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Abstract. In this work, a non-isothermal simplified model for the calendering process of a Newtonian
liquid with exponential dependence of viscosity on temperature is theoretically treated. The effects of
non-isothermal conditions on the exiting sheet thickness in calendering process are investigated. The
mass, momentum and energy balance equations, based on the lubrication theory, were nondimension-
alized and solved for the velocity, pressure and temperature fields by using perturbation and numerical
techniques, where the leave-off distance of the calendered material is unknown and represents an eigen-
value of the mathematical problem. With the knowledgement of the above variables, the exiting sheet
thickness in the calendering process was determined. The mentioned governing equations contain ba-
sically two dimensionless parameters: the well-known Graetz number, Gz; and a parameter that takes
into account the effect of the variable viscosity as a function of the temperature, defined as the ratio
of the Nahme-Griffith number, Na, to the Graetz number, Gz. For values of this parameter much less
than unity, the dimensionless exiting sheet thickness of the calendering process has been obtained as
a function of the involved dimensionless parameters. The numerical results show that the inclusion of
temperature-dependent viscosity effect reduces about 6 % the dimensionless exiting sheet thickness, or
20 % in the leave-off distance in comparison with the case of temperature independent viscosity.
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Symbol Definition

a empirical parameter
cp heat capacity [J/kg K]
Gz Graetz number
h(x̄) distance from center plane to periphery of roll at any value of x̄
H0 one-half of the thickness at the nip [m]
Hf one-half of the incoming sheet thickness [m]
H one-half of the exiting sheet thickness [m]
µ0 reference consistency index [Pa s]
Na Nahme-Griffith number
P dimensionless pressure
P̄ pressure in physical units [Pa]
Pe Peclet number
Q̄ flow rate, in physical units [m3/s]
Q dimensionless flow rate
R cylinder radius [m]
Re modified Reynolds number
T temperature [K]
T0 reference temperature [K]
∆Tc characteristic temperature rise [K]
u, v dimensionless longitudinal and transversal velocities
U roll speed [m/s]
ū, v̄ longitudinal and transversal velocities in physical units [m/s]
x̄, ȳ cartesian coordinates
Y dimensionless transversal coordinate, Y = y/(1 + χ2)

Greek Letters

β aspect ratio, defined as β =
√

H0/2R
ϵ dimensionless parameter, defined as ϵ = Na/Gz
η non-newtonian viscosity
θ dimensionless temperature of the fluid
θ0 dimensionless temperature zeroth-order, ϵ0

θ1 dimensionless temperature first order, ϵ1

λ leave-off distance
λ0 leave-off distance zeroth-order
λ1 leave-off distance first-order
ρ fluid density [kg/m3]
τ dimensionless shear stress
τ̄xy shear stress in physical units [Pa]
χ dimensionless longitudinal coordinate
ω angular velocity
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1 INTRODUCTION

The viscous fluid flow through the narrow region between two rotating rolls in such a way
as to produce a thin sheet has been extensively studied over the past 50 years. The theoreti-
cal analysis regarding the above mechanism was developed by Gaskell (1950) and Mckelvey
(1962) for a isothermal Newtonian fluid. Zheng and Tanner (1988) carried out an analysis of
the calendering process using the power-law and the Phan-Thien-Tanner fluid models. For the
viscoelastic case, they determined the separation point using the criterion of zero tangential
traction. As a results they determined that unlike the inelastic case, the sheet was found to
thicken after leaving the nip. Sofou and Mitsoulis (2004) used the lubrication approximation
theory to provide numerical results for isothermal viscoplastic calendering sheets with a de-
sired final thickness. Mitsoulis (2008) numerically investigated the shape of the free surfaces
of the entering and exiting sheets for the process of calendering viscoplastic sheets with a fi-
nite thickness. The combined effects of asymmetry and viscous heating for the non-isothermal
nip flow in calendering were considered by Dobbels and Mewis (1977). The effect of vis-
cous dissipation on calendering process of Newtonian and power-law fluids have been studied
by C. Kiparissides (1978). They reported the temperature profiles due to viscous dissipation
in calendering gap, finding two maxima in the vicinity of the roll surfaces. In this context,
Middleman (1977) developed a simple model of the sensitivity of calendered thickness to tem-
perature fluctuations. He concluded that "a 3◦ variation in temperature will cause more than
20 % variation in calendered thickness!". In this sense, to our knowledge there are no works
that validate the aforementioned sentence. Therefore, the goal of this work is to determine the
influence of temperature-dependent viscosity on the exiting sheet thickness.

