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Abstract. Three dimensional direct numerical simulations are presented for axisymmetric den-
sity currents using the Boussinesq approximation for small density difference. Three Gr num-
bers are investigated (105, 1.5×106 and 107) in order to identify differences in the flow structure
and dynamics, and to compare with planar density currents.

The simulations are performed using a fully de-aliased pseudospectral method. The simu-
lated flows present the main features observed in experiments for the large Gr numbers. The
front location and velocity computed show that the Fr relation used to close the box model and
shallow water models for density currents must be corrected to account for Gr and geometrical
dependencies.
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1 INTRODUCTION

When two fluids with different densities interact freely over a rigid bottom they manifest as
density currents. Examples of these flows are snow avalanches, thunderstorm fronts, volcano
eruptions, oil spills on the ocean, the release of contaminants in the environment and flows
generated by the collapse of a building. Many more examples can be found in the books by
Simpson1 and Allen.2 In most environmental and industrial flows of this type the density dif-
ference is of only a few percents and it is caused by chemical constitution, temperature, salinity
or particles in suspension.

We consider the release of a cylindrical region of denser fluid in a slightly less dense ambient.
The released volume has initial radius r0 and initial height 2 h0 (see figure 1). Soon after the
release a density current develops, which presents a front, a body and a tail. The front is a
discontinuity in density that travels over a thin layer of light fluid, as a consequence of the
no-slip condition at the bottom. The front of the current is a complex, dynamic region where
most of the mixing occurs. This mixing, driven by Kelvin-Helmholtz instabilities and vortex
shedding, plays an important role regulating the flow since it modifies the driving force by
entraining ambient fluid into the current, and thus, diminishing the negative buoyancy. Behind
the front, the body and the tail form, and how long they extend depends on the initial condition.
In this region, the vortices shed from the front pair, stretch and break down.

In the past numerous theoretical and experimental works on planar and axisymmetric density
currents were conducted. The first theoretical attempts to describe the front velocity were done
by von Kármán3 and Benjamin.4 Benjamin4 found that in a lock-exchange configuration the
front should move at a dimensionless speed of 1/

√
2. Later works used the shallow water theory

to describe the dynamics of the front5–8 and made use of an empirical Froude condition to close
the model.

Several experiments have also been performed to study the front dynamics. Huppert and
Simpson9 have studied the release of a fixed volume of denser fluid in a lighter ambient experi-
mentally. They found that initially the current spreads at approximately constant speed and then
decelerates, which have been called the slumping and the inertial phases, respectively. They
also proposed an empirical Froude condition that has been used in box models and to close
shallow water models. Allen10 and Simpson11 have devoted great effort to study the lobe and
cleft pattern observed at the front in these type of flows, and Parsons and Garcı́a12 have studied
the similarity of density currents fronts.

Recently, high resolution numerical computations have been performed13, 14 for planar cur-
rents. These works have provided a detailed analysis of the flow topology at the foremost part
of the current. No such effort has been attempted to date for axisymmetric configurations. We
center our attention in the release of a fixed volume of a homogeneous fluid in a slightly less
dense environment in axisymmetric configuration and contrast our results to the planar case.
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Figure 1: Sketch of a density current showing the main features of the flow and nomenclature for this work.

2 NUMERICAL FORMULATION

We consider flows in which the density difference is small enough that Boussinesq approxi-
mation can be adopted. By this approximation density variations are only incorporated in the
buoyancy terms. The dimensionless equations read

∂ũi

∂t̃
+ ũk

∂ũi

∂x̃k

= ρ̃ ei −
∂p̃

∂x̃i

+
1√
Gr

∂2ũi

∂x̃k∂x̃k

(1)

∂ũk

∂x̃k

= 0 (2)

∂ρ̃

∂t̃
+

∂

∂x̃k

(ρ̃ũk) =
1

Sc
√

Gr

∂2ρ̃

∂x̃k∂x̃k

, (3)

Here ũi is the velocity vector, p̃ is the dynamic pressure, ρ̃ is the density, Gr is the Grashof
number, Sc is the Schmidt number and ei is a unitary vector pointing in the gravity direction.
We have adopted the channel half size, h0, as the length scale. Since there is no externally-
imposed velocity scale for the flow, we have adopted

