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Abstract. In this work numerical simulations by finite elements are performed for a fully «
veloped turbulent and three-dimensional channel flow. This flow case represents a stal
benchmark for validations in turbulent flow research. The computations are carried out by
rect Numerical Simulation (DNS). Structured grids are used for the channel geometry whil
flow solver is the PETSc-FEM code. DNS is a time-dependent and three-dimensional num
solution of the flow equations which are computed as accurately as possible without any tt
lence model introduced. Homogeneous turbulence and wall turbulence are the most freqt
cases considered in DNS literature. Some turbulence statistics such as friction coeffici
production and viscous dissipation rates, Taylor and Kolmogorov microscales are shown
compare our results for the flow patterns both with those previously published and with
numerical ones.
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Figure 1: Flow domain for the channel flow, where the channel widffi is L, .

1 INTRODUCTION

Turbulence in fluid flows is a natural phenomenon that cannot be easily defihegdever, from
a physical point of view there are many common properties of turbulent flows which can be
ognized: time and space irregularity, strong mixing, high diffusivity and high vorticity, viscc
dissipation, flow structures with continuous spectra of length and time scales, large Reyi
numbers and a three dimensional character, among others. Moreover, there are frequentl
scale motions that are organized with some coherent character (e.g. coherent flow structt
a mixing layer or in the wake behind a bluff body), which are flow-dependent and geome
dependent (e.g. a plane or round jet) and sensitive to inviscid-like instability mechanisms
the other hand, there are small scale motions that are statistically independent from flov
geometry, but sensitive to the fluid viscosity and with a random and near isotropic behavio

From a mathematical point of view it is generally accepted that turbulent flows are desct
by the unsteady Navier-Stokes equations for a viscous fluid. For instance, its applicability
been inferred from the von &&man-Howarth (VKH) equation that appears in the statistic
theories of isotropic turbulence based on correlation methddghese theories, the unstead
VKH equation is a direct consequence of the Navier-Stokes one when isotropy is assum
has been validated in laboratory experiméntand, it formally describes a diffusion proces:
in a five-dimensional spaee Nevertheless, there is not a complete mathematical theory
turbulence as described by the unsteady Navier-Stokes equations, so methods for nun
modeling are often based on heuristics, empiricism and assunfpfions

From a computational point of view, predictive methods in turbulence can be roughly sc
acording to the degree of statistics involved before a numerical solution of the chosen equiz
is performed:

(i) Direct Numerical Simulatioh(DNS) of turbulence: where any fluctuating motion in thi
flow fields is computed from the exact unsteady Navier-Stokes equations, that is, a
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Figure 2: Non-dimensional mean velocity = U/U, as a function of the non-dimensional wall-normal coordi
natey™ = yU, /v, when the DNS solution is adimensionalized with: the friction stresgurve 1) and the limit
friction stressr,, (curve 2) obtained from Eq. (12).

of turbulence is a time-dependent and three-dimensional numerical solution in whict
flow equations are computed as accurately as possible without any turbulence mod
troduced. Mean flow parameters are later obtained from statistics over a broad s
numerical solutions. DNS considers all degrees of freedom appearing in the flow v
out using any approximating assumption. However, as the required grid points nur
increases faster than the square of the Reynolds number, DNS of turbulence is at pi
feasible only at low or moderate Reynolds numbers;

(i) Large Eddy Simulations (LES): the large scale motions are computed from the filte
unsteady Navier-Stokes equations while the small-scale ones are modeled witladatt
hoc procedures. Then, mean flow parameters are obtained from statistics over a ¢
solved large-scale motions and small-scale ones (sub-grid modeling);

(i) Statistical Turbulence Modelling (STM): the whole turbulent motion is assessed throi
a finite number of statistical parameters, for instance, statistical single-point or t
point moments in the physical or in the Fourier spaces and Probability Density Funct
(PDF). However, exact equations governing such statistical parameters are opetofthe
sure probler) due to the non-linearity of the Navier-Stokes equations. Then, additiol
assumptions are added yielding approximate closed sets of modeled equations, f

stance, Reynolds Averaged Navier Stokes equations (RANS), PDF and spectral-cl
ones.

The DNS turbulence of channel flow has often been performed in the literature becau
its simple geometry, e.g. see Kist all° and Abeet al!l. The fully developed turbulent
channel flow is an example of wall turbulence, that is, turbulence whose structure is mi
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Figure 3: Plot of the friction Reynolds numbRe, = U, d/v as a function of the time number wherej = H/2
is the channel half-width whil®e- is its limit value.
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Figure 4: Plot of the bulk Reynolds numbee;,, = U,d/v as a function of the time number whered = H/2 is
the channel half-width.

influenced by the presence of a solid boundary in a shear flow. Many DNS of turbulence
to wall bounded flows and have provide useful databases for analysing near-wall effects
the review article of Friedrichet al).