2 FORMULATION

In Fig. 1, we show the sketch of the studied physical model. Two cylinders separated by a
thin film of a Newtonian liquid with temperature dependent viscosity, are rotated in the same
direction. Each cylinder has a radius R, rotating with a constant angular velocity, ω, resulting
in a linear velocity at its surface given by U = ωR. The minimum gap half-height, H0, is such
that H0 ≪ R and the one-half exiting sheet thickness is represented by H . The geometry of
the roll surface is given as h (x) = H0 (1 + x2/2RH0) Middleman (1977). The roll surfaces
are found at a constant temperature, T0. The location x where the sheet first bites the rolls is
represented by −xf , which is known. On the other hand, the leave-off distance location of the
sheet, modified by temperature effects, represented by λ is unknown, and must be determined
in the present analysis. Due to the symmetry of the physical model, we consider only for
convenience, the upper half of this configuration. The axis y points up, i.e., in the opposite
direction of the gravity vector, and the positive x axial axis points in the direction of the flow as
is shown in Fig. 1.

The mass, momentum and energy equations, in steady state, are the following

∂u

∂x
+

∂v

∂y
= 0 , (1)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂P

∂x
+

∂τ yx
∂y

, (2)

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂P

∂y
+

∂τxy
∂x

, (3)
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Figure 1: Schematic diagram of the studied physical model, in physical variables.

ρcpu
∂T

∂x
= k

(
∂2T

∂x2 +
∂2T

∂y2

)
+ τxy

∂u

∂y
; (4)

where the shear stress is given as Tadmor and Gogos (1979),

τxy = µ0 exp [−a (T − T0)]

(
∂u

∂y
+

∂v

∂x

)
. (5)

The boundary and initial conditions associated with Eqs. (1)-(4) are

y = 0 :
∂u

∂y
= 0 , (6)

y = h (x) : u = U , (7)

y = 0 :
∂T

∂y
= 0 , (8)

y = h (x) : T = T0 , (9)

x = −xf : T = T0 . (10)

The boundary conditions (6-10) are those used in the lubrication approximation theory. In
the above equations, u, v, P and T represent the velocity components in x and y directions, pres-
sure and temperature fields of the fluid, respectively. ρ, cp, k, µ0 are the density, heat capacity,
thermal conductivity and the viscosity of the Newtonian liquid evaluated at a reference temper-
ature T0, respectively. In addition, a is an empirical parameter that measures the dependence of
the viscosity on the temperature; this constant is of order of 10−2 to 10−1 Dobbels and Mewis
(1977); Dantzig and Tucker (2001). In Eq. (5) we have included the exponential temperature
dependence model for the viscosity Dantzig and Tucker (2001). We can identify the following
scales for x, y and u

x ∼
√

2RH0 , y ∼ H0 , u ∼ U , (11)

J. ARCOS, O. BAUTISTA, F. MENDEZ, E. BAUTISTA1564

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



from the mass conservation equation, Eq. (1), and taking into account the relationships (11) ,
we obtain

vc
U

∼ H0

Lc

≪ 1, (12)

indicating that the order of magnitude of the transversal velocity, vc, is smaller than the longi-
tudinal velocity. For obtaining the characteristic temperature rise, we compare the convective
and viscous dissipation terms in the energy equation, Eq. (4), yielding

∆Tc ∼
√

2R

H0

µ0

ρfcp

U

H0

. (13)

The previous characteristic scales will be used to nondimensionalize the governing equations
properly.