U0 =

√

g
ρ1 − ρ0

ρ0

h0 (4)

as the velocity scale. Consequently, the time scale is h0/U0. Here ρ1 is the density of the denser
fluid and ρ0 is the density of the ambient fluid. The dimensionless density and dynamic pressure
are given by

ρ̃ =
ρ− ρ0

ρ1 − ρ0

, p̃ =
p

ρ0 U2

0

. (5)
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The two dimensionless numbers in equations (1)–(3) are

Gr =

(

U0 h0

ν

)2

and (6)

Sc =
ν

κ
, (7)

where ν is the kinematic viscosity and κ is the diffusivity of temperature or salinity responsible
for the density difference. The Gr number plays the role of the square of the Reynolds number.
We have decided to called it Gr because it uses a velocity scale derived from the buoyancy
terms, and to be consistent with the notation used by Härtel et al.13 to allow for comparison of
the results. The ratios r0/h0 and h0/H are additional geometric parameters introduced by the
initial condition. In this work we will concentrate on the condition H = 2h0.

The governing equations are solved using a de-aliased pseudospectral code.15 Fourier ex-
pansions are employed for the flow variables in the horizontal directions (x and y). In the
inhomogeneous vertical direction (z) Chebyshev expansion is used with Gauss-Lobatto quadra-
ture points. The flow field is time advanced using a Crank-Nicholson scheme for diffusion
terms. The advection terms are handled with Arakawa’s method and advanced with a third-
order Runge-Kutta scheme. The buoyancy term is also advanced with a third-order Runge-
Kutta scheme. More details on the implementation of this numerical scheme can be found in
Cortese and Balachandar.16

The computational domain is a box of size Lx = 20×Ly = 20×Lz = 2. Periodic boundary
conditions are enforced in the horizontal directions for all variables. At the top and bottom
walls no-slip and zero-gradient conditions are enforced for velocity and density, respectively.

3 FLOW STRUCTURE IN THE AXISYMMETRIC CONFIGURATION

We will discuss here the flow structure only for the axisymmetric configuration. The flow
structure of the planar case has been discussed in great detail by Härtel et al.13 To study the
structure of the flow, simulations for Gr = 105, 1.5 × 106 and 107 were performed. The Sc
number was set to 1 since it does not have an influence on the flow as long as it is kept O(1).
This observation is consistent with the findings of Härtel et al.13 In these simulations the flow
was solved using approximately 6 million grid point for Gr = 105 and 1.5×106, and 10 million
grid points for Gr = 107. The initial condition is a cylindrical region of denser fluid with radius
r0 = 2 an height 2h0 = 2. A minute random disturbance was prescribed in the density field to
accelerate the three-dimensional breakdown. The solution was advanced in time until the front
reached the radial location of r = 8 to avoid the influence of the lateral boundaries.17

Figure 2 shows the time development of the flow structure for the higher Gr number of
107. After the release of the denser fluid, an intrusive front forms. Initially, the flow evolves in
a two-dimensional fashion (axisymmetric flow) in which Kelvin-Helmholtz rolls develop and
form the front and the nose. Below the nose, which is raised from the bottom, an unstable strat-
ified region forms as a consequence of the no-slip condition. In this region, three-dimensional
instabilities develop and evolve into a lobe and cleft pattern in the foremost part of the current.
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This feature has been observed in experiments for both, planar11 and axisymmetric currents.18

Behind the front, the flow develops into a very intense three-dimensional structure where the
Kelvin-Helmholtz billows shed from the front deform, bend and break up. This behavior is
similar to the planar case.13, 19

The lobe and cleft structure can be observed in figure 3, where a detailed view of the front
is shown. The lobe and cleft evolution can be more clearly observed in figure 4 where we plot
on the bottom surface contours of constant density. In contrast to the planar case, the number
of lobes in the front does not decrease as the front evolves. It stays rather constant. However,
since the current is spreading radially, the size of the lobes grows as the current evolves until the
current is dissipated. How this lobe and cleft pattern forms and evolves is highly Gr-dependent.
For example, the solution for Gr = 105 does not present this feature. The solution is completely
axisymmetric for all time.