In this work numerical simulations by finite elements are performed for a fully develoj
turbulence in a three-dimensional channel. The computations are carried out by Direct Nt
ical Simulation (DNS) with a structured grid. A main objective is to calibrate a LES mode
the PETSc-FEM flow solvét2,
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Figure 5: Plot of the friction coefficied'; as a function of the time numbercompared with the correlations of
Dean for channel flow, Blasius for pipe flow, and the limit friction va{f;'l]e

2 FLOW DOMAIN

A fully developed turbulent flow in a three dimensional channel of rigid and smooth wi
is assumed, see Fig. 1, wherér,), y(z2) and z(x3) are the streamwise, wall-normal anc
spanwise directions, respectively, and= (z,y, z). The mean flow is in the-direction and
is driven by a body force,, while thez streamwise and spanwise directions are assume
as infinites. A fully developed turbulent regime is assumed, with flow velacity u(z,t),
with v = (u,,u,, u,), which is homogeneous in its time-mean structure in the streamw
direction, where a viscous and incompressible fluid of Newtonian type is employed wi
physical properties are taken as constants. The assumed symmetry isghiewise direction
means only the off-diagonal terms,u,) r in the Reynolds stress will be nonzero and |
depends only on the wall-normal direction, where...) denotes average in the flow domain
until some final timer".

3 ROUGH ESTIMATES

As it is well known'?, the Kolmogorov scales of length, time and velocity are given by
nx =@Vt Ok =P u = (vt (1)
respectively, and

1

e=2vd ; d= <Sij5ij>QT o Sig = 5 (uz'j + sz‘) N 5%‘/3%’ ; (2)

wheree ands;; are the dissipation and strain rates per unit ffassspectivelyd is the average
of the strain rate square contraction and the fluid kinematic viscosity. On the other hand, tw

2051



J. D’Elia, G. Franck, M. Storti, N. Nigro

1.18

U . -
c [c. centerline 00116

1178 Yo |b: bulk 1.28 Re,
Dean correlation

1.14

: step |

0O 20 40 60 80 100 120 140 160 180

Figure 6: Plot of the ratio of the centerline velocity to the bulk dtig/Uy,, compared with the Dean correlation
1.28 Rep, ~*°116 as a function of the time number

conditions must meet a DNS of turbulence in order to ensure an adequacy of the results: |
length L of the computational domain must be long enough to accommodate the largest ec
whose typical length isl., and (ii) the typical grid spacingg must be fine enough to resolve
the smallest eddies whose length scale is in the order of the Kolmogorov one. For instanc
grid points numbeN g and the total computational tin¥g,ns in @ DNS of homogeneous and
isotropic turbulence in a box increase with the Reynolds number as

9/4

Npns ~ Re; and Tpng ~ R6711/4 . (3)

Assuming that at least 4 nodes in each direction are needed to resolve the smallest edd
the grid points number for an uniform spacihgcan be estimated as

A 3
Nuni orm ~ - ; 4
; L?K/J )
and replacing the Kolmogorov length scale given by Eq. (1),
€K 1/4 3
Nuniform ~ l4Ae (;) 1 . (5)

It is also knownA* that in a channel of widtli/, the eddies of a fully developed turbulent flow art
elongated in the streamwise direction with a scale lengthz 2H. Also, the typical velocity
ratio isU, /U, ~ 20 while its dissipation rate is ~ 2UT2Ub/H, where

Ub = lim

BTG for u(z,t) dQ dt ; (6)

2052



J. D’Elia, G. Franck, M. Storti, N. Nigro

2.9

2.8
\ N,

27 P

2.6 ——

2.5
2.4

2.3
2.2
2.1

ns’[ep
0O 20 40 60 80 100 120 140 160 180

Figure 7: Plot of the ratio of the distance of the first node layer to the Kolmogorov leddynx, as a function
of the time numben, whereA%y = y; — y,.

is the bulk velocity across the flow domain,
Uy = /22 (7

is the shear velocity,

Tw =V 75— ; (8)

is the friction stress computed from the DNS results, whindp are the kinematic viscosity
and density of the fluid, respectively. Substituting these estimates into Eq. (5) we have
uniform mesh of mesh-step, that Npys ~ (110 Re,)”*, where

U6 H

Re, = — ;525; 9)

are the friction Reynolds number and the hydraulic radius for the channel flow case, res
tively. From a practical point of view, it is wasteful to use a uniformly-spaced mesh since
wall regions have fairly small dissipation ratesand then the Kolmogorov length scajg is
larger there than very near the walls (where the dissipation rate is the bigest). Thd8eKin
al. have shown by numerical experiments that with mesh refinement at the walls the facto
in Eq. 4 can be replaced by about 3. Thus, a more feasible grid points number order in a
of turbulence in channel flow can be estimated as

h, # const —  Npng ~ (SReT)Q/4 ) (20)
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Figure 8: Plot of the ratio of the time-step to the Kolmogorov time scaAl¢P, as a function of the time number
n.