2.1 Dimensionless equations

In this section, we present the dimensionless governing equations needed to solve the non-
isothermal calendering process (Fig. 2). Based on the order of magnitude analysis carried out
previously, we define the following dimensionless variables
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Figure 2: Schematic diagram of the studied physical model, in dimensionless variables.

χ =
x√

2RH0

, y =
y

H0

,
h (x)

H0

= 1 + χ2 (14)

P =
PH0

µ0U
, λ2 =

H

H0

− 1, Q (χ) =
Q

2UH0

u (χ, y) =
u (x, y)

U
, v (χ, y) =

v (x, y)

vc
, θ (χ, y) =

T (x, y)− T0

∆Tc

.

Introducing the dimensionless variables defined by relationships (14) into the conservation
equations (1)-(5), we obtain

Reβ

(
u
∂u

∂χ
+ v

∂u

∂y

)
= −β

dP

dχ
+

∂

∂y

(
e−ϵθ ∂u

∂y

)
, (15)
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Gz u
∂θ

∂χ
=

∂2θ

∂y2
+Gz e−ϵθ

(
∂u

∂y

)2

. (16)

Here, ϵ is a dimensionless parameter, given as ϵ = Na/Gz, where Na is the Nahme-Griffith
number Dantzig and Tucker (2001); Osswald and Ortiz (2006); Bird et al. (1987), defined as
Na = a (µ0U

2/k), and Gz is the well known Graetz number, given by Gz = βPe. Here Pe is
the Peclet number, represented by Pe = (ρcp/k)UH0, and β is a geometric parameter, defined
as β = (H0/2R)1/2. The Nahme-Griffith number represents the ratio of the temperature rise,
due to viscous dissipation to the temperature rise needed to change the viscosity. Re is the
Reynolds number, defined as Re = ρUH0/µ0. In typical applications of calendering, ϵ ≪ 1, in
such a way that the exponential factor, in the momentum and energy equations, can be linearized
as e−ϵθ ≈ 1− ϵθ + · · · , and the Reynolds number is much less than unity, Re ∼ 10−4 − 10−5,
indicating that the inertia plays a minor role in this process; the Peclet number takes values of
order of 102 to 103. According to the previous discussion, Eq. (15) transforms to

β
dP

dχ
=

∂

∂y

[
(1− ϵθ + · · · ) ∂u

∂y

]
, (17)

with the following dimensionless boundary conditions,

∂u

∂y

∣∣∣∣
y=0

= 0 , (18)

u
(
y = 1 + χ2

)
= 1 . (19)

Furthermore, Eq. (17) requires the boundary conditions for the pressure gradient dP/dχ and
the pressure P , given by

dP

dχ

∣∣∣∣
χ=λ

= P (χ = λ) = 0 , (20)

P (χ = −χf ) = 0 . (21)

The energy equation, Eq. (16), takes the form

Gz u
∂θ

∂χ
=

∂2θ

∂y2
+Gz (1− ϵθ + · · · )

(
∂u

∂y

)2

, (22)

with the boundary conditions,

θ (−χf , y) = 0 , (23)

θ
(
χ, 1 + χ2

)
= 0 , (24)

∂θ

∂y

∣∣∣∣
y=0

= 0 . (25)
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Together with Eqs. (17) and (22), we need the dimensionless mass balance equation, which can
be written in the form,

Q = 1 + λ2 =

∫ 1+χ2

0

u dy , (26)

where Q, for the present formulation, assumes a constant value and represents the volumetric
flow rate; λ represents an eigenvalue of the mathematical problem, to be obtained, which is
related to the exiting sheet thickness in the calendering process by the following relationship
λ2 = H/H0 − 1. This parameter will be influenced by temperature effects in contrast to those
that not consider thermal aspects. The system of equations (17) and (22) represent the well
known lubrication approximation Pearson (1966) for a Newtonian liquid with temperature-
dependent viscosity.

