dos principais estudos experimentais e/ou numérico sobre as interações onda de choque/onda de choque (CC) e onda de choque/camada limite (CCL) estão resumidos nos trabalhos de Délery (1999); Dolling (2001) e Edwards (2008). Atualmente, a Dinâmica dos Fluidos Computacional (CFD) destaca-se como uma importante ferramenta para o estudo e análise de diferentes problemas nos campos da engenharia aeronáutica e aeroespacial. Nos últimos anos os autores do presente trabalho bem desenvolvendo dentro do contexto de simulação numérica algumas pesquisas na área de interações do tipo CC e CCL.

O problema da configuração placa plana-rampa em regime hipersônico foi estudado por Bono e Awruch (2008) e Bono et al. (2008). Em ambos os casos, os estudos numéricos empregaram o método dos elementos finitos com elementos tetraédricos e hexaédricos e mostraram uma boa concordância com relação aos resultados experimentais.

Posteriormente, foram realizados estudos sobre uma configuração assimétrica formada por um cilindro hemisférico-cone-cilindro para escoamentos não viscosos (Bono et al., 2009) e viscosos (Bono e Awruch, 2010). Em ambos os casos empregou-se malhas de hexaedros e de tetraedros. Os resultados obtidos apresentaram uma ótima concordância com relação aos resultados experimentais, entretanto, em Bono et al. (2009) não foi possível capturar a separação da camada limite, uma vez que foram usadas as equações de Euler. O presente trabalho é uma continuação dos artigos citados e tem como principal objetivo, continuar proporcionando uma melhor compressão dos fenômenos físicos existentes sobre este tipo de configuração.

O artigo é organizado da seguinte forma: o modelo matemático e a aproximação numérica do problema são apresentados na Seção 2, a geometria do modelo, a malha e as condições de contorno são dadas na Seção 3. Na Seção 4, apresentam-se os exemplos numéricos, e por último apresentamos as principais conclusões e trabalhos futuros.

2 DEFINIÇÃO DO PROBLEMA E APROXIMAÇÃO

2.1 Equações governantes

As equações de Navier-Stokes são as equações mais gerais para a descrição de um escoamento em um meio contínuo, viscoso e em regime transiente. Desprezando as forças de volume e a fonte/sumidouro de energia, as equações de conservação escritas em forma compacta e adimensionalizadas ficam da seguinte maneira

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}_i}{\partial x_i} + \frac{\partial \mathbf{G}_i}{\partial x_i} = 0 \ \text{em } \mathcal{Q} \,. \tag{1}$$

onde $\Omega \subset \mathbb{R}^{n_{sd}}$ e (0,T) são os domínios espacial e temporal, respectivamente, onde $n_{sd} = 3$ é o número de dimensões espaciais e Γ denota o contorno de Ω . As coordenadas espaciais e temporais são denotadas por x e t. U é o vetor de incógnitas das variáveis conservativas, \mathbf{F}_i e \mathbf{G}_i são, respectivamente, os vetores de fluxo não viscoso e difusivos dados por

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \boldsymbol{\rho} \boldsymbol{v}_{j} \\ \boldsymbol{\rho} \boldsymbol{e} \end{cases}, \quad \mathbf{F}_{i} = \begin{cases} \boldsymbol{\rho} \boldsymbol{v}_{i} \\ \boldsymbol{\rho} \boldsymbol{v}_{j} \boldsymbol{v}_{i} + \boldsymbol{p} \, \boldsymbol{\delta}_{ij} \\ \boldsymbol{v}_{i} \left(\boldsymbol{\rho} \boldsymbol{e} + \boldsymbol{p} \right) \end{cases}, \quad \mathbf{G}_{i} = \begin{cases} \boldsymbol{0} \\ -\boldsymbol{\tau}_{ij} \\ -\boldsymbol{\tau}_{ij} \boldsymbol{v}_{i} - \boldsymbol{q}_{i} \end{cases}.$$
(2)

com *i*, *j* = 1,2,3. Onde *v_i* é a componente da velocidade na direção da coordenada *x_i*, ρ é a massa específica, *p* é a pressão termodinâmica, τ_{ij} são as componentes do tensor de tensões viscosas, *q_i* é o vetor de fluxo de calor, *e* é a energia total específica e δ_{ij} é o delta de Kronecker.