Regarding the time discretization, DNS mostly use explict or semi-implicit methods to o
come severe time-step restrictions due to locally fine grids. Such fine grids arise whe!
wall-normal velocity gradients must be resolved. Linear stability criteria of explicit scher
lead time steps much lower than the Kolmogorov time s€gfe Another time scale often used
as an upper bound in near-wall turbulence is the friction time g¢ater/UZ. For instance, it
has been reported that to sustain turbulence is necessary a time step of

At = 0. 2m . (11)

When a constant body borge is imposed in the streamwigsedirection of a channel of span-
wise widthH. A momentum balance on a control volume shows that the limit friction stres:
given by

Tw = =pg.H . (22)

4 AVERAGE PROCEDURE

As in the case of periodic flows, the homogeneity hypothesis in the two infinite direction
assumet?, that is, all the quantities averaged in these directions are independent of th
streamwise and-spanwise directions. Then, by the ergodic hypothesis, the statistical aver:
Is replaced by an averaging in thestreamwise and-spanwise directions given by

f=fy1)

z,t) dxdz ; (13)

L L
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Figure 9: Plot of the ratio of the time-step to the DNS af/Tpng estimed from Eq. (25), as a function of the
time numbem.

When the simulated flow reaches a statistically steady state, the mean-velocity profile ci
defined

Uly) =T,(y) = lim [ W,(y,t)dt; (14)

5 MEAN FLOW VARIABLES

In order to characterize the flow in the channel the following mean values are used. The
Reynolds number i&e, = U,d/v, wherel, is the mean velocity, while the wall Reynolds
number is given byRe, = U,d/v, whereU, = \/7,/p is the friction velocity,r,, is the shear
stress (statistically averaged) whileandp are the kinematic viscosity and density of the fluid
respectively. The channel half-width= L, /2 is its hydraulic radius (the ratio of the cross
sectional area to the transverse wetted perimeter, e.g. see Cofoerrah) which is often
used in the literature. The normalized mean velocity and wall-normal coordinate are ¢
by ut = u/U, andy™ = yU, /v, respectively. The friction coefficient; is defined from
Tw = Cf(pUb2/2).

6 GOVERNING EQUATIONS

The unsteady Navier-Stokes equations (NS) for the flow of a viscous and incompressible
tonian fluid are written as

pOu+u-Vu—f)—V-0=0; (15)
V-u=0;
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Figure 10: Plots of the Kolmogorov lengtfx and and Taylofr,y10r SCales as functions of the time number

on the flow domairf?, for all timet € [0, 7] whereT  is a some final timey is the fluid velocity,
f is the body force ang is the fluid density. The fluid stress tensspis decomposed into its
isotropic—pl and deviatorid parts

o=—-pl+T,; (16)

wherep is the pressure and is the identity tensor. As only Newtonian fluids with constar
physical properties are considered, its deviatoric ffars related linearly to the strain rate
tensor with

T=2ue ; €= % [VU + (VU)T} ; (17)

whereu andv = u/p are the dynamic and kinematic viscosity of the fluid and” denotes
the transpose. In channel flow periodic boundary conditions are imposed instneamwise
andz-spanwise directions (or at the boundary of thehorizontal planes) as

w(r + Ly, y, 2, t) = u(x,y, 2, 1) ;

u(x,y,z+ L, t) = u(zr,y, 2,1) ; (18)
p(@+ Loy, 2,t) = p(x,y, 2, 1) ;
p(x,y, 2+ Lz, t) = p(x,y, 2,1) ;
while no-slip ones for the velocity
uw(z,0,2,t) =u(x, Ly, 2,t) =0; (29)

are imposed on the top and bottom walls for all time [0,7]. The lengths., and L, are
the assumed periods in the two infinite directionstreamwise and-spanwise large enough to
accommodate the largest eddies.
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Figure 11: Plot of the Kolmogorov tim@ scale as a function of the time number