3 ASYMPTOTIC SOLUTION FOR THE LIMIT ϵ ≪ 1.

To determine the dimensionless velocity, pressure, temperature profiles, leave-off distance
and the corresponding exiting thickness of the calendered material, we conduct an asymptotic
solution for decoupling the system of Eqs. (17) and (22). Applying a regular perturbation
technique and using ϵ as the perturbation parameter, we propose the following expansions,

u (χ, y) = u0 (χ, y) + ϵu1 (χ, y) + · · · , (27)

P (χ) = P0 (χ) + ϵP1 (χ) + · · · , (28)

Q = Q0 + ϵQ1 + · · · , (29)

θ (χ, y) = θ0 (χ, y) + ϵθ1 (χ, y) + · · · , (30)

λ = λ0 + ϵλ1 + · · · , (31)

where u0, P0, Q0, λ0 and θ0 are the leading-order solutions, which represent the isothermal
case and solved in previous works Sofou and Mitsoulis (2004); Middleman (1977). P1, Q1, u1,
θ1 and λ1 are corrections up to first-order terms. Introducing the relationships (27)-(31) into
Eqs. (17)-(26), we obtain, after collecting terms of the same power of ϵ, the following sets of
equations

for ϵ0 :

β
dP0

dχ
=

∂2u0

∂y2
, for − χf ≤ χ ≤ λ0 , (32)

Q0 = 1 + λ2
0 =

∫ 1+χ2

0

u0dy , (33)

Gz u0
∂θ0
∂χ

=
∂2θ0
∂y2

+Gz

(
∂u0

∂y

)2

. (34)
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The boundary conditions for Eqs. (32)-(34) are:

∂u0

∂y
= 0 and

∂θ0
∂y

= 0, at y = 0, (35)

u0 = 1 and θ0 = 0, at y = 1 + χ2, (36)

P0 = 0 and θ0 = 0, at χ = −χf , (37)

dP0

dχ
= P0 = 0 at χ = λ0. (38)

For the first order solution, ϵ1 :

β
dP1

dχ
y =

∂u1

∂y
− θ0

∂u0

∂y
, for − χf ≤ χ ≤ λ1 , (39)

Q1 = 2λ0λ1 =

∫ 1+χ2

0

u1dy . (40)

For solving Eqs. (39) and (40), we need the zeroth-order solution for mass, momentum and
energy equations, Eqs. (32)-(34). The boundary conditions for Eqs. (39) and (40) are written
as,

∂u1

∂y
= 0 and

∂θ1
∂y

= 0, at y = 0, (41)

u1 = 0 and θ1 = 0, at y = 1 + χ2, (42)

P1 = 0 and θ1 = 0, at χ = −χf , (43)

dP1

dχ
= P1 = 0 at χ = λ1. (44)

3.1 Zeroth-order solution

The solution of Eq.(32), considering a finite feed thickness, is given by:

u0 = 1 +
1

2
β

(
dP0

dχ

)[
y2 −

(
1 + χ2

)2]
, (45)

with
dP0

dχ
= −3β−1 (λ

2
0 − χ2)

(1 + χ2)3
, (46)

for −χf ≤ χ ≤ λ0.

We must emphasize that the zeroth-order solution, Eqs. (45) and (46), were obtained in previ-
ous works Gaskell (1950); Sofou and Mitsoulis (2004). In the present analysis, the zeroth-order
energy equation, Eq. (34), was solved in the two flow regions in the χ direction: one region
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near to the nip at the entrance to the rolls, which has a positive pressure gradient; and the other
region away from the nip at the exit, with opposite sign for the pressure gradient.