Para um gás perfeito, a equação de estado e a energia interna u são dadas pelas seguintes equações

$$p = (\gamma - 1)\rho u, \quad u = c_v T = e - \frac{1}{2}v_i v_i.$$
 (3)

onde *p* é a pressão, *T* é a temperatura e $\gamma = c_p / c_v \mod c_p = c_v$ sendo os coeficientes de calor específico a pressão e volume constantes, respectivamente.

Para definir totalmente o problema, devem-se adicionar ao sistema de equações, dado pela Eq. (1), as condições iniciais e de contorno para as variáveis.

2.2 Modelagem computacional

As equações de Navier-Stokes são resolvidas empregando o método dos elementos finitos (MEF), usando uma série de Taylor e o clássico método de Bubnov-Galerkin para a discretização do tempo e do espaço, respectivamente. Para a resolução do método de Taylor-Galerkin emprega-se um esquema numérico explícito iterativo de um passo (Donea, 1984). O esquema resultante é de segunda ordem no espaço e no tempo e experimenta oscilações espúrias perto da onda de choque, as quais são amortizadas com a adição de viscosidade artificial (Argyris et al., 1990; Löhner, 2001).

Para discretrizar a geometria emprega-se o elemento hexaédrico trilinear (malha estruturada). A fim de reduzir o tempo de CPU e consumo de memória, utiliza-se integração analítica reduzida das matrizes em nível de elemento. Detalhes do esquema de Taylor-Galerkin de um passo podem ser encontrados em Bono (2008) e Bono et al. (2009).

3 GEOMETRIA DO MODELO, MALHA E CONDIÇÕES DE CONTORNO

O modelo é axissimétrico e consiste em um cilindro com uma ponta hemisférica, um cone com um ângulo de 30 graus e uma cola cilíndrica. O sistema de coordenadas empregado e as dimensões do modelo são dados na Figura 1.

Figura 1: Geometria e dimensões do modelo

Os resultados experimentais de Houtman et al. (1995) apresentam a distribuição de pressão sobre a configuração para números de Mach variando entre 2,95 e 4,04 e ângulos de ataque até 20°. Neste trabalho, foram modelados os casos no qual o escoamento tem um número de Mach igual a $M_{\infty} = 2,95$ e 4,04 e ângulo de ataque de 10° e 20°. Na Tabela 1, apresentam-se a identificação de cada exemplo segundo o número de Mach e ângulo de ataque.

Para a análise do problema, considera-se a metade da geometria, devido ao escoamento ser simétrico. Mostra-se na Figura 2, o domínio computacional e a malha estruturada de hexaedros empregada para todos os casos estudados. Os casos analisados foram modelados considerando um escoamento viscoso com número de Reynolds igual $Re = 2 \cdot 10^5$. As condições de contorno são as mesmas empregadas em Bono e Awruch (2010).

	$\alpha = 10^{\circ}$	$\alpha = 20^{\circ}$
$M_{\infty} = 2,95$	11	12
$M_{\infty} = 4,04$	21	22

Tabela 1: Identificação de cada simulação segundo o número de Mach e ângulo de ataque.

Figura 2: Domínio e malha empregada para a simulação numérica

A malha empregada possui 949212 nós, 917700 elementos e 18612 nós sobre o contorno sólido, para mais detalhes ver Bono e Awruch (2010).

4 RESULTADOS E DISCUSSÃO

Para as simulações assume-se que o escoamento tem uma relação de calor específico e número de Prandtl igual a 1,40 e 0,72, respectivamente.

Na Figuras 3, mostra-se a distribuição do número de Mach no plano de simetria x-y para as diferentes combinações de número de Mach ($M_{\infty} = 2,95 \text{ e } 4,04$) e ângulo de ataque ($\alpha = 10^{\circ}$ e 20°). Na mesma figura, também se pode ver uma ampliação na região do ponto de estagnação.