7 NUMERICAL SOLUTION BY FINITE ELEMENTS

The numerical simulation is performed by a stabilized finite element scheme where, at
node and at each time step, the moment and continuity equations are solved for the three
ponents of velocity and pressure. The combined Streamline Upwind Petrov Galerkin (SU
and Pressure Stabilized Petrov Galerkin (PSPG)] scheme, proposed by Téz#iswal. is
employed for stabilization of the advective and incompressibility terms. This combined sch
is due to two distinctive difficulties in the numerical resolution of the Navier-Stokes equati
of flows of incompressible and viscous fluids by finite elements. First, when the Reynolds r
ber increases, these equations are more dominated by the advection term. On the othe|
the incompressibility condition is not really a evolution equation itself but, rather, a rest
tion one on the velocity field. This implies, in turn, that only some combinations of the velo
and pressure interpolation spaces can be employed, thatis, those that satisfy the Brezzi-Bi
condition. The spatial discretization has equal order for pressure and velocity (linear tetrah
elements), and is stabilized through the addition of two operators. Advection at high Reyr
numbers is stabilized with the SUPG operator, while the PSPG one stabilizes the incomg
ibility condition, which is responsible of the checkerboard pressure modes. When the moc
equations are then discretized by finite elements in space, an Ordinary Differential Equ
(ODE) system in time results, which is next discretized by a finite difference method an
each time step, we have a non-linear system of equations

n+l _ . n
F (%,pn+l) = 0 . (20)

Then, having the state of the fluid at tinfe we solve the velocity and pressure unknowns .
time ¢!,
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Figure 12: Plot of the Kolmogorov velocifyx scale as a function of the time number

The whole strategy is implemented within the PETSc-FERMcode, a multi-physics finite
element library. In our DNS simulations we have used its special matrix solver “Interface It
tive and Sub-domain Direct” (IISDMat), which solves the linear system by iteration over the
terface nodes while a direct method is employed in each interior sub-domain (this is comrn
referred as a “Domain Decomposition Method”). The PETSc-FEM code is based ot M
(Message Passing Interface) and PEfSReortable Extensible Toolkit for Scientific computa:
tions), a scientific library that gives to the developer a parallel environment with different le
of complexity.

8 COMPUTATIONAL PARAMETERS

The computational flow domain is the béx= [0, L,] x [0, L,] x [0, L,]x, whereL, = 7 is
the streamwise lengthl,, = 1 is the channel width and,, = H = 7/2 its spanwise width.
The lengthsl, and L, are chosen in order to ensure that the turbulence fluctuations are ur
related at one half-period of separation. A structured finite element mesh with linear tetrah
elements is employed. It is resolved by an equidistant grid incthplanes, with\V, = 128
and N, = 64 points along streamwise and spanwise directions, respectively. In order to ve
Eq. (10) the mesh step should be 40% smaller. Along the wall-nognalidection, a non-
equidistantly grid is placed witlV,, = 34 points along wall-normal direction, with refinemen
center/wall ratio ofh,..;;, = 75, where the first point af* = 0.48. There is a total ofV,, ~ 294
K-nodes andV, =~ 1.18 M-degree of freedom. In order to obtain a wall Reynolds numb
Re, ~ 180 and mean velocitie® (1), the kinematic viscosity was set to= 3 10~° m?*/s and
the body forcey, = 0.00025 N /m?.

The overall computation was performed by continuation on the body fgr¢elated to the
friction Reynolds number), which was started with a laminar velocity profile. The final Cour
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Figure 13: Mean velocity/,. as a function of the wall-normal coordinaje

number wasVq =~ 0.5 and the last time-step¢ = 0.002 s. This final time-step is lower than
the viscous one from the estimate given by Eq. (11).

9 NUMERICAL RESULTS

The DNS curves are adimensionalized with both the friction strggsomputed from Eq. 8)
and the asymptotic friction stresg (given by Eq. 12).

Fig. 2 shows plots of the non-dimensional mean velogity= u/u, as a function of the
non-dimensional wall-normal coordinage = yu, /v. As it is well known, in fully developed
turbulence there is a logarithmic region empirically approximated by

ut=Alny" + B ; (22)

whereA = 1/x is the reciprocal of the von &man parameter ang is an additive one. Several
values are found in literature (for both smooth and rough walls) and we have chesém1
andB = 5.1.

Plots of the friction Reynolds numbéte, = U,¢/v and bulk Reynolds numbdRe,, =
Uyd /v, as functions of the time number are shown in Figs. 3 and 4, respectively, wher
0 = H/2is the channel half-width (the hydraulic radius for this case).