Due to the curvature of the rolls, we use a simple independent variable transformation that
makes possible to solve the dimensionless energy equation on a uniformly spaced computational
grid, therefore we can introduce the following transformation variable, Y = y/ (1 + χ2) Wendt
(2009), then Eq. (34) takes the form,

Gz u0
∂θ0
∂χ

=
1

(1 + χ2)2
∂2θ0
∂Y 2

+Gz

(
1

1 + χ2

∂u0

∂Y

)2

. (47)

In the new independent variable, Y , the zeroth-order velocity profile is given by

u0 = 1 +
3

2

(χ2 − λ2
0)

1 + χ2

(
Y 2 − 1

)
, (48)

the boundary conditions, given by Eqs. (35) and (36), associated with the Eq. (47) are trans-
formed to

Y = 0 :
∂θ0
∂Y

= 0 , (49)

Y = 1 : θ0 = 0 . (50)

Equation (47) was numerically solved by using a the conventional Crank-Nicolson method
Hoffman (2001). To solve this equation, we selected a mesh with 501 nodal points for the half
width and 1027 in the direction of the flow. The details are omitted for simplicity.

3.2 First order solution

The solution procedure for the first-order is similar to the zeroth-order solution; the Eq. (39)
is integrated to find u1 explicitly as a function of Y , and implicitly as a function of dP1/dχ.
In terms of the the independent variable transformation y = (1 + χ2)Y , after applying the
boundary conditions (41) and (42) takes the form,

u1 (χ, Y ) =
1

2
β
(
1 + χ2

)2 dP1

dχ

[
Y 2 − 1

]
− β

(
1 + χ2

)2 dP0

dχ

[∫ 1

0

θ0Y dY −
∫ Y

0

θ0Y dY

]
.

(51)
Replacing Eq. (51) into Eq. (40), gives the volumetric flow rate for the first order,

Q1 = −β
(1 + χ2)

3

3

dP1

dχ
−β

(
1 + χ2

)3(dP0

dχ

)[∫ 1

0

∫ 1

0

θ0Y dY dY −
∫ 1

0

∫ Y

0

θ0Y dY dY

]
,

(52)
where dP0/dχ in Eqs. (51)-(52) is defined by Eq. (46). Apply the boundary condition, given

by Eq. (44), into Eq. (52), and after some algebraic manipulation, we can obtain one explicit
expression for dP1/dχ

dP1

dχ
= 9β−1


(λ2

0−χ2)
(1+χ2)3

[∫ 1

0

∫ 1

0
θ0Y dY dY −

∫ 1

0

∫ Y

0
θ0Y dY dY

]
−(λ2

0−λ2
1)

(1+χ2)3

[∫ 1

0

∫ 1

0
θ0Y dY dY −

∫ 1

0

∫ Y

0
θ0Y dY dY

]
χ=λ1

 (53)
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This equation is valid for −χf ≤ χ ≤ λ1, where λ1 must be determined as a part of the
problem. In the above equation, the procedure to evaluate the integral terms is the follow-
ing: at each axial position , χ, the term given by the first integral,

∫ 1

0

∫ 1

0
θ0Y dY dY , is found

numerically by using the Trapezoidal rule Hoffman (2001). Specifically, this procedure was
implemented at each axial position, χ, from the point where the entering sheet first bites the
rolls Middleman (1977) to the leave-off distance point of the rolls, given by the zeroth order
solution of λ0. For the obtained data in this numerical integration, one ninth-degree polynomial
regression was generated as a function of the coordinate axial χ. In order to find the first order
of the dimensionless flow rate, Q1, and consequently λ1, an iterative procedure was applied to
Eq. (53).

Table 1: Representative values of kinematic parameters and physical properties of Newtonian liquids.

U 0.25 - 0.09 m/s
H0 0.0001 - 0.0010 m
R 0.20 - 0.50 m
a 0.01 - 0.1 K−1

k 0.13 - 0.16 W/m K
µ0 1000 Pa-s
cp 1716 - 2100 J/kg K
ρ 1000 kg/m3

4 RESULTS AND DISCUSSION

For the numerical results presented in this section, we used representative values of the pa-
rameters involved in the calendering process (see Table 1)Dobbels and Mewis (1977); C. Kiparissides
(1978). Figures 3 and 4 show the numerical solution for the dimensionless temperature θ0 as
a function of the dimensionless transverse direction at five axial positions, χ, for two fixed
different entering sheet thickness, Hf/H0(=1.543, 3.337) and Gz=40, respectively. In these
figures, we note that the maximum values of the dimensionless temperature are confined to the
vicinity of the roll surface for each χ position, these are the results of the interaction between
the viscous dissipation of the fluid and the heat transfer mechanisms to the rolls. For the same
figures, the larger values of the dimensionless temperature in the χ direction are located near to
the entry. Specifically, in these figures the maximum dimensionless temperature are located at
χ = −0.432 and χ = −0.623, respectively. In addition, it can be seen that for increasing values
of Hf/H0, the dimensionless temperature θ0, is increased.