Figura 3: Distribuição do número de Mach para os casos: (a) 11 e 12 e (b) 21 e 22

Apesar de a geometria ser simples o escoamento é complexo devido às diferentes interações que acontecem. As principais características da topologia do escoamento são dadas a seguir: na parte frontal da configuração observa-se a formação de uma onda de choque de forte intensidade a qual interage com a onda de choque que se forma na parte inferior da configuração. Inicialmente, na parte superior observa-se a expansão do escoamento (redução da pressão), depois na região de interseção cilindro-cone temos a separação da camada limite e finalmente, uma leve expansão do escoamento na região de interseção cone-cilindro. Na parte superior da região cilindro-cone-cilindro observa-se que o escoamento tem um comportamento não estacionário, devido à separação da camada limite.

Na parte inferior inicialmente pode-se observar uma leve expansão do escoamento e depois a formação de uma onda de choque intensa na região de interseção cilindro-cone. Finalmente, na região cone-cilindro observa-se a expansão do escoamento. A região de interação CC na região inferior do cone desloca-se a montante na medida em que aumenta o número de Mach e o ângulo de ataque.

Pode-se observar que quando se incrementa o ângulo de ataque, se produz uma alteração na posição do ponto de estagnação. Tomando-se como ponto de referência o ponto de estagnação para 10 graus e o centro da esfera, (x,y,z) = (15,0,0), a nova posição do ponto de estagnação desloca-se em sentido anti-horário 8,0583 graus para $M_{\infty} = 2,95$ e 7,9239 graus para $M_{\infty} = 4,04$.

Na Figura 4, mostra-se a interação entre as ondas de choque obtidas experimentalmente por Houtman et al. (1995) empregando a técnica de *shadowgraphs*. Comparando os resultados experimentais com os obtidos numericamente, ver Figura 3, observa-se uma ótima concordância tanto na posição da onda de choque como da interação CC.

Figura 4: Imagem (*spark-shadowgraphs*) da interação das ondas de choque para os casos: (a) 11, (b) 21, (c) 12 e (d) 22 (Fonte: Houtman et al., 1995)

Para obter uma estimativa dos valores das relações ρ_2/ρ_1 e p_{02}/p_1 no ponto de estagnação podem-se empregar as expressões analíticas do choque normal. Na Tabela 2, mostram-se os valores obtidos no ponto de estagnação em forma analítica e numérica. Observa-se que a concordância entre os valores é muito boa, tanto em sua comparação com os valores analíticos como com os valores numéricos obtidos resolvendo as equações de Euler (Bono et al., 2009) e de Navier-Stokes.

As distribuições de densidade, pressão e número de Mach sobre a linha de estagnação são mostradas na Figura 5 para os quatro casos analisados. Observa-se que existe pouca alteração na distribuição das variáveis para os casos nos quais o ângulo de ataque varia e o número de Mach permanece fixo. Os máximos valores da densidade e da pressão encontram-se na região do ponto de estagnação e crescem com o aumento do número de Mach.

Mecánica Computacional	Vol XXX,	págs.	1413-1422 (2011)

Mach	Método	Caso	$ ho_{_2}/ ho_{_1}$	p_{02}/p_1
2,95	Analítico	-	3,811	11,68
	Numérico	eu11	3,991	11,36
		eu12	3,952	11,21
		ns11	4,178	11,69
		ns12	4,046	11,20
4,04	Analítico	-	4,592	21,48
	Numérico	eu21	4,680	20,63
		eu22	4,703	20,91
		ns21	4,763	20,36
		ns22	4,757	20,68

Tabela 2: Comparação entre os resultados analíticos e numéricos (eu = Euler e ns = Navier-Stokes) para as relações ρ_2/ρ_1 e p_{02}/p_1 .

Figura 5: Distribuição da densidade, pressão e número de Mach sobre a linha de estagnação para os casos analisados

Nas Figuras 6 e 7, mostram-se as distribuições de pressão para diferentes estações (x = 15, 60, 99 e 127) sobre o corpo. Devido ao ângulo de ataque, os máximos valores da pressão sempre se encontram na parte inferior do corpo, sendo a zona do cone a região mais critica. Observa-se que dos casos analisado, os máximos valores de pressão são obtidos para a combinação máx. $\alpha - máx$. M_{∞} . Portanto, o dimensionamento estrutural e do sistema de proteção térmico do corpo deve ser realizado levando em consideração este último ponto.