Plots of the friction coefficient§’; as functions of the time numberare shown in Fig. 5
obtained with: (i) the present DNS, (ii) the Dean empirical correlation for channel flow

Cy = 0.073 Re, "% ; (22)
and (iii) the Blasius one for pipe flow

Cr =0.079 (2Rep) "% . (23)
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Figure 14: Mean velocity gradiedi/,, /0y as a function of the wall-normal coordinaje

A plot of the ratio of the centerline velocity to the bulk ori&,/U,,, as a function of the time
numbern, compared with the Dean correlation

Ye _ 198 Re, 0010 (24)
Uy
is shown in Fig. 6.

A plot of the ratio of the distance of the first node layer to the Kolmogorov lengthy nx,
where A% = y; — v, is shown in Fig. 7, and another for the ratio of time-step to the Kc
mogorov timeAt /O is shown in Fig. 8, both as functions of the time numbeA plot of the
ratio of the time-step to an estimative DNS on¥,/Tpys, is shown in Fig. 9 as a function of
the time numbern, where (e.g. see WilcaR)

Tpns = 0.003 (25)

H
UrvRe,
Plots of the Kolmogorov scales for lengtl, time © and velocityU computed by Eq. 1 are
shown in Figs. 10, 11 and 12, respectively, all as functions of the time numlberig. 10, as

a reference, the Taylor scale
U 2
N Taylor = \/ 15v Tb ) (26)

for homogeneous and isotropic turbulence, it is also ploted as a function of the time numkb
where it is verified thatyx < Nrayior-

The last mean velocity/, and mean velocity gradiertU,. /0y as functions of the wall-
normal coordinateg are shown in Figs. 13 and 14, respectively.

The mean dissipation rateas a function of the wall-normal coordinagdas shown in Fig.
15.
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Figure 15: Mean dissipationas a function of the wall-normal coordinaje

10 DISCUSSION

Due to the fact that the mesh is not properly refined in the sense that the mesh step sho
40% smaller in order to verify Eq. (10), an assessment is necessary in order to clarify i
present simulation is more likely a LES without a subscale model than a truly DNS. To qual
this possibility an analysis beyond the mean flow should be made. For this aim, the ext
work W, = pg,U,{2 should be equal in mean to the dissipation energy

Eq = /QE df2 = /L (€)r.r. dy; (27)

Yy

where

1
: 2
<€>Lsz L:ULZ /LT dﬂj /LZ €(x7 yJ Z) dZ ? ( 8)

both W, and E, are integrated in the flow volum& = L,L,L.. Fig. 16 shows a plot of
the external worklV, and dissipation energy, in the flow volumes?, as a function of the
time numbem. From this figure it can inferred that (i) the difference between dissipation &
external work it is not small enough, (ii) that the external work is bigger than the dissipa
energy due to the numerical dissipation added by the numerical method and (iii) the rel
numerical dissipation i8C/AC ~ 30%. It can be concluded that the present simulation
more likely to be a LES without a subscale model than a truly DNS. For a truly DNS the
step should be more refined. For instance, the number of nodes should be increased frc
~ 300 K-nodes in the present simulations to 600 and 900 K-nodes. In this way a converg
test under mesh refinement could be also performed.

Another validation is to compute spatial and time correlations of the fluctuating velocit
which are more sensitive to the subscale models than the mean ones. For this aim, the Re
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Figure 16: External workV, = pg,U,{2 and viscous dissipatioR; = [, edS2 integrated in the volume&? =
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Figure 17: Reynolds stresses = p(t;is) andry; = p{i1a1) as a function of the wall-normal coordinaje

stresses; = p(ua,) andris = p(Uite) can be computed as a function of wall-norme
coordinatey, wheretu, = u; —U; is the fluctuating velocity, while; andU; are the instantaneous
and mean velocities along thieCartesian coordinate, respectively. A plot of these Reynol
stresses as a function of the wall-normal coordinateshown in Fig. 17.

11 CONCLUSIONS

As Karniadaki$® remarks, there are two major challenges today in DNS of turbulence: (i)
maximum Reynolds number feasible in numerical simulations is still much lower than thos
practical interest and (ii) complicated flow geometries are still untackled. Nevertheless, fr
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practical standpoint, statistics computed from the DNS results can be used to test and ca
closure models and Sub-Grid-Scale (SBS) ones, which are often used to predict the more
complicated flows of technical interest. Thus, DNS of turbulence is still devoted to flow rese
since it gives more detailed mechanisms of fluctuating fields and it can be used as a tool to
the turbulence physics. DNS of turbulence can also be considered as an additional sou
experimental-like data if is seen as an unobtrusive measuring technique as well for obta
information about near unmeasurable properties like pressure fluctuations. Other test
could be the DNS of turbulence through partially permeable pipes since it has been repor
behave similarly to flow through rough pigés
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