In Fig. 5, we present the dimensionless pressure up terms or order ϵ, P = P0 + ϵP1 + · · · ,
for different values of the parameter ϵ. In all cases, for increasing values of the parameter ϵ,
insignificantly changes in the dimensionless pressure field are appreciated. However,as a direct
consequence of the temperature variation in the process, the value of λ for which the fluid leaves
off the rolls (and compared with the isothermal case), is modified. This variation in λ is because
we have considered a correction due to the effects of the temperature-dependent viscosity of the
fluid. As we can see, in Fig. 6 we show the influence of the parameter ϵ on the exiting sheet
thickness: for increasing values of this parameter, the dimensionless axial pressure vanishes at
a position located before that predicted for the isothermal case.

In Figs. 7 we present the complete results for the dimensionless exiting sheet thickness
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Figure 3: Dimensionless temperature θ0 as a function of the dimensionless longitudinal χ and transversal Y
coordinates, Gz = 40, Hf/H0 =1.543, at five different positions of the variable χ
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Figure 4: Dimensionless temperature θ0 as a function of the dimensionless longitudinal χ and transversal Y
coordinates, Gz = 40, Hf/H0 =3.337, at five different positions of the variable χ
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Figure 5: Dimensionless pressure profiles in the gap, along the flow field for different values of the parameter ϵ,
Gz = 40, Hf/H0=3.337
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Figure 6: Dimensionless pressure profiles in the gap, along the flow field for different values of the parameter ϵ,
Gz = 40, Hf/H0=3.337
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Figure 7: The dimensionless exiting sheet thickness H/H0 as a function of the entering sheet thickness Hf/H0

for different values of the parameter ε, for a Newtonian fluid with Gz =40.

H/H0, as a function of the dimensionless entering sheet thickness, Hf/H0, under the influence
of the parameters ϵ, for Gz =40. In order to determine the correction λ1 because of thermal
effects, the Eq. (53) was solved iteratively as a function of λ0, θ0 and u0. The obtained results
for λ0 and λ1 are replaced in the expansion of λ, given by λ = λ0 + ϵλ1 + · · · , for different
values of the parameter ϵ. In this work we have assumed that the rolls were fed with a sheet of
fluid with finite thickness, as suggested in Fig. 1; in this case the dimensionless entering sheet
thickness Hf/H0 is a known parameter as it is shown in Fig. 2. In this figure, for a fixed value
of Hf/H0, the leave-off distance and the exiting sheet thickness decreases as the parameter
ϵ increases, it is evident that non-isothermal Newtonian case produces thinner sheets than the
isothermal Newtonian fluid. With the parametric values shown in Figs. 7. For Hf/H0 =4.54
and ϵ =0.09, the exiting sheet thickness is reduced in a 6 %, compared with the Newtonian
isothermal case.

5 CONCLUSIONS

In this paper, we have studied theoretically the influence of the viscous dissipation and
temperature-dependent consistency index on the exiting sheet thickness, for a Newtonian fluid
flowing between two cylinders rotating at the same velocity and temperature. The solution is
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based on the regular perturbation technique and the resulting governing equations are based on
the well-known Lubrication theory. The numerical results predict the dimensionless velocity
field, pressure, temperature distribution, and the exit locations and the exiting sheet thickness
corrected by thermal effects. A variation of 5.89 percent in the dimensionless exiting sheet thick-
ness was determined. As it has been shown, in the limit of ϵ → 0, the present solution smoothly
approaches the unperturbed or zeroth-order solution, which correspond to the isothermal case
reported by Middleman (1977).
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