Na terceira e quarta estação, pode-se observar a interação entre a onda de choque frontal e a onda de choque no cone.

Figura 6: Distribuição de pressão para os casos 11 (superior) e 12 (inferior)

Figura 7: Distribuição de pressão para os casos 21 (superior) e 22 (inferior)

Finalmente, a distribuição de pressão na região inferior do cone mostra-se na Figura 8 para os casos 12 e 22. Observa-se que a região de máxima pressão desloca-se a montante quando o número de Mach aumenta.

Figura 8: Distribuição da pressão para os casos 12 e 22

5 CONCLUSÃO

A simulação numérica sobre um corpo rombudo tridimensional em regime supersônico foi estudada com um esquema explícito de Taylor-Galerkin de um passo no contexto do método dos elementos finitos. Os resultados numéricos obtidos com as malhas de hexaedros apresentam uma boa concordância com relação aos resultados experimentais e analíticos.

Do estudo numérico, conclui-se que a intensidade dos fenômenos da interação CC aumenta na medida em que cresce o número de Mach e ângulo de ataque. Também se observou que a região de interação se move segundo a combinação $M - \alpha$. Estas informações, embora preliminares, são muito importantes para o dimensionamento do sistema estrutural e de proteção térmica. Vale ressaltar, que estas mesmas conclusões foram obtidas em Bono et al. (2009) e Bono e Awruch (2010).

A presente pesquisa está em andamento, futuros trabalhos estudarão em maiores detalhes os fenômenos de separação da camada limite e a interação com as ondas de choque.

AGRADECIMENTOS

Os autores agradecem à FACEPE (processo APQ-0043-3.04/08) e ao CNPq (processo 475179/2009-9) pelo financiamento.

REFERÊNCIAS

- Argyris, J., Doltsinis, I.S. e Friz, H., Study on computational reentry aerodynamics. *Computer Methods in Applied Mechanics and Engineering*, 81:257–289, 1990.
- Bono, G., Simulação Numérica de Escoamentos em Diferentes Regimes utilizando o Método dos Elementos Finitos, Teses de doutorado, PROMEC, UFRGS, Brazil, 2008.
- Bono, G. e Awruch, A.M., Numerical Investigation of Laminar Shock/Boundary-Layer Interaction, 12th Brazilian Congress of Thermal Engineering and Sciences, ENCIT 2008, 1-8, 2008.

Bono, G. e Awruch, A.M., Emprego da CFD para o estudo de um corpo rombudo em regime

supersônico, Mecánica Computacional, 29, 4885-4895, 2010.

- Bono, G., Awruch, A.M. e Popiolek, T.L., Computational Study of Laminar Shock/Boundary-Layer Interaction at Hypersonic Speeds, *Mecánica Computacional*, 27, 3135-3150, 2008.
- Bono, G., Awruch, A.M. e Popiolek, T.L., Investigação Numérica sobre um Corpo Axissimétrico em Escoamentos Supersônicos, *Mecánica Computacional*, 28, 2889-2904, 2009.
- Délery, J.M., Shock phenomena in high speed aerodynamics: still a source of major concern. *The Aeronautical Journal*, 103:19–34, 1999.
- Donea, J., A Taylor-Galerkin for convective transport problems. *International Journal for Numerical Methods in Engineering*, 20:101–119, 1984.
- Dolling, D.S., Fifty years of shock-wave/boundary-layers interaction research: what next?. *AIAA Journal*, 39(8):1517–1531, 2001.
- Edney, B.E., Effects of shock impingement on the heat transfer around blunt body. AIAA Journal, 6(1):15–21, 1968.
- Edwards, J.R., Numerical simulations of shock/boundary layer interactions using timedependent modeling technique: A survey of recent results. *Progress in Aerospace Sciences*, 44:447–465, 2008.
- Houtman, E.M., Bannink, W.J., e Timmerman, B.H., *Experimental and computational study* of a blunt-cylinder-flare model in high-supersonic flow, report LR-796, Faculty of Aerospace Engineering, Delft University of Technology, 1995.
- Löhner, R. Applied CFD Techniques. An Introduction based on Finite Element Methods. John Wiley & Sons Ltd., England, 2001.