The structure of the mean flow is also dependent on the Gr number. Figure 5 shows density
and vorticity contours for Gr = 105, 1.5×106 and 107 at t̃ = 8. The main features of the current
in term of the head and the nose are present for all the Gr numbers investigated. However, they
present some differences, mainly in the front shape and nose height. The lower Gr number
solution has a more rounded head and a higher nose compared to the higher Gr solution.

4 MEAN FLOW DYNAMICS IN THE AXISYMMETRIC CONFIGURATION

In the following we will describe the dynamics of the mean flow for the axisymmetric configu-
ration. In this configuration the mean values, indicated by an overbar, are computed as

f̄(r, z) =
1

2π

2π
∫

0

f(r, θ, z) dθ. (8)

Figure 6 shows mean density contours at t̃ = 4, 8 and 10 for Gr = 107. An impression
of how the flow evolves can be gained from this figure. The development of the mean flow
starts with a short acceleration phase. In this phase, the nose is formed and the slumping phase
velocity is reached. After the initial acceleration phase, the flow enters the slumping phase,
in which the current moves at approximately constant speed (which depends on the Gr of the
flow). In this phase the flow presents a very interesting dynamics that is shown in figure 7. First,
a large billow is formed in the front (B1 in figure 7), which gives the current the characteristic
structure of front and body. Then, two more billows are formed. One counter-rotating billow
is formed in the lower region of the front (B2), which has been interpreted as a boundary layer
separation by Alahyari and Logmire20 caused by the adverse pressure gradient produced by the
first billow (B1). The other billow (B3) is formed in the body of the current and rotates in
the same direction as the first billow (B1). Finally, the first billow formed in the front (B1) is
retarded with respect to the front, which gives place to the formation of another billow on the
upper region of the front (B4). At the same time, billows B2 and B3 loose their identity.

After the slumping phase, the flow enters into a decelerating phase called inertial phase.
The box model (presented in the following section) predicts that in the inertial phase the front
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location varies as t̃1/2. During this phase the third billow formed at the front (B4) becomes more
prominent. This phase will be analyzed in a future work.

5 FRONT VELOCITY

Huppert and Simpson9 presented the so-called box model to describe the current spreading.
This model is based on two assumptions. The first one is about conservation of mass: it is
assumed that the current spreads through a serie of equal-volume cylinders of radius rF and
height hB, i. e.

(r0)
2 2 h0 =(rF )2 hB (9)

The second assumption is about the dynamics of the flow. They postulated that the flow is con-
trolled by the head of the current,21 and specified a relation between the front velocity (uF ) an
the current height just behind the head (Froude condition). Based on experimental measure-
ments they proposed the following empirical relation

uF
√

g ρ1−ρ0

ρ0
hB

=

{

β (hB/H)−χ if γ ≤ hB

H
≤ 1

FrI if 0 ≤ hB

H
≤ γ

(10)

for both, axisymmetric and planar currents. The top relation in equation (10) is valid for the
slumping phase and the bottom one for the inertial phase. Notice that only three out of the
four parameters in equation (10) are independent since FrI = β γ−χ. Huppert and Simpson9

propossed a set of parameters independent of the Gr number and the geometrical configuration:
β = 0.5, χ = 0.33, γ = 0.075 and FrI = 1.19. The Froude condition (10) with the set of
parameters proposed by Huppert and Simpson9 have been adopted by many researchers as a
key closure relation in their shallow water models.5–8

An expression for the front location of the current with time can be derived using the box
model. Recalling that

uF =
drF

dt
, (11)

and using equations (9) and (10), the following expression can be obtained for the slumping
phase of the current

(r̂F )1−2χ dr̂F

dt̂
=
√

2 β

(

2 h0

H

)

−χ

(12)

where

r̂F =
rF

r0

and (13)

t̂ =
t U0

r0

. (14)
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Equation 12 may be integrated with the condition r̂F (t̂ = 0) = 1 to obtain

r̂F =
[

1 +
√

2β

(

2 h0

H

)

−χ

2(1− χ) t̂
]

1
2(1−χ)

. (15)

Notice that since r̂F must grow with time it is required that χ ≤ 1. The front velocity is derived
from (15) and it is given by

ûF =
√

2β

(

2 h0

H

)

−χ
[

1 +
√

2β

(

2 h0

H

)

−χ

2(1− χ) t̂
]

2χ−1
2(1−χ)

(16)

Equations (15) and (16) show that the length scale and time scale for the radial spreading of
the current in slumping phase are r0 and r0/U0, respectively. This gives the same velocity scale
used to make the conservation equation dimensionless, i. e. ũF = ûF .

For small times, equations (15) and (16) may be approximated as

(r̂F )AS ' 1 +
√

2 β

(

2 h0

H

)

−χ

t̂, (17)

(ûF )AS '
√

2 β

(

2 h0

H

)

−χ

. (18)

by performing a Taylor’s series approximation around t̂ = 0 and retaining the first order term.
Equation (18) indicates that during the slumping phase, at least for the initial time, the current
moves at constant speed.

For the inertial phase, in the same way as before, we find that

r̂F =
[

r̂FI + 2
√

2 FrI (t̂− t̂I)
]1/2

(19)

where t̂I is the time at which the inertial phase starts and r̂FI is the radius of the current at this
time. An expression for r̂FI can be obtained from equation (9):

r̂FI = γ−1/2

(

2 h0

H

)1/2

, (20)

and equation (19) becomes

r̂F = γ−1/2

(

2 h0

H

)1/2
[

1 + 2
√

2 FrI γ

(

2 h0

H

)

−1

(t̂− t̂I)
]1/2

. (21)

Then, the current front velocity in the inertial phase is

ûF = 2
√

2γ FrI

(

2 h0

H

)

−1/2
[

1 + 2
√

2 FrI

(

2 h0

H

)

−1

γ (t̂− t̂I)
]

−1/2

. (22)
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Equations (21) and (22) can be approximated for t̂ � t̂I as

(r̂F )AI '
(

2
√

2FrI

)1/2

t̂1/2 (23)

(ûF )AI '
(√

2

2
FrI

)1/2

t̂−1/2 (24)

assuming that the second term in the brackets in equations (21) and (22) is larger than one.9

Figure 8 shows the front location of the axisymmetric current during the slumping phase for
Gr = 105, 1.5 × 106 and 107. The front moves at approximately constant speed. However,
it is clear from this figure that the front velocity is dependent on Gr number. This figure also
shows the box model prediction for the slumping phase, which agrees well with the numerical
solution when the Gr-dependency is accounted for. The front velocity depends also on geo-
metrical configuration. Figure 9 shows the front velocity in the slumping phase for planar and
axisymmetric configurations. These results show that the original assumption of a universal set
of parameter for the Froude relation (10) have to be modified to account for Gr and geometrical
dependencies.

6 CONCLUSIONS

We have presented and discussed the results of three-dimensional direct numerical simulations
of axisymmetric density currents. These highly resolved simulations allowed for a detailed
analysis and visualization of the flow structure and dynamics. The simulations were performed
for Gr = 105, 1.5 × 106 and 107. The large Gr number simulation exhibits the main fea-
tures observed in experiments.11, 18 The dynamics of the flow computed in the simulations is in
ageement with the large Gr experimental observations.20

The box model originally presented by Huppert and Simpson9 predicts well the front location
and velocity trends. However, the original values of the parameters presented by those authors
for the Froude condition must be corrected to account Gr and geometrical dependencies. These
results are also relevant for shallow water models of density currents where the Froude condition
is used to close the models.
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Figure 2: Surface of density 0.3 for Gr = 10
7. From top to bottom t̃ = 4, 8 and 10. The figure shows only one

quadrant of the compuational domain.
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Figure 3: Lobe and cleft pattern for Gr = 10
7. Detail of the front at t̃ = 10.
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Figure 4: Lobe and cleft pattern for Gr = 10
7. Sequence of lobe and clefts visualized by density contours. The

figure shows only one quadrant of the compuational domain.
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Figure 5: Solid line: mean density contours at t̃ = 8. Dashed line: mean vorticity contours at t̃ = 8. From top to
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Figure 6: Mean density contours for Gr = 10
7. From top to bottom t̃ = 4, 8 and 10.
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Figure 7: Mean velocity field in the front frame of reference for Gr = 10
7. From top to bottom t̃ = 4 and 8.
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Figure 9: Front velocity in the slumping phase. A: axisymmetric current, P:planar current.
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